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Abstract: The thermoelectric response of thermally activated electrolytes (TAE) in a slit 

channel is studied theoretically and by numerical simulations. The term TAE refers to 

electrolytes whose charge carrier concentration is a function of temperature, as recently 

suggested for ionic liquids and highly concentrated aqueous electrolyte solutions. Two 

competing mechanisms driving charge transport by temperature gradients are identified. For 

suitable values of the activation energy that governs the generation of charge carriers, a giant 

thermoelectric response is found, which could help explaining recent experimental results for 

nanoporous media infiltrated with TAEs.  

 

In the past few years, a number of materials were reported that show a very pronounced 

thermoelectric response. The thermoelectric response of a material is usually quantified in 

terms of the Seebeck coefficient S V T  , which measures the thermovoltage generated 

per temperature difference applied across a layer of material. Remarkably, giant Seebeck 

coefficients were measured mainly in materials in which an electrolyte fills a confined space, 

for example the pore space of a nanoporous material. Examples are carbon nanotube-based 

supercapacitor materials [1] or cellulose-based membranes [2,3] infiltrated with aqueous 

electrolyte solutions, and polymer matrices infiltrated with ionic liquids [4–6]. In units of Bk e  

( Bk : Boltzmann constant, e : elementary charge), the Seebeck coefficients measured in such 

systems may reach values of more than 500. It was pointed out in [7] that such high values 

stand in contradiction to the classical theory of thermodiffusion in dilute electrolyte solutions, 

which predicts Seebeck coefficients of the order of Bk e . Confinement effects help increasing 
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the Seebeck coefficient beyond this level even when applying the standard Poisson-Nernst-

Planck (PNP) theory for dilute electrolytes [8]. However, the giant thermovoltages measured 

in the complex electrolyte systems referred to above cannot be explained based on the standard 

PNP equations. 

To explain the physics behind the huge Seebeck coefficients, in [7] a charge transport 

mechanism was suggested that is fundamentally different from that in dilute electrolyte 

solutions. According to that, the charge separation occurs by thermally-induced hopping of 

charge carriers between the minima of a periodic potential energy landscape. In the present 

work, we suggest an alternative mechanism behind the huge Seebeck coefficients.  

The key concept this description hinges on is thermally activated charge carrier 

generation. In the past few years, it was observed that especially in confined ionic liquids, the 

Debye length is much larger than what the ion concentration appears to suggest [9,10]. The 

same seems to apply to highly concentrated aqueous electrolyte solutions [11]. This 

phenomenon has been referred to as “underscreening”, and a number of attempts have been 

made to elucidate the physics behind it. Underscreening also occurs in unconfined ionic 

liquids [11], but confinement appears to introduce some additional effects that reduce the 

concentration of effective charge carriers (ECCs). A possible explanation for underscreening 

is that ions can either be found in a free or a bound state, the latter being a cluster of strongly 

correlated ions [12,13]. Consequently, an ion bound to such a cluster no longer acts as an ECC, 

but large charge-neutral clusters containing many ions may occur. To describe the equilibrium 

between ions in clusters and those acting as effective charge carriers, a Boltzmann distribution 

is employed [10–12], which implies that the concentration of ECCs has a strong temperature 

dependence. This temperature dependence is the cornerstone of the model we have developed 

for thermoelectricity in confined ionic liquids and concentrated aqueous electrolyte solutions. 

For brevity, in the following we will refer to these classes of electrolytes as “thermally activated 

electrolytes” (TAE).  

Figure 1a schematically illustrates the system under consideration. A narrow 

confinement of half-width h  and length  l h l A  is filled with a TAE. The ECCs form an 

electric double layer (EDL) at the charged channel walls. It is the axial concentration gradient 

depicted in Figure 1b that drives charge transport through the channel and is responsible for 

the thermoelectric effect. It can be seen that the magnitude of the concentration gradient in a 

TAE (yellow solid line) is larger than in a scenario in which the charge carrier concentration is 
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constant (green dashed line), as further discussed below. Only the latter is described by the 

standard PNP equations, as analyzed in previous work [8]. In addition, in a TAE the sign of the 

concentration gradient is usually reversed compared to the standard scenario. 

 

 

FIG. 1. (a) Schematic of a narrow-confined space of half-width h , bounded by two parallel 

plates and connecting two reservoirs maintained at temperatures 0T  and  0eT T T  , with 

subscripts 0  and e  denoting the properties at the left (cold) and the right (hot) reservoir, 

respectively. Debye layers with a characteristic temperature-dependent thickness of 1   form 
at the channel walls. (b) An axial gradient in the cross-section averaged counterion 
concentration develops through the superposition of two competing effects. First, there is the 
temperature dependence of the wall-normal diffusion and electromigration fluxes, which are 
related to each other by the Einstein-Smoluchowski equation. The temperature dependence 
already exists at constant effective charge carrier concentration (green dashed line). This effect, 
however, is overridden when in addition the temperature-dependent effective charge carrier 
concentration (yellow solid line) is considered. The x-axis extends over the entire length of the 
channel. 

 

To model the transport processes in the channel, we assume a small enough temperature 

gradient, such that we can apply the framework of classical irreversible thermodynamics [14]. 

The key assumption in this context is that at each position inside the channel, the state of the 

system can be well approximated based on local thermodynamic equilibrium. We consider a 

three-component system, a background fluid together with two types of ECCs, positive and 

negative ones, and suppose that the molar concentration of the ECCs is significantly smaller 

than that of the background fluid. Thereby we aim at providing a model for a TAE in which 

ECCs are created in a thermally activated process [10–12]. For example, in the case of an ionic 

liquid, the background fluid would consist of charge-neutral clusters of strongly correlated ions 

from which charge carriers emerge at sufficiently high temperatures. In such a scenario, there 

could be multiple types of anionic and cationic ECCs, but to keep our model simple and in the 
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spirit of a proof-of-principle study, we limit ourselves to one type of anionic and one type of 

cationic ECCs. 

Under these conditions, the standard description of species transport relies on the 

Nernst-Planck equations (NPE), comprising diffusive, advective and electromigration 

contributions in the ECC flux density kj , with  ,k    . In the stationary state the NPE reduce 

to 0k j . The NPE are supplemented by the Navier-Stokes equations (for the velocity field 

in the fluid), the energy equation (for the temperature field), and the Poisson equation (for the 

electric potential). Details concerning the set of underlying equations and the corresponding 

boundary conditions can be found in the supplemental material [15]. Note that the underlying 

NPE differs from the conventional version found in the literature by the fact that the charge 

carrier (ion) concentration is not given as a boundary condition, but adjusts itself according to 

the local temperature. Effectively, the model comprises a chemical equilibrium between bound 

and free charges that is attained instantaneously. The mathematical analysis is based on the 

leading-order contribution of the governing equations under the thin-gap approximation 

 1A , signifying that the dimensionless axial gradient of any variable is much smaller than 

its transverse counterpart. The energy equation forms the only exception in that context, i.e. 

the thin-gap approximation is not applied to this equation. Under this approximation, it is 

shown in the supplemental material ([15], with [16–26] cited therein) that the effects of 

advection, viscous dissipation and Joule heating can be neglected in the transport equations. 

Hence, the Nernst-Planck flux becomes 

 * *
k k k k k kD n e n    j   , (1) 

where for the valence of the ECCs     is assumed. The molar concentration of the ECCs 

is given by *
kn . The Einstein-Smoluchowski equation k k BD k T   relates the electrophoretic 

mobility ( k ) of the ECCs to their diffusion coefficient ( kD ). Thermodiffusion effects are 

neglected, owing to their usually small contribution to the induced thermoelectric field in a 

highly confined space [8]. in     is the total electrostatic potential, the sum of the EDL 

potential   and the induced thermoelectric potential i n . The electrostatic potential is 

governed by the Poisson equation  

   f      , (2) 
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where   is the dielectric permittivity of the fluid and *
f k ke n   is the volumetric charge 

density. 

In terms of the leading-order contribution in the small parameter A , the temperature 

gradient in the fluid is given by  ,0T T l  ([15], Sec.1). Based on that and the Boltzmann 

distribution determining the concentration of ECCs [10–12], their concentration will vary not 

only due to the electrostatic potential distribution, but also due to the local temperature. This is 

the essential mechanism driving the thermoelectric effect. Omitting terms 𝒪 2A  in the NPE, 

the ECC distribution follows from , 0k zj  . The result is ([15], Sec.2) 

 * exp d k
k b

B

E e
n n

k T

     
 

. (3) 

The bulk concentration far away from solid walls is given as  * expk b d Bn n E k T  . dE  is the 

activation energy needed to create ECCs from ion clusters [10–12]. In the limit 0dE  , Eq. 

(3) reduces to the well-known Boltzmann distribution valid for an isothermal channel. Inserting 

(3) in (2) and keeping only leading-order terms in A ([15], Sec. 3) yields the Poisson-

Boltzmann equation, i.e.  2 2 2Ψ sinh Ψd d z  , where Ψ Be k T  is the non-dimensional 

electrostatic potential. The Debye parameter  2 22 expb d B Be n E k T k T    becomes a 

local quantity, depending on  T x . For 0 1T T  ,   can be rewritten as ([15], Sec. 3) 

    0 0
0 0 02

0 0

1 1

2 2
d

B

E T T T T

k T T
   

 
   . (4) 

The first term on the right-hand-side of (4) denotes the Debye parameter at the channel 

entrance, the second term accounts for the variation of   caused by thermally-induced charge 

carrier generation, while the last one depicts the variation caused by the temperature 

dependence of k kD  .  The opposite signs of the second and third term in (4) signify their 

counteracting contributions with respect to the EDL thickness. The corresponding electrostatic 

potential can be obtained by solving the Poisson-Boltzmann equation in the Debye-Hückel 

(DH) limit  Ψ 1 , using the boundary conditions    at z h . The result is 

   cosh coshDH z h    . Combining (1) and (3), the axial ECC flux densities are 

obtained as 
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 ,

2 2

k x d k k

k k B B B

j E e edT
E

n D k T k T dx k T

   
     
 

, (5) 

where i nE x   . The induced electric field E  can be computed by equating the total 

electric current ,10

h N
k k xkI e j dz


  to zero. Assuming kD D , the Seebeck coefficient 

 S E dT dx  reads ([15], Sec. 4) 

 0 0

0 0

sinh cosh
1

cosh cosh

h h

B Bd

h h

B B

e e
dz dz

k T k TE
S

e T Te e
dz dz

k T k T

 

  

   
   
   
     
   
   
   
   

 

 
. (6) 

Evaluation of the integrals under the DH approximation yields 

     
 

 
 

2 2

2 2

2

2

tanh tanh tanh1 1
1

2 3 cosh

tanh 1
1

2 cosh

d

B B

DH

B

h h hE e
k T h T h k T h

S
he

k T h h

    
  


 

                   
             

. (7) 

The expression for DHS  remains accurate only for 1Be k T   . For small   and T

(such that < 1  and 0 1T T  ), D HS  can be further simplified to give ([15], Sec. 4) 

    0

0 0 0

tanh tanh
1 2 1d

DH
B

h hT ET T
S

T k T h T h

 
  

    
          
   

. (8) 

Equations (6)-(8) depict that the net thermoelectric field for confined TAEs is due to the 

superposition of two different effects. One is an axial gradient of *
kn  affiliated with the 

temperature-modulated dissociation of ionic aggregates; the other one is the gradient in *
kn  

resulting from the temperature dependence of k kD  . Specifically, the Seebeck coefficient of 

Equation (8) consists of two different contributions. The second term on the right-hand side is 

the only contribution obtained for a dilute electrolyte (DE), as considered in [8]. Here, the term 

DE refers to an electrolyte in the conventional sense, i.e. with an ion concentration defined by 

the boundary conditions and small compared to the solvent concentration. By contrast, in a 

TAE, the charge carrier concentration is not given but results from the dissociation of charge-

neutral ionic aggregates. For TAEs, the first term on the right-hand side of Equation (8) is 
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present in addition to the second one. As we will show in the following, the first term will 

usually dominate the thermoelectric response.  

To apply our model to a specific system, we focus on the TAE ([C2mim][NTf2]) 

considered in [10], which is an ionic liquid. To the best of our knowledge, the transport 

coefficients of the ECCs in this medium are unknown. However, the Seebeck coefficient only 

depends on the ratio k k BD k T  , i.e. the results are independent of the specific values of the 

transport coefficients. In addition to the diffuse part of the EDL, in [10] the existence of a Stern 

layer was reported, which is not included in our model description. In the supplemental material 

([15], Sec. 5), we estimate the effects due to the Stern layer. The results indicate that its 

presence reduces the Seebeck coefficient. However, the transport processes inside the Stern 

layer most probably lie beyond the realm of continuum theory [27]. Moreover, the atomistic 

mechanism suggested in [7], i.e. thermally-induced hopping of charge carriers, could result in 

an increase of the Seebeck coefficient due to the Stern layer if the solid surface provides a 

suitable potential energy landscape. This leaves us with the conclusion that currently, no clear 

statements about the effects due to the Stern layer are possible, and in the spirit of a proof-of-

principle study, we focus on charge transport inside the diffuse part of the EDL. For the 

conditions considered below, the thickness of the diffuse part lies between 6 and 7 nm [10]. 

 

 

FIG. 2. (a) Seebeck coefficient (in units of Bk e ) as a function of the non-dimensional Debye 

parameter  0h  for a TAE  S  and a DE  DES . Results based on the DH approximation 

(lines) are compared with results from the full numerical simulation of the coupled PNP 
equations (symbols). The solid lines (and the corresponding symbols) correspond to 5  mV, 

the dotted lines (and the corresponding symbols) represent 50  mV. (b) Dependence of the 

Seebeck coefficient on the wall boundary conditions. A constant surface charge density q  

(symbols) or  potential (lines) is imposed at the bounding walls. Green circles: 
40.27 10q    C/m2, Blue stars: 42.5 10q    C/m2; Green solid line: 10  mV, Blue 
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dashed line: 70  mV. The activation energy considered here corresponds to 

[C2mim][NTf2] [10]. 

 

Figure 2a compares the Seebeck coefficient of TAEs  S  and DEs  DES , given in 

units of Bk e , as a function of 0h  for  5,50  mV. Unless specified otherwise, we consider 

0 298T  K, 25T  K, 9.4d BE k T , 12.3   and 250l h . These particular values of dE  

and ε  correspond to the TAE [C2mim][NTf2] [10]. In the case of a DE, we chose 78.5  , 

corresponding to the permittivity of water at a temperature of 298 K. Our analytical results are 

juxtaposed with those based on a numerical solution of the coupled PNP equations ([15], Sec. 

8), obtained using the finite element simulations. For DEs, any difference between the two 

classes of results is practically indistinguishable. By contrast, for TAEs, while the PNP 

solutions agree well with the DH approximation at small  5mV  , the latter significantly 

underestimates S  at higher values of  . The exclusion of 𝒪 , 3n n   terms in the integrand 

of (6) is responsible for this deviation. 

One can readily observe that irrespective of the value of 0h , the TAE yields a 

significantly higher Seebeck coefficient (in terms of its magnitude) compared to the DEs. The 

opposite sign of S  between the TAE and the DEs indicates opposite directions of the induced 

thermoelectric field. For 0dE   and 0T  , Eq. (4) shows that the EDL expands in the 

direction of increasing temperature, implying a reduced counterion concentration. On the other 

hand, for TAEs, the concentration gradient of ECCs due to the applied temperature gradient 

keeps reducing the EDL thickness in the direction of increasing temperature. This can be 

verified from Eq. (4) for 0dE  . Although k kD  is a function of temperature for TAEs as 

well, the temperature-driven ECC generation dominates and establishes a net concentration 

gradient opposite to that caused by the temperature-dependent k kD  . The magnitude of S  is  

at its maximum for 0 0h  , i.e. in the regime of highly overlapping EDLs, in agreement with 

the results reported in [8]. In this case, we obtain  1 2DH dS E T    with 

 22Bk T   , based on the DH approximation. By contrast, 0DHS   for 0h ∞ .  

To check the robustness of our results, it is helpful to check their sensitivity with respect 

to the underlying model assumptions. One important assumption is the Dirichlet boundary 
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condition for the electric potential at the channel walls. Considering the plethora of 

combinations of solids and TAEs, it is unclear how viable this assumption is. A more realistic 

boundary condition could be obtained from a charge regulation model, which describes the 

chemistry of charge formation at the channel walls. However, formulating a charge regulation 

model that is valid for a broad range of material combinations is a close-to-impossible task. 

In [28], the constant potential boundary condition was compared with the constant surface 

charge density and a charge regulation boundary condition. The main results were: (i) For 

0 1h  , the results become independent of the specific boundary condition; (ii) The data 

obtained with the most realistic model (charge regulation) are always bracketed by the data for 

constant potential and constant wall charge density. Motivated by these results, we have 

repeated our calculations for constant wall charge density q . The mapping between   and q  

is achieved following [15], Sec. 6 ([29,30]). The corresponding results were numerically 

computed by solving the PNP equations ([15], Sec. 8). For a constant   potential, S  was 

numerically obtained by solving Eq. (6). 

The resulting Seebeck coefficient is displayed in Figure 2b as a function of 0h . In the 

regime of non-overlapping EDLs  0 1h  , S  remains unaffected by the specific type of 

boundary condition. However, for overlapping EDLs, the results based on these two different 

boundary conditions start deviating, with increasing deviations as 0 0h  . This disagreement 

can be explained by the fact that for 1A , the charges in the liquid are exactly equal in 

magnitude to the wall charges, ruling out any axial concentration gradients as 0 0.h   

Importantly, for 0 1h  , the difference between the two sets of results is rather small. 

Considering the typical functional dependence of S  with 0h , we conclude that at large   

potentials, the Seebeck coefficient evaluated at 0 1h   is a reasonably good indicator for the 

maximum Seebeck coefficient that can be achieved (independent of the wall boundary 

condition). 

So far, we have only considered one specific TAE. Owing to the numerous types of 

ionic liquids [31] and concentrated electrolytes, one can expect a broad range of activation 

energies dE . Figure 3a shows the Seebeck coefficient, S  (in units of Bk e ) as a function of 

dE  (in units of Bk T ) for different   potentials. The values considered here for the parameters 

dE  and   are in accordance with the experimental data reported for TAEs [10,32]. Results 
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obtained using the DH approximation are compared with the numerical evaluation of Eq. (6) 

([15], Sec. 7). Both  and dE  have a substantial influence on S , with a sign reversal of S  

occurring within  1.1 4d BE k T   for the range of   potentials considered. Defining 

*
kdn dT  as the temperature sensitivity parameter, it is found that small dE  causes low 

temperature sensitivity despite a high ECC concentration. At small dE , therefore, the 

thermoelectric field is governed by the concentration gradient due to the temperature-

dependent k kD  , yielding a Seebeck coefficient which differs qualitatively from that for 

higher dE . On the other hand, with increasing dE , the concentration gradient is more and more 

dominated by the temperature-dependent generation of ECCs, and eventually results  in a 

Seebeck coefficient that is much higher compared to that in DEs. Despite evidence that dE  can 

attain values as high as 100 Bk T  [32], in Figure 3a we have limited the range of activation 

energies to 40 Bk T . The underlying reason is that for high activation energies, the charge 

density drops to values that are probably physically insignificant. 40d BE k T  marks the limit 

that corresponds to the charge density in liquids with very low conductivity [33,34], which we 

consider as a physically reasonable point of reference. Figure 3b shows the variation of the 

cross-section averaged counterion concentration  cn  and electric potential    along the 

channel for vanishing voltage between the reservoirs and different dE , as obtained from 

numerical calculations. It is apparent that cn  drops appreciably with increasing dE . Apart from 

the counterion concentration gradient, also the intrinsic axial electric field (represented by the 

negative gradient of  ), induced by the temperature gradient, assists in driving the counterion 

flux. However, this effect is minor compared to counterion diffusion in the concentration 

gradient. The thermovoltage due to the counterion flux depends on an interplay between the 

average counterion concentration (decreasing the thermovoltage by increasing the conductivity 

inside the channel) and the concentration gradient (increasing the thermovoltage). Within the 

considered range of dE  values, the Seebeck coefficient increases with dE  and reaches very 

large values. The underlying mechanisms could help explaining experimental data obtained 

with highly concentrated electrolytes or ILs in nanoconfinement [3,4,35,36] that point towards 

Seebeck coefficients much in excess of Bk e .  
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FIG. 3. (a) Dependence of the Seebeck coefficient on the activation energy and   potential at 

0 0.1h  . Results based on the numerical evaluation of Eq. (6) (symbols) are compared with 

the DH approximation (solid lines). (b) Axial variation of the cross-section averaged counter-
ion concentration and electric potential, as obtained from numerical calculations. Solid lines 
represent cn , while the dashed lines represent  . No voltage was applied between the 

reservoirs, and 0 0.1h  , 50   mV were chosen.  

 

In conclusion, we have shown that the Seebeck coefficient in confined electrolytes can 

reach values much larger than Bk e . Such a giant thermoelectric response is found for 

thermally activated electrolytes, in which charge carriers are generated in a thermally activated 

process. The temperature dependence of the charge carrier concentration is usually the 

dominant mechanism driving charge transport. This mechanism can help explaining the giant 

Seebeck coefficients that were measured in materials in which an electrolyte fills a confined 

space.  

We consider our work a proof-of-principle study based on a comparatively simple 

model that includes a single species of effective charge carriers. It cannot be expected that this 

model captures all transport process occurring in ionic liquids or concentrated aqueous 

electrolytes. Examples for additional effects that could be the subject of future studies are the 

thermally induced hopping of charge carriers [7], ion transport inside the Stern layer, the 

intrinsic thermophoretic mobility of the effective charge carriers, multicomponent diffusion in 

the case of multiple species of charge carriers, or conversion of different types of charge carries 

into each other. Some of these phenomena could lead to further enhancements of the 

thermoelectric response and thereby contribute to understanding the giant response of some 

porous, electrolyte-filled materials. 
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 Giant thermoelectric response of confined electrolytes with thermally 
activated charge carrier generation: Supplemental Material 

 

The theoretical modeling of the transport processes associated with thermally activated 

electrolytes (TAE) involves the Nernst-Planck equations (NPE), the Navier-Stokes equation 

(NSE), the energy equation and the Poisson equation. The NPE describes the evolution of the 

charge carrier concentration field *
kn  and is given by 

 
*

*k
k k k

n
n

t




     u j  . (S1) 

In (S1), u  is the flow velocity vector, kj  is the ion flux density defined by (1), while k  is the 

rate of generation of effective charge carriers (ECCs) of species k due to the dissociation of 

ionic aggregates. For an incompressible electrolyte, the NSE takes the following form 

  V Mρ
t




 
      
  

u
u u                    (S2) 

where   is the mass density. In (S2), V i jp   τI  represents the mechanical stress tensor, 

the sum of the pressure term pI  ( I  denotes the unit tensor) and the viscous stress 

 
T

i j      
τ u u   , where   is the dynamic viscosity. Furthermore, 

 2M        I     denotes the Maxwell stress tensor [S1], with   as the electric 

potential and   as the dielectric permittivity.   is determined by the Poisson equation 

   f      . (S3) 

In (S3), *
1

K
f k kk e n 


  is the volumetric charge density of the ECCs. The energy equation 

reads 

  p

T
c T T

t   


 
     

  
   u    ,  (S4) 

where pc  is the  specific heat capacity (at constant pressure) and   is the thermal conductivity. 

The second and third terms on the right-hand side (RHS) of (S4) are the contributions of Joule 

heating and viscous dissipation, respectively. 
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To obtain a closed-form expression for the Seebeck coefficient S , the mathematical 

model needs to be supplied with boundary conditions. For the NPE, the wall boundaries 

(located at z h ) are considered to be mass impermeable, , 0k zj  , while a fixed   potential 

is specified at the walls for analytically solving the Poisson equation. Alternatively, a fixed 

surface charge density q  at the channel walls is considered, essentially to compare the Seebeck 

coefficients obtained under a specified   potential and a specified charge density q. For the 

temperature field, thermally insulated walls ( 0
z h

T z 


 ) are considered, while for the 

velocity field, the no-slip boundary condition  0
z h

u


  is applied at the walls. 

 
§1: Temperature distribution within the confinement 

To compute the temperature distribution within the confinement, first one needs to assess the 

influence of Joule heating and viscous dissipation on the temperature field. The Joule heating 

term can be approximated as 2
BE  , where  2 2 *2B Be n D k T   is the bulk electric 

conductivity. For fully developed flow through a slit channel, u  becomes  = ,0uu . The heat 

generation through viscous stresses is, therefore, quantified by  
2

u z    . Introducing 

the non-dimensional variables    , ,X Z x l z h , u u U , t tU l  and  rT T T   , 

where U  is a characteristic velocity and rT  is the reference temperature ( rT  can be viewed as 

the mean temperature of the channel), one can express (S4) in the following dimensionless 

form 

2

2 22 2
2

1

1

TA Pe u
t X X X

D T E U u
A

Z Z T X T Z



  

  

   
   

   
     

    
             

    
          

    





  

.  (S5) 

In (S5), T pPe c U l   is the thermal Péclet number and 2 2 *2 Be n k T   is the Debye 

parameter. Unless otherwise stated, all thermophysical properties are evaluated at rT T . The 

induced electric field E , causing the Joule heating (second term on the RHS of (S5)), is 

obtained either from Eq. (6) or (7) (under the DH limit). Hence, the maximum of the source 

term describing Joule heating is obtained when   0hE T x S   , since the largest 
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thermoelectric potential is achieved under maximum confinement. To assess the significance 

of Joule heating for TAEs, we consider the thermophysical properties of room-temperature 

ionic liquids (RTILs). Typically, for RTILs at 308rT  K, 𝒪  1210 8.854 10  F/m, D

𝒪 910 m2/s,   𝒪 110 W/(m∙K) while 1  𝒪 910 m  [S2–S4]. Considering ΔT 

𝒪 10 K, dE 𝒪 10 Bk T ,  𝒪 10 mV and l𝒪 1 μm, one finds 

 
22D T E T x    

   𝒪 610 . Further multiplication of this term by a small parameter 

 2 1A   ensures that the influence of Joule heating on the temperature distribution is indeed 

negligibly small. 

To determine the relative importance of advection and viscous dissipation in (S5), one 

needs to provide an estimate of the characteristic velocity U  first. Under the present flow 

conditions, (S2) simplifies to  

 
22 2

2 2

1

2 T

u T

z z z x
 

     
   

 
    
 

, (S6) 

where T d dT  . (S6) reflects that the fluid motion is due to the combined influences of 

electroosmosis (induced by E , the first term on the RHS of (S6)) and thermoosmosis 

(generated by the temperature-dependent dielectric permittivity, the second term on the RHS 

of (S6)). The flow due to a temperature-dependent dielectric permittivity is known from AC 

electrokinetics, where it is also termed “electrothermal convection”. Inserting the second 

derivative of  , evaluated under the DH approximation, one finds 

  
 

 
 

22 22 2

2 2

cosh sinh1

cosh 2 cosh
T

z zu T

z h h x

    
   

 
 

  .  (S7) 

Considering the no-slip condition  0
z h

u


  at the channel walls, double integration of (S7) 

with respect to z  yields 

 
 

     
 

2 2 2 2 22

2

sinh sinhcosh 1
1

cosh 8 cosh
T

z h h zzE T
u

h x h

    
   




             
    

. (S8) 

To proceed, the expression given by (7) is substituted for E  in (S8). Note that in (7), the 

Seebeck coefficient was derived under the DH approximation. Therefore, the expression for u 
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is expected to remain accurate only for small values of  , typically for < 1Be k T  . 

Correspondingly, neglecting terms 𝒪 2  in (7) for such small  , (S8) becomes 

 

   
 

     
 

HS

2 2 2 2 2

2

tanh cosh
1 1

cosh

sinh sinh1

8 cosh

d

B

T

h zE
u u

k T h h

z h h zT

h




 
 

  



              

         

. (S9) 

In (S9),  2
HSu T x T    is the thermally induced characteristic Helmholtz-

Smoluchowski velocity. The largest velocity maxu  occurs at the center plane 0z  , and is given 

by 

 
   

 
2 2

2
max HS 2

tanh 1 1
1 1 tanh

cosh 8 cosh
d T

B

hE T h
u u h

k T h h h

  
   

                         
. (S10) 

Equation (S10) expresses that for a specified set of parameters  , , ,T dE T  ,  ma xu f h . 

Typically, for RTILs T 𝒪 210 K-1 [S5]. Considering 308rT T  K along with the values 

of the other parameters mentioned above, the largest velocity for pure electroosmotically driven 

flow EOFu  (hypothetically considering 0T  ) is found to occur at 1.8h  , yielding 

HS3.05EOFu u . On the other hand, for pure thermoosmotic flow (considering 0E  ) the 

largest velocity occurs at 18h  , resulting in HS0.03TOFu u . Based on the scaling 

 h T x A T    and HS3.05U u , the magnitude of TPe  is, therefore, limited to   

 
2

3.05T

T
Pe

T




 ,  (S11) 

where  pc    is the thermal diffusivity estimated at the reference temperature rT . For 

RTILs, 𝒪 110 Pa·s [S6] and 𝒪 710 m2/s [S7]. Considering  𝒪 10 mV and 

T 𝒪 10 K, it is found that TPe 𝒪 710 . Further multiplication of this non-dimensional 

parameter by 2A  indicates that advection is negligible for computing the temperature 

distribution.  
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Following an identical approach, the magnitude of viscous dissipation (the third term 

on the RHS of (S5)) is found to be limited to  

 
22 23.05U T A

T hT

 





 
 
 
 


 

. (S12) 

Equation (S12) indicates that to leading order in A , the effects of viscous dissipation can only 

be neglected when 

 
2

3.05
T

h
T

 




. (S13) 

Using the parameter values from above, one finds h𝒪 1510 m. Clearly, this dimension is 

much smaller compared to any confinement of physical relevance, thus allowing us to ignore 

the effects of viscous dissipation in this analysis. To leading order in A , the energy equation 

(S5),  therefore, simplifies to  

 
1

0
Z Z

 
 

 
   
 



. (S14) 

Given the symmetry condition along the center plane, 0Z    at 0Z   and thermally 

insulated walls at 1Z  , this signifies that  T T x  and  ,0T T l  . 

 
§2: Simplification of the Nernst-Planck Equations 

To cast the NPE (S1) in non-dimensional form, we introduce the following additional 

dimensionless variables: * *
k k rN n n , k   , B re k T   and B re k T   apart from 

those defined earlier in the context of the derivation of (S5). Replacing the dimensional 

quantities in (S1) with their non-dimensional counterparts, the NPE read  

 




2

2
2

1

1

1 1

1

k k k k k
k k k

k

k k k
k k k

k k r

N N N N
A Pe u D D

t X D X X X

N N l
D D A

D Z Z Z D n

 


 


   
    

 
  

   
             

  
          


, (S15) 

where k kPe Ul D  is the ionic Péclet number and ˆ
rT T  . In (S15), 2

k kl D can be 

identified  as the Damköhler number (Da), the ratio between the diffusion timescale 2
kl D  and 



19 
 

the dissociation timescale 1
k
  of the charge-neutral ion clusters. The magnitude of Da 

indicates whether or not the ion-cluster dissociation process attains its equilibrium quasi-

instantaneously. For RTILs, the ion-cluster dissociation timescale reported in  [S8] is of 𝒪(1) 

μs, while kD  is usually of 𝒪 12 910 10  m2/s  [S3,S9–S11]. This gives Da ~

𝒪 3 610 10 1 , suggesting that the dissociation process attains its equilibrium quasi-

instantaneously. The term k  is, therefore, dropped from the NPE in the further analysis. 

The magnitude of kPe  can be estimated based on HS3.05U u . This yields 

 
2

3.05k
k

T
Pe

D T




 . (S16) 

Considering kD D 𝒪 12 910 10  m2/s, along with the values of the other parameters 

referred to above, one finds kPe 𝒪 5 210 10  . Therefore, one can safely ignore the 

advective terms proportional to kPe  in (S15). To leading order in A , further neglecting the 

terms of 𝒪 2A , (S15) simplifies to 

 
1

0
1

k k k
k k

k

N N
D D

D Z Z Z

 


 
  

 
   

 
. (S17) 

With Z Z     , after integration with respect to Z , and given the symmetry condition 

along the center plane at 0Z  , the  dimensional form of (S17) is given by 

 
* *

0k k k

B

n e n

z k T z

  
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  . (S18) 

Integrating (S18) and considering the ECC concentration for 0   to be 

 * expk b d Bn n E k T  , the charge carrier distribution can be expressed by 

 * exp d k
k b

B

E e
n n

k T

     
 

. (S19) 

Under chemical and thermal equilibrium, thermodynamics dictates that the concentrations of 

the species appearing on both sides of a chemical reaction equation are related by the 

Boltzmann distribution [S12]. The use of Boltzmann statistics here for the concentration of 
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ECCs is based on the fast enough chemical equilibrium between the ECCs and the charge-

neutral ion clusters, indicated by a large magnitude of Da, as discussed above. Equation (5) is 

derived by inserting (S19) in (S15) and neglecting the advective terms.  

 
§3: Simplification of the Poisson Equation 

In non-dimensional form, the Poisson equation (S3) can be rewritten as  
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 

 , (S20)  

where r    and r rh  , with r  and r  being the dielectric permittivity and Debye 

parameter at temperature rT . The other non-dimensional parameters appearing in (S20) were 

defined earlier during the derivation of (S5) or (S15). Equation (S20) shows that to the leading 

order in A , the volumetric charge density affects the electric field only in the transverse (z) 

direction. Moreover, since 0Z    (or equivalently 0T z   ),  the Poisson equation in 

dimensional form simplifies to 
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e n
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  , (S21) 

where z z      was used. Replacing *
kn  in (S21) by (S19) for  ,k     and assuming 

    for the oppositely charged ions, one finds  

  
2

2
2

Ψ
sinh Ψ

z



 , (S22) 

where Ψ
B

e

k T


  and  is the local Debye parameter at temperature T. Within the Debye-

Hückel approximation ( 1Be k T  ), the RHS of (S22) can be linearized, resulting in  

 
2

2
2z

  


 . (S23) 

  is related to its value at the channel entrance 0  maintained at temperature 0T  by 

  0 0 0exp d BT E T k TT T   . (S24) 
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For small  0 1T T T   , (S24) can be linearized to yield 

    0 0
0 0 02

0 0

1 1

2 2
d

B

E T T T T

k T T
   

 
   . (S25)  

Equation (S25) describes the deviation of local Debye parameter from its reference value 0 , 

owing to thermally-driven charge carrier generation  > 0dE  and the temperature dependence 

of k kD  . 

 
§4: Derivation of the Seebeck coefficient 

The induced thermovoltage in form of the Seebeck coefficient  S E dT dx  can be 

computed by equating the electric current ,0
1

Kh

k k x
k

I e j dz


  to zero. Replacing ,k xj  with the 

expression from Eq. (5) for  ,k     yields 
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.            (S26) 

Inserting *n  expressed by Eq. (3) and assuming equal Fickian diffusion coefficients D D   

and     , one finds 
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. (S27) 

From that, after some further algebra, Eq. (6) is obtained. For small   ( < 1Be k T  ), the 

terms 𝒪 , 2n n   can be ignored in (7), yielding 

    
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tanh tanh
d
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h hE
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 

   . (S28) 
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For small T  ( 0 1T T  ), the Seebeck coefficient (S28) can be further simplified to obtain 

Eq. (8). 

 
§5: Effect of Stern layer conductivity on the Seebeck coefficient 

It was reported that at the interface between an ionic liquid and a solid surface, a Stern layer 

with a characteristic thickness   of a few ion diameters will form [S13]. The ions within this 

layer remain strongly attached to the surface. Above this Stern layer there is a diffuse layer of 

ECCs. The Seebeck coefficient computed so far is based on the flux within this diffuse layer, 

thus ignoring the influence of the Stern layer. However, the ions in the Stern layer are 

associated with a surface conductance s  and, therefore, can give rise to an electric current. 

Incorporating the contributions of both bulk (diffuse layer) and surface (Stern layer) 

conduction, the total electric current   can be expressed by  
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where h h   . Replacing ,k xj  in (S29) with (5), (S29) becomes 
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Setting = 0  results in  
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Assuming kD D  and k   , the integrals in (S31) can be evaluated under the DH 

approximation, yielding 
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where the different symbol for the Seebeck coefficient indicates the fact that the Stern layer 

contribution was taken into account. Equation (S32) demonstrates that s  reduces the Seebeck 

coefficient, and hence the thermoelectric potential. By how much the Seebeck coefficient will 

be reduced remains an open question unless a model for computing the surface conductance is 

available. This is a challenging task that probably requires approaches going beyond a 

continuum-mechanical description. We would also like to point out that there may be an 

additional effect to consider that, by contrast to what (S32) predicts, yields an increase of the 

thermovoltage. Ions in the Stern layer may be transported via thermally-induced hopping in a 

potential energy landscape created by the solid surface, as suggested in [S14]. In conclusion, 

the effects due to the Stern layer remain an open issue that deserves closer attention in the 

future.    

 
§6: Estimation of the surface charge density based on the zeta potential 

The electrostatic potential can be analytically determined by solving the non-linear Poisson-

Boltzmann equation (S22) [S15]. At the center plane of the slit channel, this is given by  
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In (S33), cd  stands for a Jacobi elliptic function with argument   and parameter D . Based 

on that, the surface charge density q  is given by [S16] 
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where  sn D ,  cn D  and dn cn cd  again denote Jacobi elliptic functions of argument 

  and parameter D .   in (S34) and (S36) is expressed by (S24).  
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For a given parameter set  , ,T  , Eqs. (S33)-(S36) establish an implicit relation 

between q  and  . To compute q , first 
0z




 is determined by simultaneously solving (S33)–

(S36). Inserting this 
0z




 in (S36), one can evaluate q . The Jacobi functions are computed by 

employing the ELLIPJ function of Matlab (Version 9.10.0.1602886, R2021a). Finally, the 

surface charge density determined in this way is used as a Neumann boundary condition for 

the numerical simulation of the PNP equations to compute S . 

 
§7: Numerical scheme for the solution of Eqs. (6) 

The DH approximation limits the accuracy of the analytical solution of (S22) and hence, the 

corresponding Seebeck coefficient only to small values of   < 1Be k T  . A numerical 

solution is therefore essential to compute reliable values of S  for large zeta potentials. Using 

the BVP4C function in Matlab, Eq. (S22) is solved by employing the boundary conditions 

0z    (at 0z  ) and    (at z h ). Based on a grid independence study, a grid with 

1000 points is selected in the 𝑧 -direction.   computed in this manner is inserted in (6), and a  

numerical integration is carried out using the Simpson’s 1/3 rule for a wide range of 0h . S  

evaluated following this numerical approach is found to be practically indistinguishable from 

the analytical solution (within its domain of validity i.e., for < 1Be k T  ). 

 
§8: Numerical simulation framework for the Poisson-Nernst-Planck (PNP) equations 

The Seebeck coefficient for TAEs is numerically computed by solving the governing equations 

in two dimensions. The computational domain is a slender rectangle with a reservoir at each 

end, as shown in Fig. 1a. The coupled PNP equations (Eqs. (1) and (2) in the main text) are 

solved in conjunction with the energy equation 2 0T   (ignoring the terms with negligible 

contributions, as discussed in §1). Given the mirror symmetry along the 0z   plane, only the 

upper half of the domain is considered. The length l is taken as 250h , while the reservoir 

dimensions (length×height) are 20 10h h . The computations are carried out with the steady-

state PDE mode of Comsol Multiphysics 5.6.0, employing the PARDISO solver. A structured 

mesh with rectangular elements and quadratic Lagrangian shape functions is used, employing 

refinement close to corners and boundaries. A grid independence check was carried out, and 

the results are found to be virtually invariant under further mesh refinements at 46 10  mesh 
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elements. The iterative solution process is terminated at a relative tolerance (i.e. the maximum 

allowable relative error in the solution, as reported by the Comsol solver) level of 10-3. 

The computations are carried out by fixing the temperature of the left wall of the 

leftmost reservoir at 0 298T  K, and maintaining 25T  K between the extreme end walls of 

both reservoirs. The walls of the channel and the reservoirs are considered to be thermally 

insulated and impermeable for the solute and the dissolved ions. Only the channel walls carry 

a net electric charge. The potential   of the rightmost wall of the right reservoir is set to zero 

and varied for the leftmost wall of the left reservoir, so that the net electric current I  vanishes. 

The particular value of   for which I  becomes zero is the thermoelectric potential for a given 

set of the parameters 0 , dE , as well as   or q . 

 
§9: Effect of a temperature-dependent dielectric permittivity on the Seebeck coefficient 

The dielectric permittivity ε  of a medium usually varies with temperature. Literature suggests 

that for most fluids, ε  decreases with increasing temperature. This variation of ε  affects the 

electrostatic potential distribution within the confinement via the Poisson equation (Eq. (2) in 

the main text). Therefore, a corresponding change in the Seebeck coefficient can also be 

expected. 

While the variation of dielectric permittivity with temperature is well documented in 

the case of dilute aqueous electrolytes, data is scarce for TAEs. Some studies [S5] report a 

linear decrement in ε  with increasing temperature over a comparatively large temperature 

interval, whereas others [S17] suggest a sharp change in ε  within a narrow temperature 

interval. No general statement can, therefore, be made regarding the variation of dielectric 

permittivity in TAEs. To assess the influence of dielectric permittivity variations on the 

Seebeck coefficient, we here consider an extreme situation, similar to that reported in [S17], 

where ε  jumps from 21 to 7.5 within a temperature interval of about 1K. 

The results of the corresponding numerical computations, shown in Fig. S.1, reveals 

that, even under such extreme conditions, the Seebeck coefficient does not vary appreciably 

compared to the case of a fixed ε . Therefore, the Seebeck coefficient we have computed is 

expected to give a reasonably accurate picture of the thermoelectric response even of TAEs in 

which the dielectric permittivity exhibits a strong temperature dependence. 
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FIG. S1. Effect of a temperature-dependent dielectric permittivity on the Seebeck coefficient. 
S  is plotted as a function of the activation energy for four different cases: fixed ε , and a 
temperature dependent ε , each evaluated at two different values of the wall   potential. 

Symbols indicate the data computed considering a linear permittivity variation between 21ε   
at the cold reservoir and 7.5ε   at the hot reservoir for a temperature drop of 1 KT   

between both reservoirs. For each   potential, the dotted line represents S  computed for fixed 

 14.25ε  , the average between 21 and 7.5. All data have been obtained for 0 0.1h   and 

0 298T  K. 
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