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Existence and stability of anti-periodic solutions for
an impulsive Cohen-Grossberg SICNNs on time
scales

Meng Hu and Lili Wang

Abstract—By using the method of coincidence degree and con-
structing suitable Lyapunov functional, some sufficient conditions are
established for the existence and global exponential stability of anti-
periodic solutions for a kind of impulsive Cohen-Grossberg shunting
inhibitory cellular neural networks (CGSICNNs) on time scales. An
example is given to illustrate our results.

Keywords—Anti-periodic solution; Coincidence degree; CGSIC-
NNs; Impulse; Time scales.

I. INTRODUCTION

INCE Bouzerdout and Pinter in [1] described SICNNSs

as a new cellular neural networks, SICNNs have been
extensively applied in psychophysics, perception, robotics,
adaptive pattern recognition, vision and image processing,
etc. It is shown that the applicability and efficiency of such
networks hinge upon their dynamics, and therefore the analysis
of dynamic behaviors is a preliminary step for any practical
design and application of the networks. In particular, consider-
able effort has been devoted to the study of dynamic behaviors
on the existence and stability of the equilibrium point, periodic
and almost periodic solutions of SICNNs with time-varying
delays and continuously distributed delays in the literature
(see, e.g., [2-5] and the references therein).

Arising from problems in applied sciences, the existence of
anti-periodic solutions plays a key role in characterizing the
behavior of nonlinear differential equations (see [6-10]). Since
SICNNSs can be analog voltage transmission which is often an
anti-periodic process, it is worth continuing the investigation
of the existence and stability of anti-periodic solutions of
SICNNs. To the best of the authors’ knowledge, nevertheless,
there are few published papers considering the anti-periodic
solutions of impulsive CGSICNNS.

Motivated by all above mentioned, we consider the follow-
ing impulsive CGSICNNSs on time scales

a(t) = —ag;(t, zij(t)) {bz‘j (t, iz (1) + CH(t)
CHEN, (i.])
Fltson(t = ra®)as0) ~ ()] 1 € Tt 2 0,
Azij(tn) = xu(t ) — xta( ) = Lgh(l‘t; (th))vt =th,
heNi=1,....m,j=1,...,n,
(1
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where T is an 3 -periodic time scale which has the subspace

topology inherited from the standard topology on R. Cj;
denotes the cell at the (7,j) position of the lattice, the r-
neighborhood N,(i, j) of Cj; is given by N,.(i,7) = {Cj; :
max{’k—i‘, |l—j|} <r1<k<m,1<1<n} xz; acts as
the activity of the cell C;;, L;;(¢) is the external input to C;j,
ai;(t,z;5(t)) > 0 and b;;(t, x;5(t)) represent an amplification
function at time ¢ and an appropriately behaved function at
time ¢, respectively; ijl(t) > 0 is the connection or coupling
strength of postsynaptic activity of the cell transmitted to the
cell C;;, and the activity function f(¢,zy;) is a continuous
function representing the output or firing rate of the cell C*!;
25 (), 2i;(t;,) represent the right and left limit of z;;(¢;,) in
the sense of time scales, {¢,} is a sequence of real numbers
such that 0 < t; < to < ... < tp, — o0 as h — oo.
There exists a positive integer p such that 54, = t, + %,
Iij(h+p) (xij(th+p)) = _Iijh(_l‘ij (th)), h € N. Without loss
of generality, we also assume that [0, 5)r N {t; : h € N} =
{t17t2, R ,tq}. Let RT = (0, +OO),T+ =RtNT.

The main purpose of this paper is to study the existence
and global exponential stability of the anti-periodic solutions
of (1) by applying the method of coincidence degree and
constructing suitable Lyapunov functional. The methods used
in this paper are different from those of the references listed
above and our results can be applied to a large of neural
networks.

($1l(t),$12(t),...,xln(t)r,n xml(t) mmg(t)

Letz(t) =
S Tmn(t)T € C(T,R™), | |= 32 > max f2ij (]
i=175=1 tE[0,w

The initial conditions associated with system (1) are of the
form

zi5(t)

where ¢;;(t),i = 1,2,...,
functions on [—T, 0].
For the sake of convenience, we introduce some notations

- —kl _ kl
Lij = max |Lij(B)], Ciy = o 1Ci5 )],

lolla = ( I |g<t>|2At)1/2,

where ¢ is an w-periodic function.
Throughout this paper, we assume that
(Hy) C(t) > 0,Ly(t) € C(T,R),CH(t + %) = kl(t),
Tij(tJr 5) = Tza(t) Llj(t+ ) = —L;({t), i =
1,2,....m,5=1,2,...,m;

= pij(t),t € [~7,0]7, 7 = 19&&}%&”8;615{7“(75)}7 2

m,j = 1,2,...,n are continuous
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(Hz) ai € C(TxR,RY), a;;(t+%, —u) = ay;(t,u) and there
exist positive constants @;;, a a;; such that 0 < a;; <
a;j(t,u) < @ for all uw € R, i = 1,2,. ] =
1,2,...,n;
bij € C(T x R,R) are delta differentiable, b;;(¢,0) =
0, bij(t +%,—u) = —b;;(t,u) and there exist positive
constants g;;, d;; such that 0 < g;; < abjai(utu) < 6;5 for
aluelR,i=1,2,....m,j=1,2,...,n;
fij € C(TxR,R), fi;(t+ %, —u) = fi;(t,u), and there
exist positive constants My and L such that | f;; (¢, u)| <
f(tvu) —f(t,’U) =
Ii;n, € C(R,R) and there exist positive constants p;;p
such that |I;n(u) — Lijn(v)] < pijnlu — v| for all w,
veR, heN,i=1,2,....m,j=1,2,...,n

The organization of this paper is as follows. In Section II,
we introduce some definitions and lemmas. In Section III, by
using the method of coincidence degree, we establish sufficient
conditions for the existence of the anti-periodic solutions of
system (1). In Section IV, by constructing Lyapunov func-
tional, we shall derive sufficient conditions for the global
exponential stability of the anti-periodic solutions of system
(1). An example is given to illustrate the effectiveness of our
results in Section V.

(Hs)

(Hy)

(Hs)

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which are used in what follows.

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators o,p : T — T and the
graininess p : T — R* are defined, respectively, by

o(t)=inf{s € T:s>t},p(t) =sup{s e T:s <t}

u(t) =o(t) —t.

A point t € T is called left-dense if ¢ > inf T and p(t) = ¢,
left-scattered if p(¢) < ¢, right-dense if t < supT and o(t) =
t, and right-scattered if o(¢) > t. If T has a left-scattered
maximum m, then T* = T\ {m}; otherwise T* = T. If T has
a right-scattered minimum m, then Ty = T\{m}; otherwise
T, =T.

A function f : T — R is right-dense continuous provided it
is continuous at right-dense point in T and its left-side limits
exist at left-dense points in T. If f is continuous at each right-
dense point and each left-dense point, then f is said to be a
continuous function on T.

Fory:T — Randt e T, we define the delta derivative of
y(t), y™(t), to be the number (if it exists) with the property
that for a given € > 0, there exists a neighborhood U of ¢ such
that ][y(a(t)) —y(s)] —y2(t)[o(t) — s]| < glo(t) — s| for all
s € U. If y is continuous, then y is right-dense continuous,
and y is delta differentiable at ¢, then y is continuous at ¢. Let
y be right-dense continuous, if Y2 (t) = y(t), then we define
the delta integral by f: y(s)As =Y (t) — Y(a).

A function p : T — R is called regressive provided 1 +
p(t)p(t) # 0 for all t € T*.

Similarly in [11], we shall first give the definition of anti-
periodic function on time scales as following:
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Definition 2.1 We say that a time scale T is periodic if there
exists p > 0 such that if £ € T, then t £ p € T. For T # R,
the least positive p is called the period of the time scale. Let
T # R be a periodic time scale with period p. We say that
the function f : T — R is %-anti-periodic if there exists a
natural number n such that § = np, f(t+ %) = —f(t) for all
t € T and ¥ is the least number such that f(t+ %) = —f(¢).
If T =R, we say that f is §-anti-periodic if 3 is the least
positive number such that f(t 4 %) = —f(t) for all ¢ € T.

Lemma 2.1([12]) Let p, g be regressive functions on T.
Then
(a) eo(t,s) = 1 and ep(t,t) = 1; (b) ep(o(?),

H(Op(®)ey(t, 5):
(©) ealley(s,r) = epltrs  (0) G3C5) =pes( o)

Lemma 2.2([12]) Assume that f, g : — R are delta
differentiable at ¢ € T¥, then (fg)A(t) = fAt)g(t) +
Flo()g™(t) = f(t)g™ (1) + fA(t)g(a()).

Lemma 2.3([13]) Let ¢4, t2 € [0, w]qr Ifz: T — Ris
w- perlodlc then z(t) < x(t1) + [, |22 (s)|As and x(t) >

— J3 18 (s)|As.

Lemma 24([12]) Let a, b € T. For rd-continuous func-

tions f, g : [a,b]r — R, we have fab lf@)llgt)At <

, , 1/2 , ) 1/2
(fa roeae) (fhgwrad

Lemma 2.5([14]) Let function f be continuous on [a, b]t
and delta differentiable on [a,b)T, then there exist £, ¢ €
[a, )z such that fA(€)(b—a) < f(b) — f(a) < F2(<)(b—a).

Definition 2.2 The anti-periodic solution z*(¢) of system
(1) with initial value p*(t) is said to be globally exponentially
stable if there exists a positive constant € with ¢ € R such
that for every o € T, there exists N = N(a) > 1 such that
the solution z(t) of (1) through (o, p(a)) satisfies

| < Neee(t,a)|lp —z*||,¥t € TT,
i=1,2,...

=0+

i — @]

om, =12 ....n

where || —2*|| = sup max|p;;(a) *Ifj(a”-
a€e(—7,0]r i7)

The following fixed point theorem of coincidence degree is
crucial in the arguments of our main results.

Lemma 2.6([15]) Let X, Y be two Banach spaces, 2 C X
be open bounded and symmetric with 0 € 2. Suppose that
L:D(L) C X — Y is a linear Fredholm operator of index
zero with D(L)NQ # @ and N : Q — Y is L-compact.
Further, we also assume that
(H) Lz — Nz # AN(—Lx — N(—x)) for all D(L) N9, X €

(0,1].
Then equation Lz = Nz has at least one solution on D(L)N

III. EXISTENCE OF ANTI-PERIODIC SOLUTIONS
Theorem 3.1 Assume that (H;)-(H5) hold. Suppose further
that
(Hg) Ei]' >0,1=1,2,...,

m,j=1,2,...,n, where

1
Eij = a;w(l —@;;0;w) — (? + a;;w)
LJ

[ Z C Mfw + Z pl]h:|

CFLeN,(i,5)
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Then system (1) has at least one % -anti-periodic solution.

Proof: Let C*([0,w; t1,ta, ... tg tgit, - - - 5 tag)m, R™®
{z : [0,w]r — R™|z(*)(¢) is a piecewise continuous map
with first-class discontinuous points in [0, w]y N {t}, : h € N}
and at each discontinuous point it is continuous on the left},
k=0,1.

Take X = {z € C([O,w;thtz,...,tq,tq_;,_l,...

z(t+ %) =—a(t) forall t € [0, %]7} and ¥ = X x R(mn)*q
be two Banach spaces equipped with the norms
]lx = Z Z |zijlo and [lylly = [[z]lx + ||2]| for all 2 € X,

i=1j=1
2 € Rmn)Xa_in which |zijlo = max  |@;(
te[o,w]T

m,j=1,2,...,n, | -| is any norm of R(™")*q,
Set L: DomLNX—=Y, z— (xA, Ax(t1), Ax(ta),. ..,
Az(ty)), where Dom L = {x € CY0,w;t1,ta,... taglT

z(t+ %) = —x(t)forallt € [0, §|r}, and N : X — Y,
All(t) Illl(xll(tl))
Ah;(t) Im(w}n(tl))
Nx = ) )
A (t) Ii1 (T (t1))
Am:n (t) [mnl (xmn (tl))
Do (11 (t2)) Iig(z11(tg))
Ian(x.ln(t2)) Ilnq (x'ln(tq))
Ltz () Loutg@mn (t))
Ian(l‘.mn (t2)) Imnq (xmn(tQ))
where
Aij(t) = —aij(t, @i(t)) {bz‘j(tv i)+ Y CH@®)
CRLEN,(i,5)

ftwm(t — i (t)))zi(t) —
1,2,...,n

It is easy to see that KerL {0} and ImL = {z =
(g.c1,.-..¢q) € Y ¢ [g(s)As = 0} = Y. Thus dim
Ker L =0 = codim Im L, and L is a linear Fredholm operator
of index zero.

Define the continuous projector P : X — K erL and the
averaging projector Q Y - Yby Px = fow z(s)As =0, and

QZ:Q(97617" = <1f0 ASO 0
Im P = Ker L and KerQ = Im L=Im (I — Q) Denoting by

Lz' : Im L — Dom(L)NKer P the inverse of L|p(r)nkerps
we have

Li]-(t)},forz':l,2,...,m,j:

. Hence,

5 1 <
As—b—ch—f/ g(s)As—§ch,
0 k=1

Lptz = /
tep<t

in which ¢g4; = —¢; forall 1 <17 <gq. ~
Similar to [16], it is not difficult to show that QN(2),
L' (I-Q)N(Q) are relatively compact for any open bounded

International Scholarly and Scientific Research & Innovation 4(1) 2010

7t2q]T7 Rmn) :

set 2 C X. Therefore, N is L-compact on 2 for any open

) = bounded set 2 C X.

In order to apply Lemma 2.6, we need to find an appropriate
open bounded subset {2 in X. Corresponding to the operator
equation Lz — Nz = \(—Lz — N(—z)), A € (0, 1], we have

w5 (t) = 4 Gij(t, @) — 1325 Gij(t, —2),
teTt, t#ty, heN,

3
Awig(tn) = hxlign(ai(tn)) — N

a5 Lign (=245 (tn)),

i=1,2,....m753=1,2,....n
where
Git:2) = a5 15 0) | 150
+ > CH@Ftam(t — mi(t))i; () — Lz‘j(t)}
CFkLeN,.(i,5)

Gij(t, —z) = —a;;(t, —z45(t)) [bij(?% —45(t))
+ Y CHMF —anlt — T (t))(—zi;(t) — Lij(t)}-
CHEN, (i.))

Set tg =t =0, tag11 = w, in view of (3), together with
(Hy) — (Hy), we obtain

2q+1

[ la)at- Z/ u@w+zm%%ﬂ
h=1

/w
0
2q

>
h=1
jj {%W | zij ll2 +

1

— At
14+ A

/\

1 A
mlz‘jh(xij(th)) - H)\Iijh(—xij(th))’

IN

—kl
> Mo |y e
CHLEN, (i)
2q 2q
+WLz'j] + > pignl iy + D [ Tign(0)]- @
h=1 h=1
Integrating (3) from 0 to w, together with (Hs) —
can get

(H4), we

/w [aij(t,Wz‘j(t))bij(t»xij(f))
0 1+
s —45(t))bij (8, —45(t))
o |
= ./0 aij(t,xij(t))b,-j(t,xij(t))At‘
1 w
_|—HAO%wmmW§w)
ft it — ma(t)))zis (1) At
T S ol

T az‘j(t’ —45(1))
CkLEN,(4,5)
[t =z f—m( (= fm(t))At
)\/ ai;(t, i (t)) Lij (t) At

. )\CLZ‘J’ (t

ki
Gy ()
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1+/\/ aij(t, —xij(t)) Lij (t) At

1

A
T Z Lijn(sj(tn)) —
h=1

1+ )\ ZIZJ}L xu(th))‘

- —kl —
< Qij Z Cz]Mf\/Z) || Tij ||2 +aiJWLij
CkleN (4,9)
+sz]h}xw +Z |Iljh(0
h=1

then, by Lemma 2.5 and (H3), combining the above inequality,
implies that

[ ity (t)At\

E,.
BN OMVG | |\2+wam
Qi crign, )

+7 Zpljh"rljlo

9ij =

<

1 &
— > [ (0)]. ®)
%ij .3

where t =1,2,...,m,j=1,2,....n
From Lemma 2.3, for any (;;, 7;; €

1,2,...,m,j=1,2,...,n, we have

[O, w]jr, 7 =

w

/w aij(t, xi (1)) (1) At < / aij(t, @ij(t))wii(Cij) At
0 0

+ / gty (1) ( / ’ !w@(t)!At) At, ©

and

w

[ sttt = [ ot )00

—/Ow aij(t»fﬁij(f))</0w |IiAj(t)|At) At, @

where t =1,2,...,m, 5 =1,2,...,n
Dividing by [” ai;(t,z;(t))At on the two sides of (6) and
(7), respectively, we obtain

nilGs) 2 o (t;j oY /0 " sy (t sy ()i (DAL
—/Ow\x (t)|At, 8)

and

ral) S e [t a0 01
+/Ow|x (t)|At, )

where 1 = 1,2, ...
Let ¢;

,m,j=12...,n

ij» Lij € [0,w]r such that x;;(f;;) = max x;;(t),
te[0,w]r

zij(ty;) = ter[ré{g]qr x;5(t), then, together with (4), (5), (8) and
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(9), we obtain

1 w
ij (t 2z —w i (8, 2 (8)) a5 (1) At
rolty) 2 e [ @)
—/ EFGIAY;
0
1 Qi
> - %S ChuE eyl
Q5@ L 0ij CKkleN, (z])
a1
- L2J+ sz]h‘xlj‘o
Qi =
+fZ 5n )] = 5535 | 5 1
Qij h=1
+ Z éijMf\/‘; [P
CHEN,(i,5)
2q 2q
+wLij:| + Zpijhyl‘ij}o + Z ’Izjh(O)’ (10)
h=1 h=1
and
_ 1 @
ijltij) < % ij (8, 24 (8) )i (£) At
rl) < e ), @0
+/ |ac (1) | At
0
1 |a;; —kl
I I

@i gren, (i,j)

CL”

+7 Lz]+ szgh‘$1j|0
J h=1
. |+ v 1 2 1
ij =

+ Z 6ijMf\/a I i [|2

CrLEN,(,5)

2q 2q
+wL,;j} + ) pignlziily + > | Tin(0)], (1)
h=1 h=1

where t =1,2,...,m,j=1,2,...,n
Then, from (10) and (11), we can get

EAp——
1 ;i

< [ > CHME o+
QUW 9ij CkLeN,(i,5)

2q
1
o2 [0
Oij h=1
1
+aw[6uf lzg bt~ Y e

gl CkLeN,(i,5)

+7 Zpuh ’x1j|0

Qljh 1

2q 2q

| @5 ll2 +WLU] + D pignlzigly + Y [ Lign(0)],
h=1 h=1

m,j=12....n

i=1,2,..., (12)
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In addition, we have

lzijlla =

(/Ow }:rij(s)IQAs)l/Q

< Vw max |xlj ’

te(0,w]r
= Volzil,,

where : =1,2,...,m,j=1,2,...,n
Then, together with (12), (13), we obtain

[a” Z C Mfw|9cl]|0
Qij CkleN,.(i,7)

13)

@z’j‘*’|%|o

a”

sz + ? ZpZJ}L‘I1]|O

Qij

1
‘%HE:MM@M
%ij 5

> Myl

CKLeN,(,5)

2q 2q
+Eijwfij + Z pijh|xij ’0 + Z |Iijh(0)|:|;

h=1 h=1
i=1,2,....mj=1,2....n

+a;;w {aij‘;ijw|xij|0

+a; j

That is,

{aijw(l — @ijiw) — (i

j

Z C”MwaerUh}}‘xiﬂo

CFLeN,.(i,5)

+ a;;w) {aij

< +%w){2|fuh )|+aiij,-j}

= D”7 i=1,2,..., (14)

m,n=1,2,...,n.

Denote
_ _ —kl
Ei; = Qijw(l — @ij0iw) — (i + Qijw) [aij > Cij
C*LEN,(i,5)
2q
Mfw + Z pijh:| .
h=1

From (14) and (Hg), we can get }xij‘o < 5=

My, i=12..mj=12..n
Let © = Z Z ;+1, © is independent of X. Then take
={z € X ||x||x < ©}. It is clear that  satisfies all the

requlrement in Lemma 2.6 and the condition (H) is satisfied.
Then system (1) has at least one % -anti-periodic solution. This
completes the proof. [ ]

IV. GLOBAL EXPONENTIAL STABILITY OF THE
ANTI-PERIODIC SOLUTION

In this section, we will construct some suitable Lyapunov
functions to study the global exponential stability of the anti-
periodic solution of system (1).

Theorem 4.1 Assume that (H; )-(Hg) hold. Suppose further
that

International Scholarly and Scientific Research & Innovation 4(1) 2010

(H7) The impulsive operators I;jn(z:;(t)) satisfy

Lijn(zij(tr)) = —vignwij(tn),  @i5(t,) =

zij(tn), 0 < yiyn <2, foralli=1,2,...,m,j =

1,2,...,n, heN.

There exist positive constants v;; such that

lasj(t,u) — ai;(t,v)] < vijlu — |, for all u,v €

R,i=1,2,....m,5=1,2,...,n

There exist m x n positive constants &;; > 0, ¢

1,2,....m,5 = 1,2,...,n, such that (3;; =

(i Ly — ayoi)éy +ay > CyMsky +
CkLEN,(4,5)

T 6ZMoLf&cz < 0.

CHEN, (i)

(Hs)

(Ho)

where My = max; j) M;;, then the % -anti-periodic solution

of system (1) is globally exponentially stable.
Proof: According to Theorem 3.1, we know that system

(1) has an ¢ -anti-periodic solution z*(t) = (27, (t), 74(1),

i), ah (), ks (), .k, ()T with the initial
value W*(t) = (@Tl(t)a ] @Tn(tL ] So;knl(t)v ce 7<p:nn(t))T
and ’xij’0 < My, suppose that z(t) = (x11(t), z12(t), .. .,
T1n(t), o s 1 (1), T2 (t), .o s T (t))T is an  arbitrary
solution of system (1) with ©(t) = (¢11(t),- .., @1n(t),- -,
Soml(t)v s v@mn(t))T'

Let y(t) = z(t) — z*(t), then system (1) can be written as

(yij (8))2 = —laij (t, i5(t))bs; (¢, 235 (t))
—ag;(t, x7;(t))bij (¢, 735 (¢))]
oty £ e

CkleN,.(i,5)
gt —mi(t))zi;(t) -
—Qij t,xz‘j t ij t
( ®) ckle%(m) “ (15)

f(t o, (t =7 (1)) (1)
+aij (t, 2i(t) — ai;(t, 7;(2))] Li; (1),
t# th,

Ayij(tn) = —Yijnyij(tn),
i=1,2,...mj=12....n

Also, |yij(tn + 0)| = [1 = vijnllyi;(tn)l < lyis(tn)l, 7 =

1,2,....m,j=1,2,...,n, heN.
The initial conditions of system (15) is 1;;(s) = i;(s) —
rj,8 € =10, i=1,2,...,m,j=1,2,....,n
If (Hy) holds, it can always find a small enough constant
€ > 0, satisfying V¢t € T, 1 — p(t)e > 0, such that

—kl
Z CijMfgij
CHkLEN,(4,5)
—kl
> CyMoLyec(t,t — m(t))én
CkleN,(i,5)
<07 Z:1;27

(e +visLij — a;;0ij)&; + @i

+a; j

,mg=1,2,....n (16)

Define a Lyapunov function
V= (Vl*l(t)avl*Z(t)""7‘/12@)""7 ml(t) (t)
Vi ()T, where Vij(t) = ec(t, o)|yi; (1), a e (-, O]T,z =
1,2,....m,5=1,2,...,n
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For t € T, t # t;, h € N, calculating the upper right
derivative of V;;(¢) along the solution of system (15), we have

DF V(0]
= e!yij(t)|e€(t, a) + eE(U(t),a)sign{ — [ag(t, zi5(t))
bij(t, wi(t)) — aij(t, x7;(4)bis (¢, x7;(2))]
{az‘j(twij(t)) > CcHe)
CkleN,(i,5)
@ zr(t — mi(t))zi; (t)
—ay(ta(t) Y CH@)

CHFLEN,.(1,5)

Ftata(t - m(t)))z;g(t)}
agy (1245 ()) — sy (1235 (5)] L (¢ >}

IN

(1+ u(t)e){(e +vijLij — a;;0i5)Vij (t)

—kl
Z Ciy My Vi (t)

CFLEN,.(i,5)

+ag Y

CHLEN,(i,5)

Vkl(t — Tkl(t))}.

—kl
Cij ]\40Lf€6 (t, t— Tkl(t))

an

Define the curve p = {w(l) : w;; = &;l,1 > 0, =
1,2,...,m,j5=1,2,...,n}and the set Q(w) = {u: 0 <u <
w,w € p}, Sij(w) ={u € Qw) : uj; =w;;,0 <u<wh It
is obvious that if [ > [, then Q(w(l)) C Q(w(l)).

We shall prove that the zero solution of (15) is exponential

stable.
M _ m
Let &7 = 1<i<mi<j<n {&} € 195m,1gggn{£”}
lo = (1 — a)|tjlo/€™, where —a > 0 is a con-
stant, [l = max |1/)”( a)|. Then {|V| V| =

ac[-7
calt,Q)(@)),~1 < t < a < 0} < Qw(l)), namely

Vij(@)] = ealt,a)|thij(a)] < &jlo, =7 < o < 0,4 =
1,2,....m,7=1,2,....n

We can claim that |V;;(t)] < &jlo, for ¢ € TT,i =
1,2,...,m,5 = 1,2,...,n. If it is not true then there
exist some ij € {11,12,...,1m,...,m1,m2,...,mn} and

tl(tl S T+) such that |‘/”(t1)‘ = &jl(h[v;]A(t])]_‘— >0

and ‘V;J(t)‘ < éijlo for t € [—T,tl]']r,i =12...,m,5 =
1,2,...,n. However, from (16) and (17), we have
D+V;]A(t1)
< (I+ H(t)ﬁ){(f + vijLij — a;;0i5)&3
_ —kl
+a;; Z CijMffij
CKLEN,.(i,5)
_ —kl
+a;  », CiyMoLged(tt— Tkl(t))szz}zo
CkLeN,(4,5)

< 0, teTT,t#t,.

International Scholarly and Scientific Research & Innovation 4(1) 2010

This is a contradiction, so |V;;(t)| < &;lo, for t € TT, ¢t #
th,o=1,2,...,m,5=1,2,...,n. Also
Vij(th +0) = ec(tnh +0,a)yi;(tn +0)|
< ec(tn, @)|yij(tn)| = Vij(tn), h € N.
Then
yis (1)] < eac(t, @)&ijlo = eoc(t, a)&ij (1 — a)|ihizlo/€™
teTh,i=1,2,....,m,7=1,2,...,n
which means that
M1 -a)
g
where N = N(a) =
x(t) — (1), y(t) =

lz — 2*|| < Nege(t,a)o —a™|, t € T.

Iyl < >——ecct)llv[l = Neac(t, a)lly]l, t € TT,

51” (1 —a) > 1. In view of y(t) =
©(t) — z*(t), then, we have

From Definition 2.2, the -anti-periodic solution z*(t) of
system (1) is globally exponentially stable. This completes the
proof. ]

V. AN EXAMPLE
Consider the following CGSICNNs with impulses. Let
(ai;) _( 2.040.1sinju| 2.0—0.2cos|u|
W)2x2 =\ 194 0.1sin|u| 1.9 —0.2cos |uf
bij(t iy (1) = @iy (1), 1,5 = 1,2,
(Cij)axs = 0.6] sin(167t)| 0.9 sin(167t)|
9)2x2 =\ 0.8|cos(16mt)| 0.5] cos(167t)| )
(Lij)axs — 0.06 sin(87t)  0.05 cos(8mt)
)22 = 0.07 cos(8nt) 0.04sin(8xnt) )’

1.
ftu) = %|51nu|,
Al’ij (th) = T4j (t;) — .Z'ij(t;) = —0.025$1;j (th),
t=tn,h=1,2,

in (1), then, we have

a1 = 1.9,@12 = a9 = 1.8,@22 = 17, Zzn(t) = agg(t)
1 1

=21,a =2.2,ay(t) = 2.0, M Lp= —

7@12( ) a21( ) O f 20 f 207

P11k = P12k = p21h = poop, = 0.025,h = 1,2, 045 = 035 = 1,

—kl
ZCkZGNl(l ])Cll - EC“ENl(i 3)012 - ECMENl(z ])021

= ECMGNl (i,j)022 == 28,
Ly; = 0.06, L1z = 0.05, La; = 0.07, Lys = 0.04.
Computing by MATLAB, we can get

(B )aws — 0.1910 0.1634
4972x2 7\ 0.1960 0.1684

0.1202 0.1232
(Dij)2x2 = ( 0.1233 0.1012 )

SO, Mo = 0.7540. Take V11 = V21 = 0.1,1/12 = Vg9 — 0.2
and fij =1, 4,5 =1,2, then

(B:;) . —1.3783 —1.2498
9220213019 —1.1763
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Now, we can see that (H;)-(Hy) are all hold. By Theorem
3.1 and Theorem 4.1, system (1) has a %-anti-periodic solution
which is global exponential stable.
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