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Existence and globally

exponential stability of

equilibrium for BAM neural networks with mixed
delays and impulses
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Abstract—In this paper, a class of generalized bi-directional asso-
ciative memory (BAM) neural networks with mixed delays is inves-
tigated. On the basis of Lyapunov stability theory and contraction
mapping theorem, some new sufficient conditions are established
for the existence and uniqueness and globally exponential stability
of equilibrium, which generalize and improve the previously known
results. One example is given to show the feasibility and effectiveness
of our results.
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I. INTRODUCTION

ECENTLY, a class of two-layer heteroassociative net-
Rworks called bi-directional associative memory (BAM)
networks [1-4] with or without axonal signal transmission
delays has been proposed and used in many fields, such as
pattern recognition and automatic control. They were first
proposed by Kosko [1-3], Cao [5-8,16-17,19-20], Liao and
Yu [10], Gopalsamy and He [11], Liang [12], Wei and Ruan
[13], Jin [14] and Xia and Cao [15]. Though the non-
impulsive systems have been well studied in theory and in
practice (for example see [1-20] and references cited therein),
the theory of impulsive differential equations is now being
recognized to be not only richer than the corresponding theory
of differential equations without impulse, but also represents a
more natural framework for mathematical modeling of many
real-world phenomena, such as population dynamic and the
neural networks. In recent years, the impulsive differential
equations have been extensively studied (see the monographs
and the works [21-25]). This class of neural networks has
been showed to be a useful network model for applications
in pattern recognition, solving optimization problems and
automatic control engineering. Hence, they have been the
object of intensive analysis by numerous authors in recent
years [16-17,19-20,24-25]. In particular, there are extensive
results on the problem of the stability and other dynamical
behaviors of impulsive. In the present paper, we investigate the
following more general BAM neural networks with impulses
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o' (t) = —azi(t) + Z cji fi(y;i(t —0ji))

p T
+Z/ piif3 (3t — $))ds + 11, 130, 4 g,
j=1"0

Al‘z(t) = (Oéik — 1)331‘@),
=12 777,,]{::1,2,”' U =1k,
Y () = =biy;(t) + > dijgi(i(t — 5ij) (1)

=1
n T
+ZA qijgj(xi(t—s))ds—i-sj, tZO,t?étk,
=1

Ay;(t) = (Bjk — D)y; (1),

j:1727"' apak: 152»"' at:tk
where Az;(tp) = z;(t}) —zi(t) and Ay;(t) = y;(tF) —
y;(t,) are the impulses at moments ¢, then there are x;(t, ) =
zi(t,) and y;(t;) = y;(t,) t1 < t2 < -

is a strictly
increasing sequence such that lim ¢, = +4o0. m and p

correspond to the number of neurons in X-layer and Y-layer.
x; and y; are the activations of the 7th neurons and the jth neu-
rons, respectively. ¢;;, d;j,pji, qi; are the connection weight.
oji > 0,6;5 > 0 are the transmission delay, 7 is distributed
time-varying delay r; and s; denote the external inputs a; > 0
and b; > 0 represent the rate with which the ith neuron and
Jth neuron will rest its potential to the resting state in isolation
when disconnected from the network and external inputs, re-
spectively. Then system (1) is supplemented with initial values
given by z;(t) = ¢;(t), t € [-0,0], 0 = max{ max 0jisT}
1<7<p

= ¢;(t), t € [-6,0], , 6

1,2,--- ,p where ;(t) and v;(t)

i = 1,2,--- ,n. y;(?) =
max{ 121{9?” bij THJ =
1<ji<p

denote real-valued continuous functions defined on [—o, 0] and
[=0,0]. 2(t) = (21(t), -,z (), 91(t), - ,yp(t)" € R
in which x;(-),--- ,y;(-) are piecewise continuous on (0, 3)
for some 3 > 0 such that z(¢) and 2(t{) exist and 2(-)
is differentiable on intervals of the form (tx_1,t;) C (0,0)
and satisfies(1); We assume that z(t) is left continuous with
z(t;) = z(t,), and g, Bk, r; s; are real numbers. we
assume that:

(H1) a;,b; € (0,00), ¢ji, dij, pji, Gij, Ti, 55 € R, 054,045 €
(0700)72: 1» 7n7j: 17 -p-
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(H2) f; and g; are Lipschitz-continuous on R with Lipschitz
constant L5, (j = 1,---,p) and L{(i = 1,--- ,n), that is,

\fi(x) = fi(y)| < L] |o —y| Yo,y € R.
lgi(z) — gi(y)| < L |z —y| ,Vo,y € R.

The aim of this paper is to derive some criteria for the
existence and globally exponential stability of a unique equi-
librium of system (1). The rest of this paper is organized
as follows. In Section II, we shall establish some sufficient
conditions for the existence and uniqueness of equilibrium.
In Section III, we will investigate the globally exponential
stability of the unique equilibrium. Finally, one example is
presented to illustrate that our results are feasible and more
general.

II. EXISTENCE AND UNIQUENESS OF EQUILIBRIUM

When neural networks are used for the solution of optimiza-
tion problems, one of the fundamental issues in the design
of a network is concerned with the existence and uniqueness
and globally exponentially stable equilibrium state of network
without requiring the bounded ness, differentiability or mono-
tonicity, we establish a easily verifiable sufficient conditions
for the existence of a unique equilibrium state in this section.
An equilibrium solution of (1) is a constant vector

)T € R,

* * * *
z _(a’;l’... ’l‘rﬂyl’”'

which satisfies the system

p p
aix; = chifj(y;) +szjifj(y;) +rii=1,-,n
bjy; = Zdwgz +Tqu]gl )+si,0=1,,p(2)
Or
P
x; = Z (CJZ +71p5i) fi(y;") + =12,
j=1
* " 1 * Si .
v =Y 5-(dy +ra)gi(e) + 2= 12 (3)
i=1 7 ¢

when the impulsive jumps as assumed to satisfy

= Bik(y;) = 0.

We denote the spectral radius of the matrix F by p(F).
Lemma 1. ([15]). Let N be a positive integer and B be an
Banach space. If the mapping ¢~ : B — B is a contraction
mapping, then ¢ : B — B has unique fixed point in B, where
oY = oo™ 1),
Theorem 1. In addition to (H1)-(H2), assume further that
p(K) < 1, where K = (Kij)(n+p)><(n+p)’ Mji = a%ﬂcji‘ +

Qif (SUL*)

jil), and N;; = %(\dzjl + [7qi;1)-
Mj—n’LL; ns 1§l§n,n+1§j§n+p7
kij =9 Njpl{, p+1<i<n+pl<j<p,
0, 1<, j<nn+1<45<n+p.

Then, there exists unique equilibrium of system (1).
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Proof: In order to show that (3) has a unique
solution. Now consider a mapping: ¢ o(z) =
(¢1(2)7 e 7¢n(z)7 ¢n+1(2), e 7¢n+p(z))T7 Rn+p - Rn+p

¢(Z) = ¢($17$27 oy Ty Y1, Y2, ayp)T>
z= (21,22, Tn Y1, Y2s o Yp)

2:(EMEZW" :jn:yhyQW"vyp)T’ (4)
We have

19(2) = ¢(Z)] = ([(¢(2) = 6(Z))1 ]+ [(@(2) — &(2))., ],

[(6(2) = 6Dl -+ [(6(2) = () )T
P
< [Zl (Mj | £5(y;) = £5@)))),
i=
P
" -21 (M | £5(y5) — £ ®@;)])s
j=
" ; (Nit |gi(zi) — 9:(Fi)]),
3 W o) = ()| )T
P
< [_zl (ML |y; = 5,1),
i=
X ML gy = Tl) - 3 (Nalf o= ),
Jj= =
3 (N LY i — z])]"
05 Ty Oa MllL{7 ) Mlpo
_ 0, .0, Mn;L{ M,,, LI
Ny L Ny, LY 0, cee 0
Npi[f{ N,,;LL% 0, , 0
‘1'1 - ‘7’1|
| T — T
X -
v — yl\
v~ 7
=K(lzy =2, [, [z — T,
v =g, up — yp|)
=K(|(2—5)1 sz =2),l,
[ O O A (5)
Let m be a positive integer. Then from (5), we get
(1™ (2) =™ @l (@™ (2) = ¢™(2)), ],
[(67(2) = 6" )] -+ | (07(2) - <z>m<z>>n+p]>T
S K|(¢m_1(2) ¢m 1( ))
L@ E) = ¢ (@) |(¢m Y(2) = 0™ (@) pia
(@ 2) = ™ HE))
SKm(’(Z—Z)ll,-H ,|(Z—§)n|,
= Dgals o [ =D, )T (6)
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From the assumption p(K) < 1, we obtain

lim K™ =0,

m——+o0
which implies that there exists a positive integer N and positive
constant 77 < 1 such that

n+p

= (hit) (ntmyx(ntp) and D hi <mk =1,
=1

,n+p.(7)

In view of (6) and (7), we have

n+p
|67 (2) = 6™ (2)),] < > b g o= 7 < nlle =30 3
forall k =1,2,--- ,n+p . Therefore, it follows from (8) that
|6 (2) = 6™ @)] < mllz = 2 (9)

This implies that the mapping
¢N . Rn+p . Rn+1>

is a contraction mapping. By Lemma 1, ¢ has unique fixed
point z* € R™P such that ¢(z*) = z*. Thus, system (1) has
unique equilibrium. This completes the proof of Theorem 1.

III. EXPONENTIAL STABILITY OF EQUILIBRIUM

In this section, we will show that the conditions in Theorem
2 also guarantee globally exponentially stability the unique
equilibrium of the impulsive system (1). For convenience, we
introduce some definitions.

Definition 1. Let functions

@(8) = (901(8)7 e a‘Pn(S)),S S [_U, 0]7Rn+p — Rn+p

and

P(s) = (Pn(s), -

The function ¢(s) = (¢(s), 1 (s)) is said to be a continuous
function if the following two conditions are satisfied:

(a) ¢ is piecewise continuous with first kind discontinuity at
the points {¢;},and ¢ is left-continuous at each discontinuity
points.

(®)

,n(s)),s € [-0,0], R"TP — R"*P

0i(tT) = auppi(t),t € t, N [—0,0],
Yi(t7) = Bira;(t), t €t N [=0,0],
i=1,2- nk=1,2,---
We define the norms ||(z(t)]| as

GO =3 ]+ Y i)

and the norm ||¢|| by

6]l = sup Z |pi(s)] +Z 195 (s)]

Jj=1

*

Deﬁnmon 2. The unique equilibrium 2* = (z%,--- 2"
Yoy “)T of (1) is said to be globally exponentially stable
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if there exist constant ¢ > 0 and M (g) > 0 such that

Iz = 2|l < M(e)e " ¢ — 2"||, ¥ t>0.

Definition 3. The Dini right upper derivative of a continuous
function, which is defined by

{f(HAAti—f(t)}’

Dt f(t) = lim sup
h—0% 0<At<h
and
@),  if f(t)>0and f'(t) >0
DY [f(t)] = (@), if f(t) <0 and f'(t) <0.

0 if f(t)=0andf'(t)=0
Theorem 2. Under assumptions (H1) and (H2), system (1)

is globally exponentially stable if the following conditions are
satisfied:

(D fak| <
1,2,

1,2

< 172 = ) a"'7n7j =

|1Bjk
7p7k:1727"'~

(2) There exist positive constants ); , f; such that
E ps L

Z AL (cji + pjiT)

=1

(du +qUT) Aia; <0, j=12,---,p

—pib; <0,i=1,2,---,n

Proof. From condition (2) of Theorem 2 for continuation,
there is a small positive constant ¢ such that

p
> Hj
j=1

21 XiL] (cjie7 + pji [ eds + i (€ — b;) <0

LY (dijeg‘sij + qij fOT e*ds) +XNi(e —a;) <0
(10)

We construct Lyapunov functional as follows:
V(t) = Vi(t) + Va(t)
n P ¥ ¢
0 = SN el f,,
JFZ)‘ [li (t) — @i*[ e
+ Z L |pﬂ|f0 ft s ly; (r
Va(t) = _Zl pslly; (8) =yl e
j=
+ Z L‘;] \qij| fOT f:ﬁs |$z(7") — .C[,’Z*| eE(H's)deS]
i=1

P n t g
+ Zl /J](Z%L‘Zg |d”| ft*&;j |J]‘l(7’) — ([jl*| eE(T+5w)dT).
j= 1=

(1) = ;7| o ]

—y;*| e drds).

—~

DA = 3, “[(ZL lejil 275 g5 (8) — 9"
—<2L enllup(t = 73— 35°))

* EA (D* [aa(t) — 27| + ¢ ai(t) — 2:7)

+ i L il lys () — 7| f7 e=>ds

- Z L gl 7 1yt — s) — y;*|ds}.
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DV (1) = i e DT s (1) — 3| + € lys (8) — "]
+Y I ol o) — a1 7 e

;L |qw\f0 |z (t — s) — x| ds]
ftug LY ldig| =5 Joa(t) — a7

L |dij | s (t = 6i5) — 7])]-

9@? M"d

D* |$i(t) — 7| < —a; |z (t) — 27|
P
+ Zl lejil | £y (t = a50) = £i(y]))|
i=
p . N
+ Zl pjil fo | fiys(t—s) = fi(y})| ds
i=
p
< —a;|zi(t) —zf| + -21 L Jejil |y (t — 03) — y3 ]
=
P r N
+ -21 Lf pjil fo |wi(t —s) =y} ds.
i=
DT |y; (t) — y;| < =bj |y; (1) — v |
+ ;|dz‘j\ lgi(2i(t — 6i5)) — gi(z])
N rg [T . (+ — ¥
+Z;Li fo ‘q13| lzi(t — 8) — x7|ds (11)
< —bj y; (t) — v | + 2_:1 LY |dij| |zi(t — i) — 27|
+ 30 LY [ lais| |2i(t — s) — 27| ds.
=1
From inequalities (10) and (11), we have
D¥Vi(t) Z: (e — aq) ||l2i(t) — 27 ||

m f -
+ 3 1 eglesor

y; (t) — 3|
+ _Zl L; pjil |y (t) = y3| [y e=*ds].
=

DHVA(t) < 3 mye![(e = ) [y (8) ~ 5]

n
+ 30 LY |dij| €29 |y (t) — o
=1

n
+ Zl LY |qiz| |s(t) — 7] foT e*%ds].
=
n

DtV (t) < est[z i(e —ay)

=1

=y LY (dije*®s + |qij| [y e=ds)] |i(t) — 7]

i M@
Ti Ms

p

[; (E*b )+ Z Ai ]Z L] (lei] =
+|pﬂ|f0 e**ds)] |y; t) v;|
= e E[ i(e —ai) + Zu;Lg(ldwles‘s”
+|ng\f0 e ds)] |zt )—w |

e’ Z [1j(e = bs) + Z ALY (Jeji] =5
+Isz|fo e=*ds)] |y; (1) - yj\ <0
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Case
|zi(trt) = of| = || o (te) — 2| < |zilte) — 2],
|y (ti ) — y}k| = |Bir] |y, (te) — yj*| < y;(te) — yﬂ .

Hence,

V") = 2 A2 LY lesil fut o, Vs (r) = 957 )),

st dr 4 S N[|wa(tF) — x| et
i=1
+ Z L |p]z| fO tk s |y](7’ —Y; |€E(T+s)d7"d$]
et
+Euj ly;(t5) —yy| et
+ Z L ‘q’L]| fO tk s |$2 7”) - -Z' ” E(T+S)drd8
+ Z 1 Z LY |dig| [y 5 |wilr) — @i e0+09)dr <V (1),

Combining with the above discussion, for any ¢t > 0
V(t) SV(tT) S V() SVt ™) < - < V(0).

On the other hand, from the expression of V' (¢), we have
n p
V(f) Z 66t Z )\2 |Il(t) — 1‘1*| + est Zl p’j |y7(t) — yj*l

> ety [Z |zi(t) — "] + Z ly; (t) — ;"

= ety [[(x(t), y(t)) — (* 7y )II
= ey o) - 21 12

where Y= min {min1<i<n{)\i}, minlgjgp{pj}}

n

VO) = SN bl [, () = 53] 50 )
+ ;AZHCE,(O) — ‘Ti |
; T
+ 21 ; Ipiil Jo fi)s ly;(r) — Z/;| e ) drds]
+ ’yJ 0) — yj’
]:1

LY |qij fo f lz;(r) — xF| e T drds]

(Z LY |dij| 25 | lwi(r) = 27| e+ dr)

(E Lf lejil f—g] |;(r) — y;*| €€(T+oﬁ)dr>
H%(O) —z}|

|p]1| fo Os |’¢)] (r) — yjl e 9) drds)

Ms ||M§TM~@HM

+
Il

|¢J - Z/;|
‘qw|f0 f lpi(r) — \e€(r+s)drds]

ZLg |dlj‘f_ S |g01(r —x; ‘es(r—o—&m)dr)

Ms\l M:? M“T Mws

<.

IN
M: I

[ + Z wiLd(qij fo ffs ef(r+8) drds

.
Il
—
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_$1

0
+dy / =) dr)) x

J

up Zm

—6< 9<0

+ zp: Z Ai L cﬂ/ e rtoii) gy
j=1 j=1 X

+pji / / e drds)] x

From (12) and (13), we obtain
ey lz(t) — 2" S V(8) S V(0) < M(e)vllo — =7,

sup Z |¢] 13)

—o<s<

so that

[2(t) = 2*|| < M(e)e™" [l¢ — 2| for all t>0.
— n D T r0
v lmaX{Z{Ai + Z i Lillais| fo -,
=t drds + dyg] [ f“”wdﬂ} Zu + ZALf

x(legil [0, e )dr + psil [y J°, “’*“‘)drdS]}} Thus,
from (14) we dlrectly obtain that system (1) is globally
exponentially stable, the proof is completed.

(14)

where M(e) =

Corollary 1. Under assumptions (H1) and (H2), system (1)
is globally exponentially stable, if the following conditions are
satisfied:

D |aiw] <1, 1Bl £ 1,0 =1,2,---
k=12,

7n7j = 1727"' » D,

p
S LY(dij + qiyT) —a; <0, j=1,2,---,p.
j=1

@ no
Z:l Lj (Cji + pjiT)

—b;<0,i=1,2---,n.

Remark 1. Obviously, when there is no impulse in system
(1), it reduces to the following model:

P
= —a;z;(t) + _Zl cjif(y;(t = 0ji))
i=
pjifi(y;(t —s))ds +ri,t >0,
—bjy;(t) + 2_:1 dijgi(zi(t — ;)

+ 3 Jo 4i59i (@it — 5))ds + 55, > 0,
=1

by the process of proof of Theorems 1. Theorems 1 can
guarantee that the system(1*) has a unique equilibrium point.
It is easy to show that the following corollaries hold.

Corollary 2. Under assumptions (H1) and (H2), system (1*)

is globally exponentially stable if there exist positive constants
such that

p
Zl pi LY (dij + qi7)
F=

; )\1‘[’;(031 -+ pjﬂ')

_)\iai<0a j:1727"'7p

7/1,jbj<07 1=1,2,---,n
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IV. AN ILLUSTRATIVE EXAMPLE

Consider the following impulsive BAM neural network with
mixed delays:
3
+ E cjifi (st

I/Z(f) = —Q;X; (t)

—0ji))

+ Z Jo piifi(y;(t —s))ds +rit > 0,t # ty,

Aazl(t) = (i — Dai(t),i=1,--- n k=1t =t

y'(t) = —bsy;(t) + ildijgi(xi(t — 0ij)

+ Z Jo @395 (@i(t — s))ds + sj,t > 0,1 # ty, (15)

ij() Bjr =Dy (), 5 =1, ,pk=1,--+ , t =t
Where (a1, as,a3) = (1 LT, (b1, be,b3) = (1,1,1)T, oy,
0ij € (0,00), uj = )\Z,L —Lg—T—l,Z, =1,2,3. a5 =

%sin(l + k), Bjr = 50032k filx) = gi(x) = %(|x+1|
|z —1|), ¢jsi, dij, Dji, ¢i; are positive and

1
Mji = —(lejil + [mpjil) = ¢ji + pji
(]

1
Nij = ;(Idijl + |7qi5]) = dij + @i

Myy My Mg 1/2 1/18 0
Mgl Mgg M23 = 5/2 1/2 0 5
Mz, Msy Mss 0 0 1/2
N1 Nz Ni 1/3 0 0
No; Naa Nag | = 0 1/3 1/32
N31 N3z Nss o 2 1/3
r1 -2 S1 2/3
T9 = 4/9 5 S92 = 74/3
r3 1/2 S3 61/96
Simple computation shows that
0 o0 0 1/2 1/18 0
0 o0 0 5/2 1/2 0
0 0 0 0 0 1/2

K = (hij)oxs = /30 0 0 0 0
0 1/31/32 0 0 0
0 2 1/3 0 0 0

Hence, by using matlab, it shows
p(K)

Therefore, it follows that Theorem 1 and Theorem 2 that
system (15) has a unique equilibrium

= maxeigenvalues(K) = 0.602262 < 1.

Z —($1,$2,$3,y1,y2,yp)T (1 1 1 1 lal)T

from the given date, we obtain
P
Z ;L

Z Ai L (Cﬂ +pjiT) —

i=1

;q(dz] +QZJT) _)\iai :07 ]: 1727"' , D-
,ujbj <0,:=1,2,---,n

So that system (15) is globally exponentially stable.
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