

We stand at a pivotal juncture for Artificial Intelligence.
Large Language Models (LLMs) such as ChatGPT1–3 can
now engage in insightful conversations, demonstrating
an impressive command of human knowledge and logic.
These large language models (LLM) are adept
conversationalists and possess an increasingly accurate
understanding of numerous scientific and engineering
disciplines4. ChatGPT, a groundbreaking model from
OpenAI, can not only code in various programming
languages but also explain and rectify code5. This
capability is ushering in an era where users, irrespective
of their programming skills, can instruct computers to
perform complex tasks that would have previously
required coding. Natural language is emerging as the hot
new programming language. Could we harness these
advancements to make image processing and analysis
faster, more accessible, and tailor-made to the user's
task?

We introduce Omega, an LLM-based conversational
agent capable of performing image processing tasks,
analyzing images to gather insights, correcting its own
coding mistakes, and conducting follow-up
quantifications and analyses. For instance, a user can
instruct Omega to “segment cell nuclei in the selected
image on the napari viewer,” then “count the number of
segmented nuclei,” and finally “return a table that lists
the nuclei, their positions and areas” (see Fig. 1, and
Supp Video 1 and 2). Moreover, Omega can provide
advice and instructions on various image processing and
analysis topics. A user can ask Omega to create a “step-
by-step plan to segment nuclei in an image,” Omega will
generate a detailed strategy (see Supp. Video 3). The
user can then interactively apply these steps, make
changes in response to the outcomes, and ask follow-up
questions to complete the task (see also Supp. Video 3).
Omega can also create on-demand user interface

widgets from user prompts. For example, a user may ask
for a “widget that removes segments in a labels layer
outside of a range of segment areas” (see Fig 1 and Supp.
Video 4) or for a “widget that color projects a 3D image
stack so that the hue is proportional to the depth of
voxel of max intensity” (See Fig 1, and Supp. Video 5).
On-demand widget generation for user-tailored tasks
such as specialized image filtering, transformations,
visualizations, and more (see Supp. Table 1 for
examples) is one of the most valuable aspects of Omega.
To facilitate the reuse, modification, and sharing of
generated widgets and code snippets, Omega also
includes an AI-augmented code editor that keeps all
functional code generated by Omega, allowing users to
rerun the code, modify and improve it using AI-
augmented tools such as automatic code commenting,
cleanup, fixing, modification, and safety checks (Supp.
Fig. 2 and Supp. Video 6). Moreover, the editor also lets
users on the same local network easily share code (see
Supp. Video 7).

Omega is written in Python as a plugin to napari6 and
leverages the LangChain Python library7 and OpenAI's
application programming interface (API). While Omega
works best with OpenAI's ChatGPT, it can also leverage
other LLMs, such as Anthropic's Claude models (see
Supp. Video 8), and other open-source models via
Ollama. Omega can converse with the user, like
ChatGPT's popular web interface. We utilize the ReAct
framework8 to enable multi-step reasoning and task-
specific actions, including access to online sources of
information and specialized tools for executing code and
interfacing with napari. Omega can also correct its own
coding mistakes by receiving feedback on syntax and
execution errors encountered (Supp. Video 9).

Omega – Harnessing the Power of Large Language Models
for Bioimage Analysis

Loïc A. Royer1, *

1Chan Zuckerberg Biohub, San Francisco, USA.
*Correspondence: loic.royer@czbiohub.org

w

https://github.com/royerlab/napari-chatgpt
https://vimeo.com/921829769?share=copy
https://vimeo.com/921829813?share=copy
https://vimeo.com/921829830?share=copy
https://vimeo.com/921829830?share=copy
https://vimeo.com/921829874?share=copy
https://vimeo.com/921829920?share=copy
https://vimeo.com/921829944?share=copy
https://vimeo.com/921829995?share=copy
https://napari.org/
https://chat.openai.com/
claude.ai
https://vimeo.com/921830018?share=copy
http://ollama.com/
https://vimeo.com/921830051?share=copy
https://github.com/royerlab/napari-chatgpt
https://github.com/royerlab/napari-chatgpt
http://royerlab.org/
https://www.czbiohub.org/sf/
mailto:loic.royer@czbiohub.org
https://github.com/royerlab/napari-chatgpt

Omega’s tools allow it to download files from the web
(Supp. Video 10), perform web searches (Supp. Video
11), execute arbitrary Python code (Supp. Video 12),
control and query the state as well as contents of the
napari viewer (Supp. Video 13), make napari widgets
(Supp. Videos 4-5), and query the parameters and
documentation of Python functions (Supp. Video 14).
Omega also incorporates special-purpose tools that give
it access to popular cell and nuclei segmentation
algorithms, including: cellpose9 (Supp. Video 15) and
StarDist10 (Supp. Video 1 and 4), as well as to our image
denoising software Aydin11 (Supp. Video 16). Omega
inherits ChatGPT's Python coding abilities and
knowledge (Supp. Video 17). To our surprise, the two
best LLMs tested, ChatGPT and Claude, have extensive
knowledge of napari's programming interface (Supp.
Video 13) as well as other standard and popular Python
libraries such as NumPy12 (Supp. Video 17), scikit-
image13 (Supp. Video 18), and OpenCV14 (Supp. Video
19). These models can also utilize hardware

optimization and acceleration libraries such as numba15
for just-in-time compilation (Supp. Video 20) and CuPy16
for GPU acceleration (Supp. Video 21). Omega can
leverage all this knowledge and tools to perform tasks
and answer questions.

However, the promise of this approach also requires
prudence. It is well known that LLMs sometimes
hallucinate facts and occasionally make trivial reasoning
mistakes4,17. Indeed, we have observed that Omega
sometimes uses functions or parameters that do not
exist in the installed libraries (see Supp. Video 9) or
needs clarification (Supp. Video 12, 13, 17). This is a
cause for caution as non-expert users might be led
astray by an overly confident agent. Moreover, it is
incumbent upon the user to explain the task clearly and
unambiguously in natural language (note the ambiguity
between max and average projection in Supp. Video 20).
We are still in the early days of this technology, and rapid
progress will hopefully reduce the risks and improve the

Figure 1. Harnessing the Power of Large Language Models for Bioimage Analysis with Omega. (a) Omega is a napari plugin
that first appears as a widget that lets users configure and start Omega. Images and other layers (labels, points, shapes) are
listed in napari’s layer list and accessible to Omega. Omega can add to the layer’s list any layer resulting from processing or
analysis. Users can ask Omega to make tailor-made widgets that are added to napari. These widgets can input any set of
layers and return new layers. (b) Upon starting, Omega opens a browser window that displays a chat box page. Users can
then begin dialoguing with Omega, asking questions about image processing and analysis, opening images in the napari
viewer, asking for a widget, and processing and analyzing images or any other layer supported by napari, such as labels,
points, or shapes.

https://vimeo.com/921830083?share=copy
https://vimeo.com/921830116?share=copy
https://vimeo.com/921830146?share=copy
https://vimeo.com/921830197?share=copy
https://vimeo.com/921829874?share=copy
https://vimeo.com/921829920?share=copy
https://vimeo.com/921829920?share=copy
https://www.cellpose.org/
https://vimeo.com/921830275?share=copy
https://github.com/stardist/stardist
https://vimeo.com/921829769?share=copy
https://vimeo.com/921829874?share=copy
http://aydin.app/
https://vimeo.com/921830293?share=copy
https://vimeo.com/921830359?share=copy
https://vimeo.com/921830197?share=copy
https://vimeo.com/921830359?share=copy
https://vimeo.com/921830551?share=copy
https://vimeo.com/921830669?share=copy
https://vimeo.com/921830705?share=copy
https://vimeo.com/921830785?share=copy
https://vimeo.com/921830051?share=copy
https://vimeo.com/921830146?share=copy
https://vimeo.com/921830197?share=copy
https://vimeo.com/921830359?share=copy
https://vimeo.com/921830705?share=copy

quality of the reasoning and code produced18. In the
meantime, Omega implements several features that aim
to mitigate these problems, including several
introspection routines that check the correctness of
generated code by looking for function calls to the
wrong library versions, missing import statements, or
missing libraries. To understand Omega’s reliability, we
conducted a reproducibility analysis in which we ran five
different complex prompts ten times. In 90% of cases,
Omega obtained the correct result (see Supp. Table 2).
It often suffices to ask Omega to “try again” to resolve
most issues.

This work suggests that LLM-based agents could assist
many users in image processing, analysis, and
visualization. Beyond just completing tasks, Omega
offers an interactive platform that can assist in
educating users. Users can ask questions about a
particular course of action, why a specific function was
used, or for an explanation of some of the concepts used
or mentioned by Omega (Supp. Video 4 & 18).
Moreover, Omega can operate in a didactic mode,
explaining different approaches and presenting choices
to the users before acting. Finally, the multilingual
capabilities of ChatGPT and other LLMs mean that
Omega is accessible to non-English speakers (Supp.
Video 22).

Looking ahead, multimodal foundation models have the
growing potential to process and understand diverse
data types. Already, state-of-the-art models can
incorporate and analyze sound, speech, and videos19,20.
Omega has access to a Vision tool built upon the vision
capabilities of OpenAI's ChatGPT 4, which lets Omega
interpret the napari viewer's contents visually (Supp.
Video 23). This makes it possible for Omega to decide on
the best image processing or analysis approach, for
example, when segmenting biological objects (see Supp.
Video 24). Eventually, these multimodal models will be
able to understand extensive multi-dimensional data
directly, circumventing the need to write code to
process or analyze complex tabular or graph-based data.
This evolution will be a step towards more
comprehensive and versatile intelligent agents capable
of handling more complex tasks across different data

modalities, expanding the scope of applications and
possibilities in image processing and beyond.

The source code and instructions for using Omega are
available at github.com/royerlab/napari-chatgpt.

Acknowledgments:
Thanks to OpenAI for early API access to their ChatGPT
4 models, facilitated by Logan Kilpatrick via Mark
Andrew Kittisopikul; Anthropic for early API access to
their latest Claude models, facilitated by Josh Batson;
and Sandra Schmid for careful proofreading. Thanks to
Robert Haase and Ilan Theodoro for bug fixes and Adrian
Jacobo for suggestions and discussion. Funding for this
work was provided by Chan Zuckerberg Biohub San
Francisco (CZB SF). I thank the CZB SF donors Priscilla
Chan and Mark Zuckerberg for their generous support.

Ethics Declaration:
The author declares no conflict of interest.

References:
1. OpenAI. GPT-4 Technical Report. Preprint at

http://arxiv.org/abs/2303.08774 (2023).
2. Ouyang, L. et al. Training language models to follow

instructions with human feedback. Preprint at
http://arxiv.org/abs/2203.02155 (2022).

3. Sanderson, K. GPT-4 is here: what scientists think.
Nature 615, 773–773 (2023).

4. Laskar, M. T. R. et al. A Systematic Study and
Comprehensive Evaluation of ChatGPT on
Benchmark Datasets. Preprint at
http://arxiv.org/abs/2305.18486 (2023).

5. Bubeck, S. et al. Sparks of Artificial General
Intelligence: Early experiments with GPT-4.
Preprint at http://arxiv.org/abs/2303.12712
(2023).

6. Sofroniew, N. et al. napari: a multi-dimensional
image viewer for Python. Zenodo (2022).

7. Chase, H. LangChain, 10 2022. URL Httpsgithub
Comhwchase17langchain.

8. Yao, S. et al. ReAct: Synergizing Reasoning and
Acting in Language Models. Preprint at
http://arxiv.org/abs/2210.03629 (2023).

9. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to
train your own model. Nat. Methods 19, 1634–
1641 (2022).

10. Weigert, M., Schmidt, U., Haase, R., Sugawara, K. &
Myers, G. Star-convex Polyhedra for 3D Object

https://vimeo.com/921829874?share=copy
https://vimeo.com/921830551?share=copy
https://vimeo.com/921830806?share=copy
https://vimeo.com/921830861?share=copy
https://vimeo.com/921830877?share=copy
https://github.com/royerlab/napari-chatgpt
https://openai.com/
https://www.anthropic.com/

Detection and Segmentation in Microscopy. in
2020 IEEE Winter Conference on Applications of
Computer Vision (WACV) 3655–3662 (IEEE, 2020).
doi:10.1109/WACV45572.2020.9093435.

11. Solak, A. C., Loic A. Royer, Abdur-Rahmaan
Janhangeer & Kobayashi, H. royerlab/aydin:
v0.1.15. (2022) doi:10.5281/ZENODO.5654826.

12. Harris, C. R. et al. Array programming with NumPy.
Nature 585, 357–362 (2020).

13. Van der Walt, S. et al. scikit-image: image processing
in Python. PeerJ 2, e453 (2014).

14. Bradski, G. The openCV library. Dr Dobbs J. Softw.
Tools Prof. Program. 25, 120–123 (2000).

15. Lam, S. K., Pitrou, A. & Seibert, S. Numba: A llvm-
based python jit compiler. in Proceedings of the
Second Workshop on the LLVM Compiler
Infrastructure in HPC 1–6 (2015).

16. Nishino, R. & Loomis, S. H. C. Cupy: A numpy-
compatible library for nvidia gpu calculations. 31st
Confernce Neural Inf. Process. Syst. 151, (2017).

17. Li, J., Cheng, X., Zhao, W. X., Nie, J.-Y. & Wen, J.-R.
HaluEval: A Large-Scale Hallucination Evaluation
Benchmark for Large Language Models. Preprint at
http://arxiv.org/abs/2305.11747 (2023).

18. Peng, B. et al. Check your facts and try again:
Improving large language models with external
knowledge and automated feedback. ArXiv Prepr.
ArXiv230212813 (2023).

19. Wu, C. et al. Visual ChatGPT: Talking, Drawing and
Editing with Visual Foundation Models. (2023)
doi:10.48550/ARXIV.2303.04671.

20. Royer, L. A. The future of bioimage analysis: a dialog
between mind and machine. Nat. Methods 20,
951–952 (2023).

21. Kirillov, A. et al. Segment Anything. Preprint at
http://arxiv.org/abs/2304.02643 (2023).

22. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. & Iwasawa,
Y. Large Language Models are Zero-Shot
Reasoners. Preprint at
http://arxiv.org/abs/2205.11916 (2023).

Methods:
In the following, we provide details on Omega’s
different components and how they are implemented,
from the chat window web server and the code editor to
the cascaded LLM approach, different tools, and Python
code repair strategies. The most up-to-date version of
Omega’s code can be consulted at:
https://github.com/royerlab/napari-chatgpt.

The version corresponding to this manuscript is at the
branch named manuscript_03_2024.

User interface and usage. Omega is provided as a napari
plugin following the latest plugin standard (npe2). The
plugin was built by following the instructions described
here. Omega’s ‘widget plugin’ provides a simple
interface that lets users configure different options,
start Omega, or open the code editor (see Fig 1a). Once
the user starts Omega (see start button on Supp. Fig. 1),
the plugin starts a web server at the local address
127.0.0.1 that hosts the Omega Chat page. The plugin
then opens a web browser window at that address to
display the page. At that point, the user can start
conversing with Omega. Ideally, this chat window is
side-by-side with the napari window so that the user can
see both the conversation displayed on the browser and
the outcome shown in the viewer.

Code editor. Omega saves all working code in a ‘code
editor’ that supports code highlighting and completion.
It has AI-augmented tools for automatic code
commenting, cleanup, fixing, modification, and safety
check (see Supp. Fig. 2). Users can keep all snippets of
code and widgets for reuse from one napari session to
another, make any manual changes or fixes necessary,
and rerun these. Moreover, we implemented a code-
sharing feature by which any running instance of
Omega’s code editor can find other instances in the local
network (via multicast) and share code snippets with
others. Notably, the code editor is independent of
Omega’s agent and only requires access to any LLM APIs
to access its AI-augmented features. If no LLM API keys
are provided, the code editor still runs but without any
AI features.

Overall Architecture. An overview of Omega’s
architecture (Supp. Fig. 3) shows the main UI elements
at the top: napari itself, the chat window, and the AI-
augmented code editor. It also shows the main backend
elements: Omega’s ReAct agent, the web server, the
editor’s AI tools, and the Python code repair module.
The figure also shows Omega’s cascaded architecture,
with a main dialog loop driven by a main LLM and a
series of tools that internally use a delegated tool LLM

https://github.com/royerlab/napari-chatgpt
https://github.com/royerlab/napari-chatgpt/tree/manuscript_03_2024
https://napari.org/stable/plugins/index.html

that leverages online resources, the napari viewer itself,
and 3rd party libraries such as Cellpose and StarDist.

Jupyter export. Omega can save all conversations in
runnable Jupyter notebooks. This is done with the
standard Jupyter notebook creation and manipulation
library ‘nbformat’. In addition, Omega regularly appends
screenshots of the viewer to the notebook to document
what was visible on the napari viewer during the
conversation.

Omega configuration. The Omega widget (see Supp. Fig.
1) allows users to set: (i) the LLM model (GPT3.5, GPT4,
Claude, etc.); (ii) the model’s creativity level (normal,
slightly creative, moderately creative, creative) that
corresponds to different temperature settings of the
LLM model. A temperature near zero (normal creativity)
means that the model is nearly deterministic in its
answers – which is desirable in factual dialoguing and
code generation. When the temperature increases, the
LLM models explore more atypical and often creative
responses – but they also tend to make more factual,
reasoning, and coding mistakes. (iii) The type of agent
memory used (infinite, bounded, and hybrid). In the case
of infinite memory, the agent remembers every word of
the conversation, which in practice only works for LLM
models with extensive input text lengths such as GPT4
(32k) or Claude (100k). In contrast, the bounded
memory only remembers the last k messages exchanged
between the agent and user. The hybrid memory
precisely remembers the last k messages and
summarizes all previous messages. (iv) The agent's
personality (neutral, coder, prof, yoda, mobster)
modulates the style and tone of the conversation. The
following options are related to code generation and the
different strategies adopted to mitigate and prevent
errors: (v) The option “fix missing imports” controls
whether to check the generated code, identify missing
imports, and prepend them to the code. (vi) the option
“fix bad function calls” controls whether to verify if the
function calls in the generated code correspond to
functions in the packages installed in the Python
environment. (vii) the “Install missing packages”
controls whether to list all Python packages required by
generated code, compare that list with the list of

installed packages, and proceed to install those missing.
(viii) The “Autofix coding mistakes” option controls
whether Omega will try to fix its own coding mistakes
when exceptions occur when interacting with the napari
viewer. Similarly, (ix) the “Autofix widget coding
mistakes” controls whether Omega will try to fix its own
coding mistakes when exceptions occur while making a
new widget. Finally, (x) the last option, “High console
verbosity,” controls Omega's console verbosity level. A
high verbosity level can be useful in understanding
Omega’s “train of thought” better.

Chat server. The chat page is served by uvicorn, an ASGI
web server implementation for Python that uses FastAPI
to communicate between the chat box and Python. It
leverages Jinja2 as the template engine for generating
the served HTML page. The chat box and Python
communications are handled via a web socket on the
client side and a FastAPI endpoint on the server side.
Messages between the agent and user are exchanged as
JSON-encoded dictionaries.

LLMs used in Omega. Omega leverages LangChain’s
machinery to interface with different LLM APIs. Omega
works with OpenAI’s GPT4 models, Anthropic’s Claude
models, and all open-source models supported by
Ollama. However, OpenAI and Anthropic models (and
possibly Google’s new Gemini modems, which were not
yet tested with Omega) perform best. Unfortunately,
open-source models are still not on par with state-of-
the-art closed-source models. Omega’s reliance on
closed-source LLM models could be seen as an issue.
However, this is likely only a temporary situation: the
rapid pace of innovation and disruption, especially
coming from the open-source flank, bodes well for a
future in which Omega would run entirely on open-
source models.

Omega ReAct Agent. Omega is implemented as
LangChain’s ConversationalChatAgent, which uses the
ReAct framework8 to decide which tool to use and uses
memory to remember the previous messages in the
conversation. By default, Omega uses a modified version
of LangChain’s hybrid conversational memory (see code
here).

https://www.uvicorn.org/
https://fastapi.tiangolo.com/
https://jinja.palletsprojects.com/
https://python.langchain.com/docs/get_started/introduction.html
https://ollama.com/
https://python.langchain.com/docs/get_started/introduction.html
https://github.com/royerlab/napari-chatgpt/blob/main/src/napari_chatgpt/omega/memory/memory.py

Prompt engineering for Python code generation.
“Prompt Engineering,” which is the art of designing
prompts that nudge LLMs into producing answers
relevant to the user's inquiry, was a critical aspect of the
building Omega. LLMs are known to require very explicit
– if not obvious – instructions. For instance, simply
adding to the prompt: “Let’s think step by step,”
improves the quality of results22. In the case of Omega’s
prompt engineering, we made explicit that “You
[Omega] are an expert Python programmer with deep
expertise in image processing and analysis,” that: “Your
[Omega] responses are accurate and informative,” and
that it should “Make sure that the code is correct,
complete and functional without any missing code, data,
or calculations”. LLM prompts used for code generation
also contain the list of layers in the napari viewer, the
current Python version number, and the names and
versions of all image-processing relevant libraries
installed in the environment. Our experiments show
that ChatGPT knows about differences in the
parameters of a function across different package
versions. Therefore, having the system explicitly provide
the information about which specific library versions are
installed is critical for correct code generation. We also
had to provide detailed instructions so that the code
generated could be easily interfaced with Omega’s code,
thus facilitating interaction with the napari viewer. A
simple strategy is to ask the LLM to produce a function
with a well-defined signature (input parameters, their
types, and return type) and load the code dynamically as
a Python module.

Omega’s Tools. Omega has at its disposal several tools
that give it the ability to (i) search text and images on the
web and Wikipedia, access a Python REPL (Read-Eval-
Print Loop) for executing arbitrarily non-napari related
code, (ii) gather detailed information about Python
functions available in the environment, (iii) get
information about the latest exceptions that occurred,
(iv) obtain information about the state of the napari
viewer and about the layers present, (v) make and add
widgets to napari’s UI, (vi) use special-purpose libraries
for cell segmentation and image denoising, and (vii) see
the contents of the napari viewer with GPT-4 vision to
inform its next steps. Following the ReAct8 approach, the
agent maintains a conversation with the user and can

use tools to answer questions or perform tasks. This is
achieved by listing the available tools and their
description in the prompt sent to the LLM. Part of the
dialog related to tool usage is internal to the agent and
not shared with the user.

Cascaded LLM Architecture. In Omega, we choose a
cascaded LLM approach where, besides the LLM running
the ReAct agent, the tools invoke LLMs to generate and
introspect code and summarize the text. This avoids
polluting the main dialog loop trace with long blocks of
generated code and makes it possible to tailor prompts
to each code generation task. For example, when the
main LLM running the ReAct agent decides to invoke the
‘widget maker tool’ it calls that tool and forwards the
user (or its own) request to the tool. The tool itself is a
function that takes the request and inserts it into a long
and complex prompt that guides the LLM in generating
the Python code for the widget.

Custom protocol for tool communication. Most
conversational ReAct-based agents use JSON-formatted
dictionaries to allow communication between LLMs and
the tools. This works well when simple short text strings
are exchanged between the LLM and the tool, but this
fails for arbitrary code because of all the complexities
entailed, such as escaping reserved characters. Imposing
such a high competence bar on the LLM by requiring it
to produce a very complex JSON string is unreasonable.
To solve this issue and reduce the complexity of the
syntax that the LLM has to adhere to, we use a simplified
multi-line key-value format (see code here). Recent
versions of OpenAI’s models have built-in support for
‘function calling’, eliminating this problem.

Python code introspection and repair. Careful Prompt
Engineering can be highly effective at ensuring that the
generated code is synthetically correct, that function
calls refer to existing and available functions, and that
the code is interfaceable with the rest of Omega’s code.
However, despite our best efforts, there are cases in
which the generated code is incorrect. Omega
implements several mitigation strategies that reduce
the probability of error:

https://github.com/royerlab/napari-chatgpt/blob/main/src/napari_chatgpt/omega/omega_agent/agent_output_parser.py

1. Adding missing import statements. The first typical
type of code generation error that we noticed is missing
import statements. To address this, Omega implements
a particular routine using the code generation LLM to
introspect the code by listing all missing import
statements. This might seem paradoxical: why should
the LLM make a mistake during code generation but be
able to catch it during verification? The explanation is
that code generation is more challenging than code
verification because it requires both Python and
Application domain knowledge. In contrast, code
verification only requires knowledge of Python and its
libraries – generally, the more restricted and well-
defined the task, the better the outcome.

2. Installing missing packages. Adding missing import
statements is only helpful if the corresponding libraries
are installed in the current Python environment. Using
the same code introspection approach, we ask the code
generation LLM instance to list all Python packages
required to run the generated code. This list of packages
is compared to installed packages, and only missing
packages are installed using pip. Edge cases like GPU
accelerated libraries like Tensorflow or CuPy are
handled with special rules. Omega asks permission to
install these missing packages to prevent issues with the
Python environment.

3. Incorrect function call detection and repair. An
additional mitigation approach involves enumerating all
function calls occurring in the code using standard
Python language introspection features and checking
that these functions exist and that the corresponding
packages are installed. This detection step is highly
reliable because it does not use LLMs. Once an incorrect
function call is detected, Omega carefully constructs a
specialized prompt that combines all the information,
particularly the correct function signature, and asks the
LLM code generation instance to fix the code
accordingly.

4. Context-aware code repair upon code execution
error. Once the above fixes are applied to the generated
code, then Omega executes that code. If exceptions are
detected during execution, the code and exception(s)
are provided to the code generation LLM instance. A

specialized prompt explicitly asks the LLM to fix the code
using a detailed exception description. This process is
repeated recursively until no exceptions occur or the
maximum number of repair steps has been reached.
Importantly, Omega has a mechanism that forwards
task-specific coding instructions used during code
generation to be available during code repair.

Napari integration and communication. Giving Omega
access to the napari viewer is not trivial because of the
threading model mismatch between the agent
controller and the napari viewer. The agent runs in async
mode per LangChain’s implementation, while napari’s
threading model is inherited from the Qt cross-platform
application framework. We address this using a thread-
safe bidirectional asynchronous communication queue
that establishes a bridge between Omega and napari
(see the NapariBridge class here). The queue passes
code as a string and then executes that code using
napari’s thread-worker functionality. All captured
standard output strings are captured and returned to
Omega. Exceptions are dealt with according to the error
mitigation strategies described above. The following
details the tools that provide Omega access to napari.

1. Napari viewer query tool. This tool lets Omega gather
any information about the state of the napari viewer or
any of the layers (images, labels, points, etc.) currently
loaded. This is achieved by carefully crafting a prompt
incorporating the user’s question, information on layers
that are present in the viewer, and task-specific coding
instructions. In this prompt, the code generation LLM
instance is asked to write a ‘query(viewer:
Viewer)’ function that takes the viewer as a
parameter and prints out the answer to the user’s
question.

2. Napari viewer control tool. Similarly, this tool lets
Omega control the napari viewer, such as changing the
state of the viewer’s canvas, adding, and removing
layers, etc. In that case, we carefully crafted a prompt
incorporating the user’s question, information on layers
present in the viewer, and task-specific coding
instructions. In this prompt, the code generation LLM
instance is asked to write a script that is then executed.

https://github.com/royerlab/napari-chatgpt/blob/main/src/napari_chatgpt/omega/napari_bridge.py

3. Widget maker tool. This tool takes the user’s plain
text description of a widget or instructions on modifying
a previously generated widget and adds that widget to
napari’s user interface. For instance, if the user asks for
a 'Gaussian filter with a sigma parameter,' this tool will
make the corresponding widget with a single float
parameter. This automatic user interface generation is
made possible by the MagicGUI library as part of the
standard plugin infrastructure of napari. The generated
code goes through all the checks and verifications
described above.

4. Napari viewer vision tool. This tool gives Omega a
sense of ‘vision’. Currently, this is only supported using
OpenAI’s ChatGPT 4 vision capabilities, but this could be
extended to support other and upcoming vision models.
Omega can use this tool in two ways: (i) look at the
whole viewer or (ii) focus on a single layer. In the first
case, the tool takes a snapshot of the whole napari
viewer window, sends that picture to the vision model,
and obtains a textual description of the image. In the
second case, the tool hides all layers except the selected
one, resets the viewer to show the layer fully, takes a
snapshot of just the viewer’s canvas, sends that picture
to the vision model, and obtains a textual description of
the image. Occasionally, the ChatGPT 4 model refuses to
describe the snapshot image. This is documented here
and probably caused by over-zealous security measures
preventing the model from describing people. These
cases are detected, and the query is repeated until it
works – typically less than four times.

5. Cell segmentation and image denoising tools. Even
the best LLMs, such as ChatGPT 4 or Anthropic’s Claude,
do not know about the latest version of state-of-the-art
bioimage analysis libraries, such as Cellpose and StarDist
for cell and nuclei segmentation and Aydin (aydin.app)
for image denoising. Therefore, to ensure their
availability and facilitate their usage, these libraries are
integrated explicitly through specific interfacing
functions that expose a subset of relevant parameters
from these libraries. Specially crafted prompts explain in
detail how to use these functions, how to choose
between the different variants, and how to set the
parameters.

6. ‘Classic’ cell segmentation. In addition to Cellpose
and StarDist, we implemented a straightforward yet
configurable threshold-based ‘classic’ segmentation
algorithm using scikit-image functions. This simple
algorithm is a reasonably practical baseline for
segmenting 3D images of nuclei. Images are first
normalized, then using a disk- or ball-based footprint of
radius 2; the image is eroded several times. Next, one of
the following thresholding functions is applied: otsu,
yen, li, minimum, triangle, mean, or isodata. The LLM
makes the choice based on user prompt instructions.
Next, the closing and opening operators are applied
several times to remove potential small segments. An
optional routine that uses watersheds to split the under-
segmented segments is available. Finally, the resulting
binary image is labeled, and a label layer is returned and
added to napari.

Didactic posture. To enhance the interactive learning
experience within Omega, we introduced a "Didactic
mode". This mode can be activated at Omega’s startup
(see Supp. Fig. 1). In this mode, Omega adopts a didactic
posture, initially presenting the user with a
summarization of the task followed by a proposal of
multiple strategies to address the request. Users can
review these methodologies before initiating any
processes, allowing for a conscious selection of the
preferred approach. This educational orientation
extends further; the system is designed to not only guide
but also to educate. It expounds upon the rationales
underlying various options, delves into image processing
and analytical concepts, and elucidates their practical
applications, strengths, and weaknesses. This is
achieved by adding instructions to that effect in the
agent’s system prompt. Such a feature turns Omega into
not just a tool for task execution but also a tutor for
concept learning.

API key vault. The Omega API key vault system is
designed to provide a secure method of storing and
retrieving API keys required to interface with services
such as OpenAI, Anthropic, and others. It ensures that
keys are encrypted and accessible only with a proper
password, protecting API keys from unauthorized
access. The system includes a user-friendly interface
that (i) prompts the user, the first time, for an API key

https://pyapp-kit.github.io/magicgui/
https://www.reddit.com/r/ChatGPT/comments/17c2ytn/chatgpt4v_keeps_refusing_to_describe_images/
http://aydin.app/
https://scikit-image.org/

and password to secure it and (ii) subsequently only asks
for the password. Some API keys can be set as an
environment variable; this is recognized, thus easing the
API key management process, but at the risk of having
an exposed unencrypted key on the user’s system. The
Omega API key vault utilizes the Fernet symmetric
encryption standard, ensuring that API keys are stored
securely on the user's local system and can only be
accessed by providing the correct password. The
encryption process is bolstered by a password-based key
derivation function (PBKDF2HMAC) and a SHA256
hashing algorithm, which provide a secure method of
transforming the password into an encryption key.

Videos. The videos were recorded with OSX’s
QuickTime player and were sped up by a factor 2x. Supp.
Table 3 lists all prompts for all videos.

Supplementary material:

Supplementary Figure 1. Enhanced Code Editor Interface in Omega: Collaborative and Intelligent Code Management for
Image Processing. Users can use Omega's main widget to select different options, including the LLM model's type and
version, the level of creativity (which increases the model's temperature), the type of conversational memory used, and the
agent's personality. Other parameters relate to code checking and automatic repair. To begin using Omega, click the “Start
Omega” button, and a browser window will open, displaying the agent's chat box. To open the code editor, click on “Show
Code Editor”. Note: the code does not need Omega to be started or LLM API keys to be minimally functional.

Supplementary Figure 2. Omega’s AI-augmented code editor. Omega’s code editor is a key component for managing and
refining code for image processing and analysis tasks. The editor is designed to support code highlighting and completion
and is enhanced with LLM-augmented tools for automatic code commenting, cleaning, fixing, modification, and safety
checks. This allows users to maintain a library of code snippets and widgets, encouraging code reuse and collaboration
through a code sharing feature that enables sending code snippets across local network to other code editor instances.

Supplementary Figure 3. Omega’s System Architecture. Diagram illustrating the Omega system architecture, encompassing
both the user interface and backend components. The user interface is displayed at the top, consisting of the napari viewer,
chat window, and AI-enhanced code editor. Key backend elements include the Omega ReAct agent, web server, AI tools
within the editor, and the Python code repair module. The architecture employs a cascaded design, with a central dialog
loop orchestrated by a primary language model. This model coordinates a suite of specialized tools, each powered by a
secondary tool-specific language model that can access online resources, interact with the napari viewer, and integrate
functionalities from third-party libraries such as Cellpose and StarDist.

Supplementary Video 1. Omega can segment nuclei with StarDist and perform follow-up analysis. The video showcases
Omega's ability to segment cell nuclei in a 2D image using Stardist. Omega successfully segments the nuclei and adds a label
layer to the napari viewer. With further instructions, Omega can count the segmented nuclei and create a CSV file on the
desktop folder of the machine. This file contains coordinates and areas of all segments, sorted by decreasing area, with one
segment per row. Omega also opens the file using the system’s default CSV viewer. The video has been sped up by a factor of
2.

Supplementary Video 2. Omega can segment nuclei in a 3D image. This video shows how Omega segments the nuclei in a 3D
image displayed in the napari viewer. Omega uses a specialized tool for cell and nuclei segmentation and employs a 'classic'
approach that combines single thresholding, specifically Otsu, with watershed splitting to prevent under-segmentation. After
segmentation, Omega adds a labels layer to the viewer, and we inquire about the number of segments detected. The response
is 27. The video has been sped up by a factor of 2.

https://vimeo.com/921829769
https://github.com/stardist/stardist
https://vimeo.com/921829813?share=copy
https://en.wikipedia.org/wiki/Otsu%27s_method

Supplementary Video 3. Omega can devise step-by-step strategies and interactively execute them. In this video, we
requested Omega's assistance developing a detailed strategy for segmenting nuclei in a 2D image. We clarified that the nuclei
appear brighter than the background. Omega provided us with a 6-step plan. The first step involved loading the image into
napari, which was already done. Next, Omega suggested applying a Gaussian filter to smoothen the image and eliminate noise.
However, since the image was not noisy, we asked Omega to move on to step 3, which involved thresholding. Using the scikit-
image library, Omega utilized the Otsu method to determine the threshold value and change the image to binary form. As a
result, a new layer was added to the viewer with the outcome. We then asked Omega to implement step 4, which involved
morphological operations to remove minor artifacts and separate touching nuclei. We specifically requested two erosions.
However, we were unsure whether applying grey morphology operators to the original would be more sensible. Omega agreed
and provided us with an updated plan that swapped the order of thresholding and erosion. We started over and used the new
plan, beginning with step 3 and proceeding to steps 4 and 5, resulting in a reasonably good segmentation. The video has been
sped up by a factor of 2.

Video sped up by a factor 2x.

Supplementary Video 4. Omega can make widgets on demand, e.g., to filter segments per area. In this video, we first ask
that Omega segment the nuclei in the currently selected 2D image. Then, we tell Omega to make a widget that can filter the
segments in a label layer according to their area. Segments whose areas are outside of a given range are removed from the
newly created labels layer. We then start using that widget and experiment with the two parameters: min area and max area.
The video has been sped up by a factor of 2.

https://vimeo.com/921829830
https://vimeo.com/921829874

Supplementary Video 5. Omega can make complex widgets such as for color max projection. In the video, we requested that
Omega create a widget for max color projection of a 3D stack within the napari viewer. The hue variation represents the depth
within the stack where the maximum intensity is observed, illuminating the spatial arrangement of the nuclei. Luminance
correlates with the maximum intensity of the voxels, highlighting areas of peak fluorescence. Saturation reflects the contrast
between the maximum intensity and the average intensity across depth thus suppressing hue variation caused by noise. The
video has been sped up by a factor of 2.

Supplementary Video 6. Omega’s AI-augmented code editor. In this video, we request a widget that visualizes the Fourier
spectrum of a 2D image. Omega makes such a widget, which we test on the camera image. We then can find the source code
generated by Omega for that widget in the code editor. We then show the different features of the code editor, such as the
code cleanup tool, as well as the AI-powered code safety check tool, code commenting tool, and code modification tool.

https://vimeo.com/921829920?share=copy
https://vimeo.com/921829944

Supplementary Video 8. Omega can also work with other LLM models besides ChatGPT. This short video shows that Omega
also works with Anthropic’s Claude LLM model. The video has been sped up by a factor of 2.

Supplementary Video 7. Sharing code and widgets across machines. This video shows how Omega’s code editor can send
code across the network to another instance. There is no need to copy and paste the code and send it via email or messaging
tool. Simply choose the file, choose the recipient, and it will be sent. All other open instances of the code editor running on
machines connected to the same network will be automatically discovered as potential recipients.

https://vimeo.com/921830018
https://www.anthropic.com/
https://vimeo.com/921829995

Supplementary Video 9. Omega corrects its own coding mistakes. In the video, Omega applied the SLIC super-pixel
segmentation algorithm to a selected image. However, Omega made a mistake using the non-existent 'multichannel'
parameter when using the scikit-image SLIC function, resulting in an error. Omega noticed this mistake and corrected it on the
second try, successfully adding the segmented image to the viewer. The video has been sped up by a factor of 2.

Supplementary Video 10. Omega can search and open image file from the web. In this video, we requested Omega to open
a dataset from Blin et al.'s PLOS Biology 2019 in napari. The dataset can be accessed online and streamed using the ZARR
image file format and library. Omega was able to fulfill our request successfully letting us explore the dataset. Next, we
requested Omega to open a picture of Albert Einstein in napari. Omega then utilized its web image search function to locate
a suitable image and loaded it into napari. The video has been sped up by a factor of 2.

https://vimeo.com/921830051
https://www.iro.umontreal.ca/~mignotte/IFT6150/Articles/SLIC_Superpixels.pdf
https://vimeo.com/921830083
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000388
https://zarr.readthedocs.io/en/stable/
https://zarr.readthedocs.io/en/stable/

Supplementary Video 11. Omega can teach concepts in image processing. In this video, we ask Omega what it knows about
‘gradient-based image fusion.’ Omega then proceeds to give an interesting explanation of the general idea behind this
approach to image fusion. We then ask Omega to apply these ideas and make a widget that takes two image layers and returns
the gradient-based image fusion of these two images. Omega successfully creates a functional widget that we test on two
images. The video has been sped up by a factor of 2.

Supplementary Video 12. Omega can do math and write arbitrary Python code. In this video, we test Omega's Python coding
skills by asking some basic math questions. For example, we asked for the value of 1010+1 and the number of permutations
possible with ten objects. Then, we asked Omega to write all permutations of a list of 5 strings ('a', 'b', 'c', 'd', 'e') to a file on
the machine's Desktop folder, with one permutation per row. Omega completed this task and opened the file using the
system's default text viewer. Following this, we asked to create a new file containing only permutations where the letters 'a'
and 'b' are consecutive, providing some examples. However, we soon realized that our statement could have been clearer as
it was ambiguous whether the order of 'a' and 'b' mattered. The video has been sped up by a factor of 2.

https://vimeo.com/921830116
https://vimeo.com/921830146

Supplementary Video 13. Omega can control the napari viewer. This video showcases how Omega can manage the napari
viewer window. Initially, we requested to change the viewer to 3D rendering mode. Subsequently, we ask it to rotate the
orientation of the 3D image by 20 degrees on all axes and zoom in by 50% twice. Then, we request to modify the gamma
setting of all layers to a value of 1.5. Finally, we eliminate all layers in the viewer except for the 'nuclei' one. Lastly, we zoom
out and switch back to 2D rendering mode. The video has been sped up by a factor of 2.

Supplementary Video 14. Omega can determine how to call Python functions. In the video, we requested information from
Omega regarding the convolution function in scipy’s ndimage package. Omega provided an extensive explanation of the
function signature and details about the parameters. However, when we asked to apply the function to a selected image, it
generated code for a 2D image instead of a 3D image. After informing Omega that the image was, in fact, 3D, it was able to
apply the function successfully with appropriate default parameters. The video has been sped up by a factor of 2.

https://vimeo.com/921830197
https://vimeo.com/921830245
https://scipy.org/

Supplementary Video 15. Omega can use Cellpose to segment cells and nuclei. This brief video showcases how Omega utilizes
Cellpose to segment cell nuclei in a 2D image (z-projection). The video has been sped up by a factor of 2.

Supplementary Video 16. Omega can use Aydin to denoise images. This video showcases Omega’s access to our image-
denoising tool Aydin. We first ask Omega to apply Aydin’s Noise2Self-FGR (Feature Generation & Regression) approach on a
noisy single-channel photograph of the New York skyline (see detailed use case and tutorial here). We see some console
output from Aydin running within Omega, and eventually, it displays a denoised version of the image overlayed as a new layer
in napari. Next, we ask Omega to apply the same denoising algorithm to a 3D image of Drosophila Egg Chambers (LimSeg Test
dataset, Machado et al.), which it does successfully. The video has been sped up by a factor of 2.

https://vimeo.com/921830275
https://www.cellpose.org/
https://vimeo.com/921830293
https://aydin.app/
http://proceedings.mlr.press/v97/batson19a/batson19a.pdf
https://royerlab.github.io/aydin/v0.1.15/use_cases/newyork.html
http://doi.org/10.5281/zenodo.1472859
http://doi.org/10.5281/zenodo.1472859

Supplementary Video 17. Omega can follow detailed instructions and has extensive knowledge of NumPy. In this video that
runs for about 20 minutes, we demonstrate the process of creating a piece of 'Digital Art' by giving Omega detailed step-by-
step instructions. We begin by requesting Omega to generate an empty image and continue by progressively altering it. We
add noise and apply functions to the pixel values, threshold, and segment structures. This video highlights Omega's proficiency
in NumPy operations and the extensive text conversations that can be utilized for image processing and analysis. The video
has been sped up by a factor of 2.

Supplementary Video 18. Omega knows how to use the scikit-image library for processing and analyzing images. This video
showcases Omega's mastery of the scikit-image library and image processing. We asked Omega to segment an image with
bright coins on a dark background, but we realized that the background was not uniform. To correct the background, we
consulted with Omega and learned about different algorithms that could be used. Initially, we attempted to use the rolling-
ball algorithm, but we encountered some issues due to Omega’s use of a white tophat filter instead of a black tophat filter.
We then tried CLAHE (Contrast Limited Adaptive Histogram Equalization), which worked reasonably well, but perhaps we
should have used larger tiles. The video has been sped up by a factor of 2.

https://vimeo.com/921830359
https://numpy.org/
https://vimeo.com/921830551
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE

Supplementary Video 19. Omega knows how to use OpenCV. In this video, we requested Omega to download an MP4 movie
using the provided URL. The movie displays a hallway and people passing by – a commonly used video for testing person
detection algorithms. We then asked Omega to utilize the OpenCV library to detect people in each movie frame and draw a
bounding box around each detection. Omega complied with our request and displayed each frame and bounding boxes around
each detected person. However, we observed two issues. Firstly, adding each 2D movie frame as individual napari image layers
is impractical, resulting in many layers. Secondly, OpenCV's RGB channel ordering is incompatible, causing the napari viewer
to display incorrect colors for each frame. The video has been sped up by a factor of 2.

Supplementary Video 20. Omega knows how to use Numba. In the video, we asked Omega to perform a z-projection of a 3D
image using the Numba library to speed up the code through just-in-time compilation. Although we did not specify the
projection type, Omega used the reasonable choice of max projection and successfully computed it. However, during the
process, Omega utilized the NumPy function np.max() in the just-in-time compiled function, defeating our purpose. We then
requested Omega to refrain from using NumPy functions and instead write a z-projection loop. Omega completed the task,
but this time, it opted for an average projection. We later explicitly asked Omega to perform a max projection. The video has
been sped up by a factor of 2.

https://vimeo.com/921830669
https://github.com/intel-iot-devkit/sample-videos/blob/master
https://opencv.org/
https://vimeo.com/921830705
https://numba.pydata.org/

Supplementary Video 22. Omega can dialog in many different languages. In this video, we speak with Omega in French. This
is possible because most LLMs (ChatGPT, Claude, and others) are naturally multilingual. Omega replies to the user in French,
but the tools used still operate internally in English, as most of the prompt templates are written in that language. We have
tested Omega in several languages, including Spanish, Italian, German, and even Chinese. This feature enhances accessibility
to non-English speakers. The video has been sped up by a factor of 2.

Supplementary Video 21. Omega knows how to use CuPy. This video presents Omega's proficiency in utilizing the GPU-
accelerated CuPy library. Initially, we requested Omega to confirm the installation and functionality of CuPy. Subsequently,
we instruct Omega to perform a z-projection of all images displayed in napari. The video has been sped up by a factor of 2.

https://vimeo.com/921830806
https://vimeo.com/921830785
https://cupy.dev/

Supplementary Video 23. Omega can ‘see’. In this video, we test Omega’s ability to see by giving it a visual puzzle to solve.
We load 4 images (black & white horse, cup of coffee, cat face, camera test image), change their layer names to ‘A’, ‘B’, ‘C’,
‘D’, and then ask Omega to find which of the four images depicts a cup of coffee. Omega uses its ‘napari viewer vision tool’
to see the contents of the napari viewer, correctly describe each image, and identify the one depicting a cup of coffee as the
one on the top right corner. We further ask for the name of the layer, and Omega uses again its vision tool to verify that layer
‘B’ holds that image. The final answer is the correct one: ‘B’. The video has been sped up by a factor of 2.

Supplementary Video 24. Omega decides how to best segment an image using vision. In this video we present Omega with
two 2D microscopy images: one with cytoplasm labeled (b) and another with nuclei labeled (a). We then ask Omega to decide
how to best segment the biological structures present in each image by using the vision tool. Omega looks at the image
contents, describe them, and correctly decides that Cellpose is best for layer b and StarDist is best for layer a.

https://vimeo.com/921830861
https://vimeo.com/921830877

… (continued in corresponding file)

Supplementary Table 1. Example widgets. Here is a list of example widgets that can be reliably generated using Omega. See
the full table in the corresponding file. These prompts can be modified, adjusted, and extended in many ways. If Omega can’t
make a functional plugin the first time, or if the result is not exactly what is asked for, being more explicit and asking Omega
to ‘try again’ often works. Ideally, these widgets are made once and then can be reused by running the code in Omega’s code
editor (see Supp. Fig. 2).

Lis of example widgets that can be generated with Omega

Type Prompts: Dataset or Image to use: Notes:

Filtering Please make me a Gaussian blur widget with
sigma parameter

E.g., the ‘Human Mitosis’ built-
in napari sample dataset.

Please make me a widget for spatially variable
Gaussian blur with a sigma parameter varying
over z between two values: sigma_bottom and
m sigma_top. The top corresponds to high-z
values, and the bottom corresponds to low-z
values. Sigma values should range between 0
(no blur) and 10.

3D image

Please make a widget that applies Butterworth
filtering to a 2D grayscale image with a defined
cut-off frequency parameter normalized between
0 (min. freq.) and 1 (max. freq.) and order
(between 1 and 10).

2D grayscale image

Please make a Sobel edge filter widget that
works on 3D grayscale images. The user can
choose an isotropic kernel size of 3, 5, or 7.
Make sure to optimize the code.

3D image

Create a sharpening filter widget for 2D
monochrome images and expose relevant
parameters. Ensure that the image's total
brightness is preserved. Expose a parameter to
control the strength of the sharpening.

2D image

Make a band-pass filter widget that keeps
frequencies in a 2D or 3D grayscale image
between two frequencies: f_min, f_max. The
frequencies are provided in the normalized range
[0f, 1f].

Transforms Please make a widget that can crop a 3D image
by specifying the number of pixels to remove on
all sides (x-, x+, y-, y+, z-, z+).

3D image

Please make a widget that can up- and down-
scale a 3D image anisotropically along x, y, z.
The type of interpolation for each axis can be set
independently.

3D image

Please make a widget that takes a 2D RGB
image and returns one of the following layers:
either one for the hue, for the saturation, or
luminance (user choice). The resulting layer
values should range between 0f and 1f for
luminance and saturation but be RGB (fully
saturated, maximal luminance) for the hue.

2D RGB image

Please write a widget to convert a 2D image
from RGB to grayscale. The weights used to
project the color pixels to grayscale are
configurable. Ensure weights sum to 1. Add a
gamma parameter for each component R, G,
and B before projection. Apply the inverse
geometric average gamma transformation to the
resulting gray-scale value.

2D RGB image

Please make a widget that computes the max
projections of a 3D monochrome image along an
arbitrary axis parametrized by Euler angles. Use
the Fourier transform and the projection-slice
theorem. Pad the input image to have the same
dimension along all axes if necessary.

3D image

Make a widget that fuses two 2D images using
the wavelet transform. Offer the choice of
transform. Expose relevant parameters.

Two 2D grayscale images. You will need to install PyWavelets and restart napari
for Omega to be able to find it. Omega will attempt to
install.

Type

1

https://github.com/royerlab/napari-chatgpt/blob/main/manuscript/widget_table.pdf
https://github.com/royerlab/napari-chatgpt/blob/main/manuscript/widget_table.pdf
https://github.com/royerlab/napari-chatgpt/blob/main/manuscript/widget_table.pdf

Supplementary Table 2. Reproducibility Analysis. We conducted a reproducibility analysis in which two complex multi-step
prompts and three widget generation prompts were run ten times to assess reproducibility – a total of 50 runs. The results
suggest that widget generation is more robust than complex multi-step tasks. We observed a 90% reproducibility rate (ratio
of successful attempts versus all ten attempts). Each run was run independently with a blank conversation history. In general,
our observation is that if Omega fails to follow instructions, it often suffices to ask Omega to “try again”.

Reproducibility test — each prompt is run 10 times, and the success rate is the ratio of successes over tries.

Supplementary
Video

Prompts: Dataset to preload: Success
rate:

Prompt 1 Segment the cell nuclei present in the selected
layer. Once done, count the number of
segmented nuclei and measure the average
segment area.

Load the ‘Human Mitosis’ built-in napari
sample dataset.

80%

Prompt 2 Convert the selected RGB image to grayscale
using human-perception-based weights. Then,
apply a light Gaussian blur of sigma 1.5 to the
resulting grayscale image. Finally, create a new
RGB image that visualizes the gradient of this
grayscale image: the hue is proportional to the
angle of the gradient vector at each pixel, and
the luminance is proportional to the magnitude
of the gradient.

Load the ‘Astronaut’ RGB image. 90%

Prompt 3 Please create a widget that takes a 2D image as
input and splits it into k*k tiles, where k is a
parameter in the range [4, 256]; snap this
parameter to the closest common divisor of both
x and y dimensions. For each tile, compute the
entropy. The output should be an image of the
same dimensions as the input, which is obtained
by upscaling the image of tile entropies (one
pixel per tile) using a parameterizable
interpolation method. The tile size should be a
parameter of the widget.

Load the camera image. 80%

Prompt 4 Please write a widget that color projects a 3D
stack along the Z axis. The hue of the projected
pixel is proportional to the depth of the voxel of
max intensity, the luminance is proportional to
that max intensity, and the saturation is
proportional to the contrast between the max
intensity and the average intensity.

Load the ‘Cells (3D + 2C)’ built-in napari
sample dataset. Keep the nuclei channel

100%

Prompt 5 Make a widget to rotate the hue of an RGB
image and adjust the gamma for the luminance
and the gamma for saturation. The default for
the angle and gamma values is 1.0. The range of
the gamma values is: [0.01, 10].

Load the ‘Astronaut’ RGB image. 100%

Average 90%

All prompts were run with default Omega settings and model ‘gpt-4-0125-preview’.

1

https://github.com/royerlab/napari-chatgpt/blob/2908f6fb5aecbe44ff4440f1653cae01d0c28f5e/manuscript/reproducibility_analysis.pdf

… (continued in corresponding file)

Supplementary Table 3. Prompt Table. This table (see the full table in the corresponding file) lists all prompts used for all
supplemental videos.

Omega Paper Prompts for Supplementary Videos

Supplementary
Video

Prompts: Dataset to load and notes:

Supp. Video 1 Segment the cell nuclei present in the selected
layer.

Load the ‘Human Mitosis’ built-in napari sample dataset.

Count the number of segmented nuclei.

Write a csv file on the desktop that lists all
segmented nuclei, together with their area, and
coordinates. Sort the rows by decreasing area.
Open the file when done.

Supp. Video 2 Segment the cell nuclei on the selected 3D
image.

Load the ‘Cells (3D + 2C)’ built-in napari sample dataset. Keep the nuclei channel

Count the number of segments

Supp. Video 3 Make a step-by-step plan to segment nuclei in a
2D image. The nuclei are brighter than the
background.

Load the ‘Human Mitosis’ built-in napari sample dataset.

Let’s apply step 3

For step 4, let’s do two erosions

Would it not be better to apply erosions first on
the grey-level image instead?

Let’s do step 3 with just one opening operation.

Let’s do one step of erosion on the selected
image please.

Let’s go back to the steps, apply 4 and 5.

Supp. Video 4 Segment the nuclei on the selected 2D image. Load the ‘Human Mitosis’ built-in napari sample dataset.

Make a widget that takes a labels layer and
returns a new labels layer but filtered. Only
labels within a provided range of areas
(min_area, max_area) are kept in this new layer.

Supp. Video 5 Please write a widget that color projects a 3D
stack along the Z axis. The hue of the projected
pixel is proportional to the depth of the voxel of
max intensity, the luminance is proportional to
that max intensity, and the saturation is
proportional to the contrast between the max
intensity and the average intensity.

Load the ‘Cells (3D + 2C)’ built-in napari sample dataset. Keep the nuclei channel

Supp. Video 6 Please make a widget that returns the FFT
spectrum of a 2D image as the absolute
logarithm of the Fourier transform magnitude.
Ensure that the DC component is at the center
of the image. Use reflection padding and
apodization to reduce artifacts due to
discontinuities at the image borders.

Load the camera image and load the ‘Cells (3D + 2C)’ built-in napari sample
dataset. Keep the nuclei channel. This way, one can test the original 2D widget and
the one modified by the AI tool in the editor.

Supp. Video 7 N/A

Supp. Video 8 Hello, who are you?

Please create a 2D image of dimensions
2000x2000 filled with random Gaussian noise of
zero mean and sigma=100

Supp. Video 9 Segment image on first layer using the SLIC
superpixel segmentation algorithm.

Load the ‘coffee cup’ built-in napari sample image.

Supplementary
Video

1

https://github.com/royerlab/napari-chatgpt/blob/main/manuscript/prompt_table.pdf
https://github.com/royerlab/napari-chatgpt/blob/main/manuscript/prompt_table.pdf
https://github.com/royerlab/napari-chatgpt/blob/main/manuscript/prompt_table.pdf

