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Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties

ANONYMOUS AUTHOR(S)

Hoare logics are proof systems that allow one to formally establish properties of computer programs. Traditional

Hoare logics prove properties of individual program executions (so-called trace properties, such as functional

correctness). Hoare logic has been generalized to prove also properties of multiple executions of a program (so-

called hyperproperties, such as determinism or non-interference). These program logics prove the absence of
(bad combinations of) executions. On the other hand, program logics similar to Hoare logic have been proposed

to disprove program properties (e.g., Incorrectness Logic), by proving the existence of (bad combinations of)

executions. All of these logics have in common that they specify program properties using assertions over a

fixed number of states, for instance, a single pre- and post-state for functional properties or pairs of pre- and

post-states for non-interference.

In this paper, we present Hyper Hoare Logic, a generalization of Hoare logic that lifts assertions to properties

of arbitrary sets of states. The resulting logic is simple yet expressive: its judgments can express arbitrary

trace- and hyperproperties over the terminating executions of a program. By allowing assertions to reason

about sets of states, Hyper Hoare Logic can reason about both the absence and the existence of (combinations

of) executions, and, thereby, supports both proving and disproving program (hyper-)properties within the

same logic, including (hyper-)properties that no existing Hoare logic can express. We prove that Hyper Hoare

Logic is sound and complete, and demonstrate that it captures important proof principles naturally. All our

technical results have been proved in Isabelle/HOL.

CCS Concepts: • Theory of computation→ Logic and verification; Hoare logic.

Additional Key Words and Phrases: Hyperproperties, Program Logic, Incorrectness Logic

1 INTRODUCTION
Hoare Logic [Floyd 1967; Hoare 1969] is a logic designed to formally prove functional correctness of

computer programs. It enables proving judgments (so-called Hoare triples) of the form {𝑃} 𝐶 {𝑄},
where 𝐶 is a program command, and 𝑃 (the precondition) and 𝑄 (the postcondition) are assertions
over execution states. The Hoare triple {𝑃} 𝐶 {𝑄} is valid if and only if executing 𝐶 in an initial

state that satisfies 𝑃 can only lead to final states that satisfy 𝑄 .

Hoare Logic is widely used to prove the absence of runtime errors, functional correctness,

resource bounds, etc. All of these properties have in common that they are properties of individual
program executions (so-called trace properties). However, classical Hoare Logic cannot reason

about properties ofmultiple program executions (so-called hyperproperties [Clarkson and Schneider

2008]), such as determinism (executing the program twice in the same initial state results in the

same final state) or information flow security, which is often phrased as non-interference [Volpano

et al. 1996] (executing the program twice with the same low-sensitivity inputs results in the same

low-sensitivity outputs). To overcome such limitations and to reason about more types of properties,

Hoare Logic has been extended and adapted in various ways. We refer to those extensions and

adaptations collectively as Hoare logics.
Among them are several logics that can establish properties of two [Aguirre et al. 2017; Amtoft

et al. 2006; Benton 2004; Costanzo and Shao 2014; Eilers et al. 2023; Ernst and Murray 2019; Francez

1983; Maillard et al. 2019; Naumann 2020; Yang 2007] or even 𝑘 [D’Osualdo et al. 2022; Sousa and

Dillig 2016] executions of the same program, where 𝑘 > 2 is useful for properties such as transitivity

and associativity. Relational Hoare logics are able to prove relational properties, i.e., properties relating
executions of two (potentially different) programs, for instance, to prove program equivalence.
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1:2 Anon.

Number of executions
Type 1 2 𝒌 ∞

Overapproximate (hypersafety) ✓ HL, OL, RHL, CHL, RHLE, MHRM ✓ RHL, CHL, RHLE, MHRM ✓ CHL, RHLE ✓ ∅
Backward underapproximate ✓ IL, InSec ✓ InSec ✓ ∅ ✓ ∅
Forward underapproximate ✓ OL, RHLE, MHRM ✓ RHLE, MHRM ✓ RHLE ✓ ∅

∀∗∃∗
not applicable ✓ RHLE, MHRM ✓ RHLE ✓ ∅

∃∗∀∗ not applicable ✓ ∅ ✓ ∅ ✓ ∅
Set properties not applicable not applicable not applicable ✓ ∅

Fig. 1. (Non-exhaustive) overview of Hoare logics, classified in two dimensions: The type of properties a logic
can establish, and the number of program executions these properties can relate (column “∞” subsumes
an unbounded and an infinite number of executions). We explain the distinction between backward and
forward underapproximate properties in App. C.2. ∀∗∃∗- and ∃∗∀∗-hyperproperties are discussed in Sect. 2.
App. B gives examples of (hypersafety and set) properties for an unbounded number of executions. A green
checkmark indicates that a property is handled by our Hyper Hoare Logic for the programming language
defined in Sect. 3.1, and ∅ indicates that no other Hoare logic supports it. The acronyms refer to the
following. CHL: Cartesian Hoare Logic [Sousa and Dillig 2016], HL: Hoare Logic [Floyd 1967; Hoare 1969], IL:
Incorrectness Logic [O’Hearn 2019] or Reverse Hoare Logic [de Vries and Koutavas 2011], InSec: Insecurity
Logic [Murray 2020], OL: Outcome Logic [Zilberstein et al. 2023], RHL: Relational Hoare Logic [Benton 2004],
RHLE [Dickerson et al. 2022], MHRM [Maillard et al. 2019].

All of these logics have in common that they can prove only properties that hold for all (combina-

tions of) executions, that is, they prove the absence of bad (combinations of) executions; to achieve

that, their judgments overapproximate the possible executions of a program. Overapproximate

logics cannot prove the existence of (combinations of) executions, and thus cannot establish certain

interesting program properties, such as the presence of a bug or non-determinism.

To overcome this limitation, recent work [de Vries and Koutavas 2011;Murray 2020; O’Hearn 2019;

Raad et al. 2020, 2022] proposed Hoare logics that can prove the existence of (individual) executions,
for instance, to disprove functional correctness. We call such Hoare logics underapproximate. Tools
based on underapproximate Hoare logics have proven useful for finding bugs on an industrial

scale [Blackshear et al. 2018; Distefano et al. 2019; Gorogiannis et al. 2019; Le et al. 2022]. More

recent work [Dickerson et al. 2022; Maksimović et al. 2023; Zilberstein et al. 2023] has proposed

Hoare logics that combine underapproximate and overapproximate reasoning.

The problem. Fig. 1 presents a (non-exhaustive) overview of the landscape of Hoare logics, where

logics are classified in two dimensions: the type of properties they can establish, and the number

of program executions those properties can relate. The table reveals two open problems. First,

some types of hyperproperties cannot be expressed by any existing Hoare logic (represented

by ∅). For example, to prove that a program implements a function that has a minimum, one

needs to show that there exists an execution whose result is smaller than or equal to the result

of all other executions. Such ∃∀-hyperproperties cannot be proved by any existing Hoare logic.

Second, the existing logics cover different, often disjoint program properties, which may hinder

practical applications: reasoning about a wide spectrum of properties of a given program requires

the application of several logics, each with its own judgments; properties expressed in different,

incompatible logics cannot be composed within the same proof system.

This work. We present Hyper Hoare Logic, a novel Hoare logic that enables proving or disproving
any (trace or) hyperproperty over the set of terminating executions of a program. As indicated

by the green checkmarks in Fig. 1, these include many different types of properties, relating any
(potentially unbounded or even infinite) number of program executions, and many hyperproperties

that no existing Hoare logic can handle. Among them are ∃∗∀∗ hyperproperties such as violations
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Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties 1:3

of generalized non-interference (Sect. 4.3) and the existence of a minimum (Sect. 5.3), and hyper-

properties relating an unbounded or infinite number of executions such as quantifying information

flow with min-capacity [Assaf et al. 2017; Smith 2009; Yasuoka and Terauchi 2010] (App. B).

Hyper Hoare Logic is based on a simple yet powerful idea: We lift pre- and postconditions

from assertions over a fixed number of execution states to hyper-assertions over sets of execution
states. Hyper Hoare Logic then establishes hyper-triples of the form {𝑃} 𝐶 {𝑄}, where 𝑃 and 𝑄 are

hyper-assertions. Such a hyper-triple is valid iff for any set of initial states 𝑆 that satisfies 𝑃 , the set

of all final states that can be reached by executing 𝐶 in some state from 𝑆 satisfies 𝑄 . By allowing

assertions to quantify universally over states, Hyper Hoare Logic can express overapproximate

properties, whereas existential quantification expresses underapproximate properties. Combinations

of universal and existential quantification in the same assertion, as well as assertions over infinite

sets of states, allow Hyper Hoare Logic to prove or disprove properties beyond existing logics.

Contributions. Our main contributions are:

• We present Hyper Hoare Logic, a novel Hoare logic that can prove or disprove arbitrary

hyperproperties over terminating executions.

• We formalize our logic and prove soundness and completeness in Isabelle/HOL [Nipkow et al.

2002].

• We derive easy-to-use syntactic rules for a restricted class of syntactic hyper-assertions, as
well as additional loop rules that capture different reasoning principles.

• We prove compositionality rules for hyper-triples, which enable the flexible composition of

hyper-triples of different forms and, thus, facilitate modular proofs.

• We demonstrate the expressiveness of Hyper Hoare Logic, both on judgments of existing

Hoare logics and on hyperproperties that no existing Hoare logic supports.

Outline. Sect. 2 informally presents hyper-triples, and shows how they can be used to specify

hyperproperties. Sect. 3 introduces the rules of Hyper Hoare Logic, and proves that these rules are

sound and complete for establishing valid hyper-triples. Secs. 4 and 5 derive additional rules that

enable concise proofs in common cases. We discuss related work in Sect. 6 and conclude in Sect. 7.

The appendix contains further details and extensions. In particular, App. C shows how to express

judgments of existing logics in Hyper Hoare Logic, and App. D presents compositionality rules. All
our technical results (Secs. 3, 4, 5, and the appendix) have been proved in Isabelle/HOL
[Nipkow et al. 2002]; the mechanization has been submitted as supplementary material.

2 HYPER-TRIPLES, INFORMALLY
In this section, we illustrate how hyper-triples can be used to express different types of hyperprop-

erties, including over- and underapproximate hyperproperties for single (Sect. 2.1) and multiple

(Sect. 2.2 and Sect. 2.3) executions.

2.1 Overapproximation and Underapproximation
Consider the command 𝐶0 ≜ (x B randIntBounded (0, 9)), which generates a random integer

between 0 and 9 (both included), and assigns it to the variable 𝑥 . Its functional correctness properties

include: (P1) The final value of 𝑥 is in the interval [0, 9], and (P2) every value in [0, 9] can occur for

every initial state (i.e., the output is not determined by the initial state).

Property P1 expresses the absence of bad executions, in which the output 𝑥 is outside the interval

[0, 9]. This property can be expressed in classical Hoare logic, with the triple {⊤} 𝐶0 {0 ≤ 𝑥 ≤ 9}.
In Hyper Hoare Logic, where assertions are properties of sets of states, we express it using a

postcondition that universally quantifies over all possible final states: In all final states, the value of
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148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

𝑥 should be in [0, 9]. The hyper-triple {⊤} 𝐶0 {∀⟨𝜑 ′⟩. 0 ≤ 𝜑 ′(𝑥) ≤ 9} expresses this property. The
postcondition, written in the syntax that will be introduced in Sect. 4, is semantically equivalent

to {𝜆𝑆 ′.∀𝜑 ′ ∈ 𝑆 ′. 0 ≤ 𝜑 ′(𝑥) ≤ 9}. This hyper-triple means that, for any set 𝑆 of initial states 𝜑

(satisfying the trivial precondition ⊤), the set 𝑆 ′ of all final states 𝜑 ′
that can be reached by

executing 𝐶0 in some initial state 𝜑 ∈ 𝑆 satisfies the postcondition, i.e., all final states 𝜑 ′ ∈ 𝑆 ′ have
a value for 𝑥 between 0 and 9. This hyper-triple illustrates a systematic way of expressing classical

Hoare triples as hyper-triples (see App. C.1).

Property P2 expresses the existence of desirable executions and can be expressed using an

underapproximate Hoare logic. In Hyper Hoare Logic, we use a postcondition that existentially
quantifies over all possible final states: For each 𝑛 ∈ [0, 9], there exists a final state where 𝑥 = 𝑛.

The hyper-triple {∃⟨𝜑⟩.⊤} 𝐶0 {∀𝑛. 0 ≤ 𝑛 ≤ 9 ⇒ ∃⟨𝜑 ′⟩. 𝜑 ′(𝑥) = 𝑛} expresses P2. The precondition
is semantically equivalent to (𝜆𝑆. ∃𝜑 ∈ 𝑆). It requires the initial set of states 𝑆 to be non-empty

(otherwise the set of states reachable from states in 𝑆 by executing𝐶0 would also be empty, and the

postcondition would not hold). The postcondition ensures that, for any 𝑛 ∈ [0, 9], it is possible to
reach at least one state 𝜑 ′

with 𝜑 ′(𝑥) = 𝑛.

This example shows that hyper-triples can express both under- and overapproximate properties,

which allows Hyper Hoare Logic to reason about both the absence of bad executions and the

existence of good executions. Moreover, hyper-triples can also be used to prove the existence of

incorrect executions, which has proven useful in practice to find bugs without false positives [Le

et al. 2022; O’Hearn 2019]. To the best of our knowledge, the only other Hoare logics that can

express both properties P1 and P2 are Outcome Logic [Zilberstein et al. 2023] and Exact Separation

Logic [Maksimović et al. 2023].
1
However, these logics are limited to properties of single executions

and, thus, cannot handle hyperproperties such as the examples we discuss next.

2.2 (Dis-)Proving 𝑘-Safety Hyperproperties
A 𝑘-safety hyperproperty [Clarkson and Schneider 2008] is a property that characterizes all combi-
nations of 𝑘 executions of the same program.

An important example is information flow security, which requires that programs that manipulate

secret data (such as passwords) do not expose secret information to their users. In other words, the

content of high-sensitivity (secret) variables must not leak into low-sensitivity (public) variables.

For deterministic programs, information flow security is often formalized as non-interference
(NI) [Volpano et al. 1996], a 2-safety hyperproperty: Any two executions of the program with the

same low-sensitivity (low for short) inputs (but potentially different high-sensitivity inputs) must

have the same low outputs. That is, for all pairs of executions 𝜏1, 𝜏2, if 𝜏1 and 𝜏2 agree on the initial

values of all low variables, they must also agree on the final values of all low variables. This ensures

that the final values of low variables are not influenced by the values of high variables. Assuming

for simplicity that we have only one low variable 𝑙 , the hyper-triple {low(𝑙)} 𝐶1 {low(𝑙)}, where
low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑙) = 𝜑2 (𝑙)), expresses that 𝐶1 satisfies NI: If all states in 𝑆 have the same

value for 𝑙 , then all final states reachable by executing 𝐶1 in any initial state 𝜑 ∈ 𝑆 will have the

same value for 𝑙 . Note that this set-based definition is equivalent to the standard definition based on

pairs of executions. In particular, instantiating 𝑆 with a set of two states directly yields the standard

definition.

Non-interference requires that all final states have the same value for 𝑙 , irrespective of the initial

state that leads to any given final state. Other 𝑘-safety hyperproperties need to relate initial and

final states. For example, the program y B f (x) is monotonic iff for any two executions with

1
While RHLE [Dickerson et al. 2022] can in principle reason about the existence of executions, it is unclear how to express

the existence for all numbers 𝑛.
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𝜑1 (𝑥) ≥ 𝜑2 (𝑥), we have 𝜑 ′
1
(𝑦) ≥ 𝜑 ′

2
(𝑦), where 𝜑1 and 𝜑2 are the initial states 𝜑

′
1
and 𝜑 ′

2
are the

corresponding final states.

To relate initial and final states, Hyper Hoare Logic uses logical variables (also called auxiliary
variables [Kleymann 1999]). These variables cannot appear in a program, and thus are guaranteed

to have the same values in the initial and final states of an execution. We use this property

to tag corresponding states, as illustrated by the hyper-triple for monotonicity: {mono𝑡𝑥 } y B
f (x) {mono𝑡𝑦}, where mono𝑡𝑥 ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑡) = 1 ∧ 𝜑2 (𝑡) = 2 ⇒ 𝜑1 (𝑥) ≥ 𝜑2 (𝑥)). Here, 𝑡 is a
logical variable used to distinguish the two executions of the program.

Disproving 𝑘-safety hyperproperties. As explained in the introduction, being able to prove that a

property does not hold is valuable in practice, because it allows building tools that can find bugs with-
out false positives. Hyper Hoare Logic is able to disprove hyperproperties by proving a hyperproperty
that is essentially its negation. For example, we can prove that the insecure program 𝐶2 ≜ (if (ℎ >

0) {l B 1} else {l B 0}), where ℎ is a high variable, violates non-interference (NI), using the follow-
ing hyper-triple: {low(𝑙) ∧ (∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (ℎ) > 0 ∧ 𝜑2 (ℎ) ≤ 0)} 𝐶2 {∃⟨𝜑 ′

1
⟩, ⟨𝜑 ′

2
⟩. 𝜑 ′

1
(𝑙) ≠ 𝜑 ′

2
(𝑙)}.

The postcondition is the negation of the postcondition for 𝐶1 above, hence expressing that 𝐶2

violates NI. Note that the precondition needs to be stronger than for 𝐶1. Since the postcondition

has to hold for all sets that satisfy the precondition, we have to require that the set of initial states

includes two states that will definitely lead to different final values of 𝑙 .

The only other Hoare logic that can be used to both prove and disprove 𝑘-safety hyperproperties

is RHLE, since it supports ∀∗∃∗
-hyperproperties, which includes both hypersafety (that is, ∀∗)

properties and their negation (that is, ∃∗
-hyperproperties). However, RHLE does not support

∃∗∀∗-hyperproperties, and thus cannot disprove ∀∗∃∗
-hyperproperties such as generalized non-

interference, as we discuss next.

2.3 Beyond 𝑘-Safety
NI is widely used to express information flow security for deterministic programs, but is overly

restrictive for non-deterministic programs. For example, the command 𝐶3 ≜ (y B nonDet (); l B
h + y) is information flow secure. Since the secret ℎ is added to an unbounded non-deterministically

chosen integer 𝑦, any secret ℎ can result in any
2
value for the public variable 𝑙 and, thus, we cannot

learn anything certain about ℎ from observing the value of 𝑙 . However, because of non-determinism,

𝐶3 does not satisfy NI: Two executions with the same initial values for 𝑙 could get different values

for 𝑦, and thus have different final values for 𝑙 .

Information flow security for non-deterministic programs (such as 𝐶3) is often formalized as

generalized non-interference (GNI) [McCullough 1987; McLean 1996], a security notion weaker than

NI. GNI allows two executions 𝜏1 and 𝜏2 with the same low inputs to have different low outputs,

provided that there is a third execution 𝜏 with the same low inputs that has the same high inputs as

𝜏1 and the same low outputs as 𝜏2. That is, the difference in the low outputs between 𝜏1 and 𝜏2 cannot

be attributed to their secret inputs.
3
The non-deterministic program 𝐶3 satisfies GNI, which can

be expressed via the hyper-triple
4 {low(𝑙)} 𝐶3 {∀⟨𝜑 ′

1
⟩, ⟨𝜑 ′

2
⟩. ∃⟨𝜑 ′⟩. 𝜑 ′(ℎ) = 𝜑 ′

1
(ℎ) ∧ 𝜑 ′(𝑙) = 𝜑 ′

2
(𝑙)}.

The final states 𝜑 ′
1
and 𝜑 ′

2
correspond to the executions 𝜏1 and 𝜏2, respectively, and 𝜑

′
corresponds

to execution 𝜏 .

2
This property holds for both unbounded and bounded arithmetic.

3
GNI is often formulated without the requirement that 𝜏1 and 𝜏2 have the same low inputs, e.g., in Clarkson and

Schneider [2008]. This alternative formulation can also be expressed in Hyper Hoare Logic, with the hyper-triple

{∀⟨𝜑 ⟩. 𝜑 (𝑙in) = 𝜑 (𝑙) } 𝐶3 {∀⟨𝜑′
1
⟩, ⟨𝜑′

2
⟩. ∃⟨𝜑′⟩. 𝜑′ (ℎ) = 𝜑′

1
(ℎ) ∧ 𝜑′ (𝑙in) = 𝜑′

2
(𝑙in) ∧ 𝜑′ (𝑙) = 𝜑′

2
(𝑙) }. The precondition

binds, in each state, the initial value of 𝑙 to the logical variable 𝑙in, which enables the postcondition to refer to the

initial value of 𝑙 .
4
We assume here for simplicity that ℎ is not modified by𝐶3.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: June 2024.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

As before, the expressivity of hyper-triples enables us not only to express that a program satisfies
complex hyperproperties such as GNI, but also that a program violates them. For example, the

program 𝐶4 ≜ (y B nonDet (); assume y ≤ 9; l B h + y), where the first two statements model

a non-deterministic choice of 𝑦 smaller or equal to 9, leaks information: Observing for example

𝑙 = 20 at the end of an execution, we can deduce that ℎ ≥ 11 (because 𝑦 ≤ 9). We can formally

express that 𝐶4 violates GNI using the following hyper-triple:
5

{low(𝑙) ∧ (∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (ℎ) ≠ 𝜑2 (ℎ))} 𝐶4 {∃⟨𝜑 ′
1
⟩, ⟨𝜑 ′

2
⟩.∀⟨𝜑 ′⟩. 𝜑 ′(ℎ) = 𝜑 ′

1
(ℎ) ⇒ 𝜑 ′(𝑙) ≠ 𝜑 ′

2
(𝑙)}

The postcondition implies the negation of the postcondition we used previously to express GNI. As

before, we had to strengthen the precondition to prove this violation.

GNI is a ∀∀∃-hyperproperty, whereas its negation is an ∃∃∀-hyperproperty. To the best of our

knowledge, Hyper Hoare Logic is the only Hoare logic that can prove and disprove GNI. In fact, we

will see in Sect. 3.5 that all hyperproperties over terminating program executions can be proven or

disproven with Hyper Hoare Logic.

3 HYPER HOARE LOGIC
In this section, we present the programming language used in this paper (Sect. 3.1), formalize

hyper-triples (Sect. 3.2), present the core rules of Hyper Hoare Logic (Sect. 3.3), prove soundness

and completeness of the logic w.r.t. hyper-triples (Sect. 3.4), formally characterize the expressivity of

hyper-triples (Sect. 3.5), and discuss additional rules for composing proofs (Sect. 3.6). All technical

results presented in this section have been formalized in Isabelle/HOL.

3.1 Language and Semantics
We present Hyper Hoare Logic for the following imperative programming language:

Definition 1. Program states and programming language. A program state (ranged over by
𝜎) is a mapping from local variables (in the set PVars) to values (in the set PVals): The set of program
states PStates is defined as the set of total functions from PVars to PVals: PStates ≜ PVars → PVals.

Program commands 𝐶 are defined by the following syntax, where 𝑥 ranges over variables in the set
PVars, 𝑒 over expressions (modeled as total functions from PStates to PVals), and 𝑏 over predicates over
states (total functions from PStates to Booleans):

𝐶 F skip | x B e | x B nonDet () | assume b | 𝐶; 𝐶 | 𝐶 +𝐶 | 𝐶∗

The skip, assignment, and sequential composition commands are standard. The command

assume b acts like skip if 𝑏 holds and otherwise stops the execution. Instead of including de-
terministic if-statements and while loops, we consider a non-deterministic choice 𝐶1 + 𝐶2 and a

non-deterministic iteration 𝐶∗
, which are more expressive. Combined with the assume command,

they can express deterministic if-statements and while loops as follows:

if (𝑏){𝐶1}else{𝐶2} ≜ (assume b; 𝐶1) + (assume ¬b; 𝐶2)
while (𝑏) {𝐶} ≜ (assume b; 𝐶)∗; assume ¬b

Our language also includes a non-deterministic assignment y B nonDet () (also called havoc),
which allows us to model unbounded non-determinism. Together with assume, it can for instance

model the generation of random numbers between bounds: y B randIntBounded (a, b) can be

modeled as y B nonDet (); assume a ≤ y ≤ b.
The big-step semantics of our language is standard, and formally defined in Fig. 2. The rule for

x B nonDet () allows 𝑥 to be updated with any value 𝑣 . assume b leaves the state unchanged if 𝑏

holds; otherwise, the semantics gets stuck to indicate that their is no execution in which 𝑏 does not
5
Still assuming that ℎ is not modified.
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⟨skip, 𝜎 ⟩ → 𝜎 ⟨x B e, 𝜎 ⟩ → 𝜎 [𝑥 ↦→ 𝑒 (𝜎) ] ⟨x B nonDet (), 𝜎 ⟩ → 𝜎 [𝑥 ↦→ 𝑣 ]
⟨𝐶1, 𝜎 ⟩ → 𝜎′ ⟨𝐶2, 𝜎

′⟩ → 𝜎′′

⟨𝐶1; 𝐶2, 𝜎 ⟩ → 𝜎′′

⟨𝐶1, 𝜎 ⟩ → 𝜎′

⟨𝐶1 +𝐶2, 𝜎 ⟩ → 𝜎′
⟨𝐶2, 𝜎 ⟩ → 𝜎′

⟨𝐶1 +𝐶2, 𝜎 ⟩ → 𝜎′
𝑏 (𝜎)

⟨assume b, 𝜎 ⟩ → 𝜎

⟨𝐶,𝜎 ⟩ → 𝜎′ ⟨𝐶∗, 𝜎′⟩ → 𝜎′′

⟨𝐶∗, 𝜎 ⟩ → 𝜎′′ ⟨𝐶∗, 𝜎 ⟩ → 𝜎

Fig. 2. Big-step semantics. Since expressions are functions from states to values, 𝑒 (𝜎) denotes the evaluation
of expression 𝑒 in state 𝜎 . 𝜎 [𝑥 ↦→ 𝑣] is the state that yields 𝑣 for 𝑥 and the value in 𝜎 for all other variables.

hold. The command𝐶1+𝐶2 non-deterministically executes either𝐶1 or𝐶2.𝐶
∗
non-deterministically

either performs another loop iteration or terminates.

Note that our language does not contain any command that could fail (in particular, expression

evaluation is total, such that division-by-zero and other errors cannot occur). Runtime failures

could easily be modeled by instrumenting the program with a special Boolean variable err that
tracks whether a runtime error has occurred and skips the rest of the execution if this is the case.

3.2 Hyper-Triples, Formally
As explained in Sect. 2, the key idea behind Hyper Hoare Logic is to use properties of sets of states
as pre- and postconditions, whereas traditional Hoare logics use properties of individual states

(or of a given number 𝑘 of states in logics for hyperproperties). Considering arbitrary sets of

states increases the expressivity of triples substantially; for instance, universal and existential

quantification over these sets corresponds to over- and underapproximate reasoning, respectively.

Moreover, combining both forms of quantification allows one to express advanced hyperproperties,

such as generalized non-interference (see Sect. 2.3).

To allow the assertions of Hyper Hoare Logic to refer to logical variables (motivated in Sect. 2.2),

we include them in our notion of state.

Definition 2. Extended states. An extended state (ranged over by 𝜑) is a pair of a logical state
(a total mapping from logical variables to logical values) and a program state:

ExtStates ≜ (LVars → LVals) × PStates

Given an extended state 𝜑 , we write 𝜑𝐿 to refer to the logical state and 𝜑𝑃 to refer to the program state,
that is, 𝜑 = (𝜑𝐿, 𝜑𝑃 ).

We use the same meta variables (𝑥 , 𝑦, 𝑧) for program and logical variables. When it is clear from

the context that 𝑥 ∈ PVars (resp. 𝑥 ∈ LVars), we often write 𝜑 (𝑥) to denote 𝜑𝑃 (𝑥) (resp. 𝜑𝐿 (𝑥)).
The assertions of Hyper Hoare Logic are predicates over sets of extended states:

Definition 3. Hyper-assertions. A hyper-assertion (ranged over by 𝑃 , 𝑄 , 𝑅) is a total function
from P(ExtStates) to Booleans.
A hyper-assertion 𝑃 entails a hyper-assertion𝑄 , written 𝑃 |= 𝑄 , iff all sets that satisfy 𝑃 also satisfy𝑄 :

(𝑃 |= 𝑄) ≜ (∀𝑆. 𝑃 (𝑆) ⇒ 𝑄 (𝑆))
Following Incorrectness Logic and others, we formalize hyper-assertions as semantic properties,

which allows us to focus on the key ideas of our logic. In Sect. 4, we will define a syntax for

hyper-assertions, which will allow us to derive simpler rules than the ones presented in this section.

To formalize the meaning of hyper-triples, we need to relate them formally to the semantics of

our programming language. Since hyper-triples are defined over extended states, we first define a

semantic function sem that lifts the operational semantics to extended states; it yields the set of

extended states that can be reached by executing a command 𝐶 from a set of extended states 𝑆 :
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(Skip)
⊢ {𝑃 } 𝑠𝑘𝑖𝑝 {𝑃 }

⊢ {𝑃 } 𝐶1 {𝑅 } ⊢ {𝑅 } 𝐶2 {𝑄 }
(Seq)

⊢ {𝑃 } 𝐶1; 𝐶2 {𝑄 }
⊢ {𝑃 } 𝐶1 {𝑄1 } ⊢ {𝑃 } 𝐶2 {𝑄2 }

(Choice)
⊢ {𝑃 } 𝐶1 +𝐶2 {𝑄1 ⊗𝑄2 }

𝑃 |= 𝑃 ′ 𝑄′ |= 𝑄 ⊢ {𝑃 ′ } 𝐶 {𝑄′ }
(Cons)

⊢ {𝑃 } 𝐶 {𝑄 }
(Assume)

⊢ {𝜆𝑆. 𝑃 ( {𝜑 | 𝜑 ∈ 𝑆 ∧ 𝑏 (𝜑𝑃 ) }) } assume b {𝑃 }

∀𝑥. (⊢ {𝑃 (𝑥) } 𝐶 {𝑄 (𝑥) })
(Exist)

⊢ {∃𝑥. 𝑃 (𝑥) } 𝐶 {∃𝑥.𝑄 (𝑥) }
(Assign)

⊢ {𝜆𝑆. 𝑃 ( {𝜑 | ∃𝛼 ∈ 𝑆. 𝜑𝐿 = 𝛼𝐿 ∧ 𝜑𝑃 = 𝛼𝑃 [𝑥 ↦→ 𝑒 (𝜑𝑃 ) ] }) } x B e {𝑃 }

⊢ {𝐼𝑛 } 𝐶 {𝐼𝑛+1 }
(Iter)

⊢ {𝐼0 } 𝐶∗ {
⊗

𝑛∈N 𝐼𝑛 }
(Havoc)

⊢ {𝜆𝑆. 𝑃 ( {𝜑 | ∃𝛼 ∈ 𝑆. ∃𝑣. 𝜑𝐿 = 𝛼𝐿 ∧ 𝜑𝑃 = 𝛼𝑃 [𝑥 ↦→ 𝑣 ] }) } x B nonDet () {𝑃 }

Fig. 3. Core rules of Hyper Hoare Logic. The meaning of the operators ⊗ and
⊗

𝑛∈N are defined in Def. 6
and Def. 7, respectively.

Definition 4. Extended semantics.

sem(𝐶, 𝑆) ≜ {𝜑 | ∃𝜎. (𝜑𝐿, 𝜎) ∈ 𝑆 ∧ ⟨𝐶, 𝜎⟩ → 𝜑𝑃 }

The following lemma states several useful properties of the extended semantics.

Lemma 1. Properties of the extended semantics.
(1) sem(𝐶, 𝑆1 ∪ 𝑆2) = sem(𝐶, 𝑆1) ∪ sem(𝐶, 𝑆2)
(2) 𝑆 ⊆ 𝑆 ′ =⇒ sem(𝐶, 𝑆) ⊆ sem(𝐶, 𝑆 ′)
(3) sem(𝐶,⋃𝑥 𝑓 (𝑥)) =

⋃
𝑥 sem(𝐶, 𝑓 (𝑥))

(4) sem(skip, 𝑆) = 𝑆

(5) sem(𝐶1; 𝐶2, 𝑆) = sem(𝐶2, sem(𝐶1, 𝑆))
(6) sem(𝐶1 +𝐶2, 𝑆) = sem(𝐶1, 𝑆) ∪ sem(𝐶2, 𝑆)
(7) sem(𝐶∗, 𝑆) = ⋃

𝑛∈N sem(𝐶𝑛, 𝑆) where 𝐶𝑛 ≜ 𝐶; . . . ; 𝐶︸    ︷︷    ︸
n times

Using the extended semantics, we can now define the meaning of hyper-triples.

Definition 5. Hyper-triples. Given two hyper-assertions 𝑃 and 𝑄 , and a command 𝐶 , the hyper-
triple {𝑃} 𝐶 {𝑄} is valid, written |= {𝑃} 𝐶 {𝑄}, iff for any set 𝑆 of initial extended states that satisfies
𝑃 , the set sem(𝐶, 𝑆) of extended states reachable by executing 𝐶 in some state from 𝑆 satisfies 𝑄 :

|= {𝑃} 𝐶 {𝑄} ≜ (∀𝑆. 𝑃 (𝑆) ⇒ 𝑄 (sem(𝐶, 𝑆)))

This definition is similar to classical Hoare logic, where the initial and final states have been

replaced by sets of extended states. As we have seen in Sect. 2, hyper-assertions over sets of states

allow our hyper-triples to express properties of single executions (trace properties) and of multiple

executions (hyperproperties), as well as to perform overapproximate reasoning (like e.g., Hoare

Logic) and underapproximate reasoning (like e.g., Incorrectness Logic).

3.3 Core Rules
Fig. 3 shows the core rules of Hyper Hoare Logic. Skip, Seq, Cons, and Exist are analogous to

traditional Hoare logic. Assume, Assign, and Havoc are straightforward given the semantics of

these commands. All three rules work backward. In particular, the precondition of Assume applies
the postcondition 𝑃 only to those states that satisfy the assumption 𝑏. By leaving the value 𝑣

unconstrained, Havoc considers as precondition the postcondition 𝑃 for all possible values for 𝑥 .
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The three rules Assume, Assign, and Havoc are optimized for expressivity; we will derive in Sect. 4

syntactic versions of these rules, which are less expressive, but easier to apply.

The rule Choice (for non-deterministic choice) is more involved. Most standard Hoare logics

use the same assertion 𝑄 as postcondition of all three triples. However, such a rule would not be

sound in Hyper Hoare Logic. Consider for instance an application of this hypothetical Choice rule
where both 𝑃 and𝑄 are defined as 𝜆𝑆. |𝑆 | = 1, expressing that there is a single pre- and post-state. If

commands 𝐶1 and 𝐶2 are deterministic, the antecedents of the rule can be proved because a single

pre-state leads to a single post-state. However, the non-deterministic choice will in general produce

two post-states, such that the postcondition is violated.

To account for the effects of non-determinism on the sets of states described by hyper-assertions,

we obtain the postcondition of the non-deterministic choice by combining the postconditions of

its branches. As shown by Lemma 1(6), executing the non-deterministic choice 𝐶1 +𝐶2 in the set

of states 𝑆 amounts to executing 𝐶1 in 𝑆 and 𝐶2 in 𝑆 , and taking the union of the two resulting

sets of states. Thus, if 𝑄1 (sem(𝐶1, 𝑆)) and 𝑄2 (sem(𝐶2, 𝑆)) hold then the postcondition of 𝐶1 +𝐶2

must characterize the union sem(𝐶1, 𝑆) ∪ sem(𝐶2, 𝑆) The postcondition of the rule Choice, 𝑄1 ⊗ 𝑄2,

achieves that:

Definition 6. A set 𝑆 satisfies 𝑄1 ⊗ 𝑄2 iff it can be split into two (potentially overlapping) sets 𝑆1
and 𝑆2 (the sets of post-states of the branches), such that 𝑆1 satisfies 𝑄1 and 𝑆2 satisfies 𝑄2:

(𝑄1 ⊗ 𝑄2) (𝑆) ≜ (∃𝑆1, 𝑆2 . 𝑆 = 𝑆1 ∪ 𝑆2 ∧𝑄1 (𝑆1) ∧𝑄2 (𝑆2))

The rule Iter for non-deterministic iterations generalizes our treatment of non-deterministic

choice. It employs an indexed loop invariant 𝐼 , which maps a natural number 𝑛 to a hyper-assertion

𝐼𝑛 . 𝐼𝑛 characterizes the set of states reached after executing 𝑛 times the command𝐶 in a set of initial

states that satisfies 𝐼0. Analogously to the rule Choice, the indexed invariant avoids using the same

hyper-assertion for all non-deterministic choices. The precondition of the rule’s conclusion and

its premise prove (inductively) that the triple {𝐼0} 𝐶𝑛 {𝐼𝑛} holds for all 𝑛. 𝐼𝑛 thus characterizes the

set of reachable states after exactly 𝑛 iterations of the loop. Since our loop is non-deterministic

(i.e., has no loop condition), the set of reachable states after the loop is the union of the sets of

reachable states after each iteration. The postcondition of the conclusion captures this intuition, by

using the generalized version of the ⊗ operator to an indexed family of hyper-assertions:

Definition 7. A set 𝑆 satisfies
⊗

𝑛∈N 𝐼𝑛 iff it can be split into
⋃

𝑖 𝑓 (𝑖) = 𝑓 (0) ∪ . . . ∪ 𝑓 (𝑖) ∪ . . .,
where 𝑓 (𝑖) (the set of reachable states after exactly 𝑖 iterations) satisfies 𝐼𝑖 (for each 𝑖 ∈ N):

(
⊗

𝑛∈N 𝐼𝑛) (𝑆) ≜ (∃𝑓 . (𝑆 =
⋃

𝑛∈N 𝑓 (𝑛)) ∧ (∀𝑛 ∈ N. 𝐼𝑛 (𝑓 (𝑛))))

Note that this rule makes Hyper Hoare Logic a partial correctness logic: it only considers an

unbounded, but finite number 𝑛 of loop iterations. In App. E, we discuss an alternative rule for

total correctness, which proves that all executions terminate. We also discuss a possible extension

of Hyper Hoare Logic to prove non-termination, i.e., the existence of non-terminating executions.

3.4 Soundness and Completeness
We have proved in Isabelle/HOL that Hyper Hoare Logic is sound and complete. That is, every

hyper-triple that can be derived in the logic is valid, and vice versa. Note that Fig. 3 contains only

the core rules of Hyper Hoare Logic. These are sufficient to prove completeness; all rules presented

later in this paper are only useful to make proofs more succinct and natural.

Theorem 1. Soundness. Hyper Hoare Logic is sound:
If ⊢ {𝑃} 𝐶 {𝑄} then |= {𝑃} 𝐶 {𝑄}.
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Theorem 2. Completeness. Hyper Hoare Logic is complete:
If |= {𝑃} 𝐶 {𝑄} then ⊢ {𝑃} 𝐶 {𝑄}.

Note that our completeness theorem is not concerned with the expressivity of the assertion

language because we use semantic hyper-assertions (i.e., functions, see Def. 3). Similarly, by using

semantic entailments in the rule Cons, we decouple the completeness of Hyper Hoare Logic from

the completeness of the logic used to derive entailments.

Interestingly, the logic would not be complete without the core rule Exist, as we illustrate with
the following simple example:

Example 1. Let 𝜑𝑣 be the state that maps 𝑥 to 𝑣 and all other variables to 0. Let 𝑃𝑣 ≜ (𝜆𝑆. 𝑆 =

{𝜑𝑣}). Clearly, the hyper-triples {𝑃0} skip {𝑃0}, {𝑃2} skip {𝑃2}, {𝑃0} x B x + 1 {𝑃1}, and
{𝑃2} x B x + 1 {𝑃3} are all valid. We would like to prove the hyper-triple {𝑃0 ∨ 𝑃2} skip + (x B
x + 1) {𝜆𝑆. 𝑆 = {𝜑0, 𝜑1} ∨ 𝑆 = {𝜑2, 𝜑3}}. That is, either 𝑃0 holds before, and then we have 𝑆 = {𝜑0, 𝜑1}
afterwards, or 𝑃2 holds before, and then we have 𝑆 = {𝜑2, 𝜑3} afterwards. However, using the rule
Choice only, the most precise triple we can prove is

{𝑃0 ∨ 𝑃2} skip {𝑃0 ∨ 𝑃2} {𝑃0 ∨ 𝑃2} x B x + 1 {𝑃1 ∨ 𝑃3}
(Choice)

{𝑃0 ∨ 𝑃2} skip + (x B x + 1) {(𝑃0 ∨ 𝑃2) ⊗ (𝑃1 ∨ 𝑃3)}

The postcondition (𝑃0 ∨ 𝑃2) ⊗ (𝑃1 ∨ 𝑃3) is equivalent to (𝑃0 ⊗ 𝑃1) ∨ (𝑃0 ⊗ 𝑃3) ∨ (𝑃2 ⊗ 𝑃1) ∨ (𝑃2 ⊗ 𝑃3),
i.e., 𝜆𝑆. 𝑆 = {𝜑0, 𝜑1} ∨𝑆 = {𝜑0, 𝜑3} ∨𝑆 = {𝜑2, 𝜑1} ∨𝑆 = {𝜑2, 𝜑3}. We thus have two spurious disjuncts,
𝑃0 ⊗ 𝑃3 (i.e., 𝑆 = {𝜑0, 𝜑3}) and 𝑃2 ⊗ 𝑃1 (i.e., 𝑆 = {𝜑2, 𝜑1}).
This example shows that the rule Choice on its own is not precise enough for the logic to be

complete; we need at least a disjunction rule to distinguish the two cases 𝐴 and 𝐵. In general,

however, there might be an infinite number of cases to consider, which is why we need the rule

Exist. The premise of this rule allows us to fix a set of states 𝑆 that satisfies some precondition

𝑃 , and to prove the most precise postcondition for the precondition 𝜆𝑆 ′. 𝑆 = 𝑆 ′; combining these

precise postconditions with an existential quantifier in the conclusion of the rule allows us to obtain

the most precise postcondition for the precondition 𝑃 .

3.5 Expressivity of Hyper-Triples
In the previous subsection, we have shown that Hyper Hoare Logic is sound and complete to

establish the validity of hyper-triples, and, thus, Hyper Hoare Logic is as expressive as hyper-triples.

We now show that hyper-triples are expressive enough to capture arbitrary hyperproperties over

finite program executions. A hyperproperty [Clarkson and Schneider 2008] is traditionally defined

as a property of sets of traces of a system, that is, of sequences of system states. Since Hoare logics

typically consider only the initial and final state of a program execution, we use a slightly adapted

definition here:

Definition 8. Program hyperproperties. A program hyperproperty is a set of sets of pairs of
program states, i.e., an element of P(P(PStates × PStates)).

A command 𝐶 satisfies the program hyperpropertyH iff the set of all pairs of pre- and post-states
of 𝐶 is an element of H : {(𝜎, 𝜎 ′) | ⟨𝐶, 𝜎⟩ → 𝜎 ′} ∈ H .

Equivalently, a program hyperproperty can be thought of as a predicate over P(PStates×PStates).
Note that this definition subsumes properties of single executions (trace properties), such as

functional correctness properties.

In contrast to traditional hyperproperties, our program hyperproperties describe only the finite
executions of a program, that is, those that reach a final state. An extension of Hyper Hoare Logic
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to infinite executions might be possible by defining hyper-assertions over sets of traces rather than

sets of states; we leave this as future work. In the rest of this paper, when the context is clear, we

use hyperproperties to refer to program hyperproperties.
Any program hyperproperty can be expressed as a hyper-triple in Hyper Hoare Logic:

6

Theorem 3. Expressing hyperproperties as hyper-triples. Let H be a program hyperproperty.
Assume that the cardinality of LVars is at least the cardinality of PVars, and that the cardinality of
LVals is at least the cardinality of PVals.

Then there exist hyper-assertions 𝑃 and 𝑄 such that, for any command 𝐶 , 𝐶 ∈ H iff |= {𝑃} 𝐶 {𝑄}.

Proof sketch. We define the precondition 𝑃 such that the initial set of states 𝑆 contains all

program states, and the values of all program variables in these states are recorded in logical

variables (which is possible due to the cardinality assumptions). Since the logical variables are not

affected by the execution of 𝐶 , they allow 𝑄 to refer to the initial values of any program variable,

in addition to their values in the final state. Consequently, 𝑄 can describe all possible pairs of pre-

and post-states. We simply define 𝑄 to be true iff the set of these pairs is contained in H . □

Combined with our completeness result (Thm. 2), this theorem implies that, if a command 𝐶

satisfies a hyperpropertyH then there exists a proof of it in Hyper Hoare Logic. More surprisingly,

our logic also allows us to disprove any hyperproperty: If 𝐶 does not satisfy H then 𝐶 satisfies

the complement ofH , which is also a hyperproperty, and thus can also be proved. Consequently,

Hyper Hoare Logic can prove or disprove any program hyperproperty as defined in Def. 8.

Since hyper-triples can exactly express hyperproperties (Thm. 3 and footnote 6), the ability to

disprove any hyperproperty implies that Hyper Hoare Logic can also disprove any hyper-triple.
More precisely, one can always use Hyper Hoare Logic to prove that some hyper-triple {𝑃} 𝐶 {𝑄}
is invalid, by proving the validity of another hyper-triple {𝑃 ′} 𝐶 {¬𝑄} (where 𝑃 ′

is a satisfiable

hyper-assertion that entails 𝑃 ). Conversely, the validity of such a hyper-triple {𝑃 ′} 𝐶 {¬𝑄} implies

that all hyper-triples {𝑃} 𝐶 {𝑄} (with 𝑃 weaker than 𝑃 ′
) are invalid. The following theorem

precisely expresses this observation:

Theorem 4. Disproving hyper-triples. Given 𝑃 , 𝐶 , and 𝑄 , the following two propositions are
equivalent:
(1) |= {𝑃} 𝐶 {𝑄} does not hold.
(2) There exists a hyper-assertion 𝑃 ′ that is satisfiable, entails 𝑃 , and |= {𝑃 ′} 𝐶 {¬𝑄}.

We need to strengthen 𝑃 to 𝑃 ′
in point (2), because there might be some sets 𝑆 , 𝑆 ′ that both satisfy

𝑃 , such that 𝑄 (sem(𝐶, 𝑆)) holds, but 𝑄 (sem(𝐶, 𝑆 ′)) does not. This was the case for our examples

in Sect. 2.2 and Sect. 2.3; for instance, one of the preconditions there was strengthened to include

∃⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (ℎ) ≠ 𝜑2 (ℎ).
Thm. 4 is another illustration of the expressivity of Hyper Hoare Logic. The corresponding

result does not hold in traditional Hoare logics. For example, the classical Hoare triple {⊤} x B
nonDet () {𝑥 ≥ 5} does not hold, but there is no satisfiable 𝑃 such that {𝑃} x B nonDet () {¬(𝑥 ≥ 5)}
holds. In contrast, Hyper Hoare Logic can disprove the classical Hoare triple by proving the hyper-

triple {⊤} x B nonDet () {¬(∀⟨𝜑⟩. 𝜑 (𝑥) ≥ 5)}.
The correspondence between hyper-triples and program hyperproperties (Thm. 3 and footnote 6),

together with our completeness result (Thm. 2) precisely characterizes the expressivity of Hy-

per Hoare Logic. In App. C, we also show how to express the judgments of existing over- and

underapproximating Hoare logics as hyper-triples, in systematic ways.

6
We also proved the converse: every hyper-triple describes a program hyperproperty. That is, hyper-triples capture exactly

the hyperproperties over finite executions.
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1:12 Anon.

3.6 Compositionality
The core rules of Hyper Hoare Logic allow one to prove any valid hyper-triple, but not necessarily

compositionally. As an example, consider the sequential composition of a command𝐶1 that satisfies

generalized non-interference (GNI) with a command 𝐶2 that satisfies non-interference (NI). We

would like to prove that 𝐶1; 𝐶2 satisfies GNI (the weaker property). As discussed in Sect. 2.3, a

possible postcondition for 𝐶1 is GNIℎ
𝑙
≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. ∃⟨𝜑⟩. 𝜑1 (ℎ) = 𝜑 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙)), while a

possible precondition for 𝐶2 is low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑙) = 𝜑2 (𝑙)). However, the corresponding
hyper-triples for 𝐶1 and 𝐶2 cannot be composed using the core rules. In particular, rule Seq cannot

be applied (even in combination with Cons), since the postcondition of 𝐶1 does not imply the

precondition of 𝐶2. Note that this observation does not contradict completeness: By Thm. 2, it is

possible to prove more precise triples for 𝐶1 and 𝐶2, such that the postcondition of 𝐶1 matches the

precondition of 𝐶2. However, to enable modular reasoning, our goal is to construct the proof by

composing the given triples for the individual commands rather than deriving new ones.

We have thus proven a number of useful compositionality rules for hyper-triples, which are

presented in App. D. These rules are admissible in Hyper Hoare Logic, in the sense that they do not

modify the set of valid hyper-triples that can be proved. Rather, they enable flexible compositions of

hyper-triples, as we illustrate in App. D.2 on two challenging examples, including the composition

of GNI with NI mentioned above.

4 SYNTACTIC RULES
The core rules presented in Sect. 3 are optimized for expressivity: They are sufficient to prove any
valid hyper-triple (Thm. 2), but not necessarily in the simplest way. In particular, the rules for

atomic statements Assume, Assign, and Havoc require a set comprehension in the precondition,

which is necessary when dealing with arbitrary semantic hyper-assertions. However, by imposing

syntactic restrictions on hyper-assertions, we can derive simpler rules, as we show in this section.

In Sect. 4.1, we define a syntax for hyper-assertions, in which the set of states occurs only as range

of universal and existential quantifiers. As we have seen in Sect. 2 and show in App. C, this syntax

is sufficient to capture many useful hyperproperties. Moreover, it allows us to derive simple rules

for assignments (Sect. 4.2) and assume statements (Sect. 4.3). All rules presented in this section

have been proven sound in Isabelle/HOL.

4.1 Syntactic Hyper-Assertions
We define a restricted class of syntactic hyper-assertions, which can interact with the set of states

only through universal and existential quantification over its states:

Definition 9. Syntactic hyper-expressions and hyper-assertions.
Hyper-expressions 𝑒 are defined by the following syntax, where 𝜑 ranges over states, 𝑥 over (program
or logical) variables, 𝑦 over quantified variables, 𝑐 over literals, ⊕ over binary operators (such as +,−, ∗
for integers, ++ for lists, etc.), and 𝑓 denotes functions from values to values (such as len for lists):

e F 𝑐 | 𝑦 | 𝜑𝑃 (𝑥) | 𝜑𝐿 (𝑥) | 𝑒 ⊕ 𝑒 | 𝑓 (𝑒)
Syntactic hyper-assertions 𝐴 are defined by the following syntax, where 𝑒 ranges over hyper-
expressions, 𝑏 over boolean literals, and ⪰ over binary operators (such as =, <, >, ≤, ≥, . . .):

𝐴 F 𝑏 | 𝑒 ⪰ 𝑒 | 𝐴 ∨𝐴 | 𝐴 ∧𝐴 | ∀𝑦.𝐴 | ∃𝑦.𝐴 | ∀⟨𝜑⟩. 𝐴 | ∃⟨𝜑⟩. 𝐴

Note that hyper-expressions are different from program expressions, since the latter can only

refer to program variables of a single implicit state (e.g., 𝑥 = 𝑦 + 𝑧), while the former can explicitly

refer to different states (e.g., 𝜑 (𝑥) = 𝜑 ′(𝑥)). Negation ¬𝐴 is defined recursively in the standard
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(AssignS)
⊢ {A𝑒

𝑥 [𝑃 ] } x B e {𝑃 }
(HavocS)

⊢ {H𝑥 [𝑃 ] } x B nonDet () {𝑃 }
(AssumeS)

⊢ {Π𝑏 [𝑃 ] } assume b {𝑃 }

Fig. 4. Some syntactic rules of Hyper Hoare Logic. The syntactic transformations A𝑒
𝑥 [𝐴] and H𝑥 [𝐴] are

defined in Def. 10, and the syntactic transformation Π𝑏 [_] is defined in Def. 11.

way. We also define (𝐴 ⇒ 𝐵) ≜ (¬𝐴 ∨ 𝐵), emp ≜ (∀⟨𝜑⟩.⊥), and □𝑝 ≜ (∀⟨𝜑⟩. 𝑝 (𝜑)), where 𝑝 is a

state7 expression. The evaluation of hyper-expressions and satisfiability of hyper-assertions are

formally defined in Def. 12 (App. A).

4.2 Syntactic Rules for Deterministic and Non-Deterministic Assignments
In classical Hoare logic, we obtain the precondition of the rule for the assignment x B e by

substituting 𝑥 by 𝑒 in the postcondition. The Hyper Hoare Logic syntactic rule for assignments

AssignS (Fig. 4) generalizes this idea by repeatedly applying this substitution for every quantified
state. This syntactic transformation, written A𝑒

𝑥 [_] is defined below. As an example, for the

assignment x B y + z and postcondition ∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 (𝑥) ≤ 𝜑 ′(𝑥), we obtain the precondition

A𝑦+𝑧
𝑥 [∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 (𝑥) ≤ 𝜑 ′(𝑥)] = (∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 (𝑦) + 𝜑 (𝑧) ≤ 𝜑 ′(𝑦) + 𝜑 ′(𝑧)).
Similarly, our syntactic rule for non-deterministic assignments HavocS substitutes every oc-

currence of 𝜑 (𝑥), for every quantified state 𝜑 , by a fresh quantified variable 𝑣 . This variable is

universally quantified for universally-quantified states, capturing the intuition that we must con-

sider all possible assigned values. In contrast, 𝑣 is existentially quantified for existentially-quantified

states, because it is sufficient to find one suitable behavior of the non-deterministic assignment. As

an example, for the non-deterministic assignment x B nonDet () and the aforementioned postcon-

dition, we obtain the precondition H𝑥 [∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 (𝑥) ≤ 𝜑 ′(𝑥)] = (∃⟨𝜑⟩. ∃𝑣 .∀⟨𝜑 ′⟩.∀𝑣 ′. 𝑣 ≤ 𝑣 ′).

Definition 10. Syntactic transformations for assignments.
A𝑒

𝑥 [𝐴] yields the hyper-assertion 𝐴, where 𝜑 (𝑥) is syntactically substituted by 𝑒 (𝜑), for all (existen-
tially or universally) quantified states 𝜑 . The two main cases are:

A𝑒
𝑥 [∀⟨𝜑⟩. 𝐴] ≜

(
∀⟨𝜑⟩.A𝑒

𝑥 [𝐴[𝑒 (𝜑)/𝜑 (𝑥)]]
)

A𝑒
𝑥 [∃⟨𝜑⟩. 𝐴] ≜

(
∃⟨𝜑⟩.A𝑒

𝑥 [𝐴[𝑒 (𝜑)/𝜑 (𝑥)]]
)

where 𝐴[𝑦/𝑥] refers to the standard syntactic substitution of 𝑥 by 𝑦. Other cases apply A𝑒
𝑥 recursively

(e.g., A𝑒
𝑥 [𝐴 ∧ 𝐵] ≜ A𝑒

𝑥 [𝐴] ∧ A𝑒
𝑥 [𝐵]). The full definition is in App. A.

H𝑥 [𝐴] yields the hyper-assertion 𝐴 where 𝜑 (𝑥) is syntactically substituted by a fresh quantified
variable 𝑣 , universally (resp. existentially) quantified for universally (resp. existentially) quantified
states. The two main cases are:

H𝑥 [∀⟨𝜑⟩. 𝐴] ≜ (∀⟨𝜑⟩.∀𝑣 .H𝑥 [𝐴[𝑣/𝜑 (𝑥)]]) H𝑥 [∃⟨𝜑⟩. 𝐴] ≜ (∃⟨𝜑⟩. ∃𝑣 .H𝑥 [𝐴[𝑣/𝜑 (𝑥)]])

where 𝑣 is fresh. Other cases apply H𝑥 recursively. The full definition is in App. A.

4.3 Syntactic Rules for Assume Statements
Intuitively, assume b provides additional information when proving properties for all states,
but imposes an additional requirement when proving the existence of a state. This intuition

is captured by rule AssumeS shown in Fig. 4. The syntactic transformation Π𝑏 adds the state

expression 𝑏 as an assumption for universally-quantified states, and as a proof obligation for

7State expressions refer to a single (implicit) state. In contrast to program expressions, they may additionally refer to logical

variables and use quantifiers over values.
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{∃⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (ℎ) ≠ 𝜑2 (ℎ) }
{∃⟨𝜑1 ⟩. (∃⟨𝜑2 ⟩. (∀⟨𝜑 ⟩. ∀𝑣. 𝑣 ≤ 9 ⇒ (𝜑 (ℎ) = 𝜑1 (ℎ) ⇒ 𝜑2 (ℎ) + 9 > 𝜑 (ℎ) + 𝑣))) } (Cons)

{∃⟨𝜑1 ⟩. ∃𝑣1 . 𝑣1 ≤ 9 ∧ (∃⟨𝜑2 ⟩. ∃𝑣2 . 𝑣2 ≤ 9 ∧ (∀⟨𝜑 ⟩. ∀𝑣. 𝑣 ≤ 9 ⇒ ((𝜑 (ℎ) ≠ 𝜑1 (ℎ)) ∨ (𝜑 (ℎ) + 𝑣 ≠ 𝜑2 (ℎ) + 𝑣2)))) } (Cons)

y B nonDet () ;
{∃⟨𝜑1 ⟩. 𝜑1 (𝑦) ≤ 9 ∧ (∃⟨𝜑2 ⟩. 𝜑2 (𝑦) ≤ 9 ∧ (∀⟨𝜑 ⟩. 𝜑 (𝑦) ≤ 9 ⇒ (𝜑 (ℎ) ≠ 𝜑1 (ℎ) ∨ 𝜑 (ℎ) + 𝜑 (𝑦) ≠ 𝜑2 (ℎ) + 𝜑2 (𝑦)))) } (HavocS)

assume y ≤ 9;

{∃⟨𝜑1 ⟩, ⟨𝜑2 ⟩. ∀⟨𝜑 ⟩. 𝜑 (ℎ) ≠ 𝜑1 (ℎ) ∨ 𝜑 (ℎ) + 𝜑 (𝑦) ≠ 𝜑2 (ℎ) + 𝜑2 (𝑦) } (AssumeS)

l B h + y

{∃⟨𝜑1 ⟩, ⟨𝜑2 ⟩. ∀⟨𝜑 ⟩. 𝜑 (ℎ) ≠ 𝜑1 (ℎ) ∨ 𝜑 (𝑙) ≠ 𝜑2 (𝑙) } (AssignS)

Fig. 5. Proof outline showing that the program violates generalized non-interference. The rules used at each
step of the derivation are shown on the right (the use of rule Seq is implicit).

existentially-quantified states. As an example, for the statement assume x ≥ 0 and the postcon-

dition ∀⟨𝜑⟩. ∃⟨𝜑 ′⟩. 𝜑 (𝑥) ≤ 𝜑 ′(𝑥), we obtain the precondition Π𝑥≥0 [∀⟨𝜑⟩. ∃⟨𝜑 ′⟩. 𝜑 (𝑥) ≤ 𝜑 ′(𝑥)] =
(∀⟨𝜑⟩. 𝜑 (𝑥) ≥ 0 ⇒ (∃⟨𝜑 ′⟩. 𝜑 ′(𝑥) ≥ 0 ∧ 𝜑 (𝑥) ≤ 𝜑 ′(𝑥))).

Definition 11. Syntactic transformation for assume statements.
The two main cases of Π𝑝 are

Π𝑝 [∀⟨𝜑⟩. 𝐴] ≜
(
∀⟨𝜑⟩. 𝑝 (𝜑) ⇒ Π𝑝 [𝐴]

)
Π𝑝 [∃⟨𝜑⟩. 𝐴] ≜

(
∃⟨𝜑⟩. 𝑝 (𝜑) ∧ Π𝑝 [𝐴]

)
Other cases apply Π𝑝 recursively. The full definition is in App. A.

Example. We now illustrate the use of our three syntactic rules for atomic statements in Fig. 5,

to prove that the program 𝐶4 ≜ (y B nonDet (); assume y ≤ 9; l B h + y) from Sect. 2.2 violates

GNI. This program leaks information about the secret ℎ through its public output 𝑙 because the pad

it uses (variable 𝑦) is upper bounded. From the output 𝑙 , we can derive a lower bound for the secret

value of ℎ, namely ℎ ≥ 𝑙 − 9.

To see why 𝐶4 violates GNI, consider two executions with different secret values for ℎ, and

where the execution for the larger secret value sets 𝑦 to exactly 9. This execution will produce a

larger public output 𝑙 (since the other execution adds at most 9 to its smaller secret). Hence, these

executions can be distinguished by their public outputs.

Our proof outline in Fig. 5 captures this intuitive reasoning in a natural way. We start with the

postcondition that corresponds to the negation of GNI, and work our way backward, by successively

applying our syntactic rules AssignS, AssumeS, and HavocS. We conclude using the rule Cons: Since
the precondition implies the existence of two states with different values for ℎ, we first instantiate

𝜑1 and 𝜑2 such that 𝜑1 and 𝜑2 are both members of the initial set of states, and 𝜑2 (ℎ) > 𝜑1 (ℎ).8 We

then instantiate 𝑣2 = 9, such that, for any 𝑣 ≤ 9, 𝜑2 (ℎ) + 𝑣2 > 𝜑 (ℎ) + 𝑣 , which concludes the proof.

5 PROOF PRINCIPLES FOR LOOPS
To reason about standard while loops, we can derive from the core rule Iter in Fig. 3 the rule

WhileDesugared, shown in Fig. 6 (recall that while (𝑏) {𝐶} ≜ ((assume b; 𝐶)∗; assume ¬b)).
While this derived rule is expressive, it has two main drawbacks for usability: (1) Because of the

use of the infinitary

⊗
𝑛∈N, it requires non-trivial semantic reasoning (via the consequence rule),

8
Note that the quantified states 𝜑1, 𝜑2 and 𝜑 from different hyper-assertions can be unrelated. That is, the witnesses for 𝜑1

and 𝜑2 in the first hyper-assertion [∃⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (ℎ) ≠ 𝜑2 (ℎ) ] are not necessarily the same as the ones in the second

hyper-assertion [∃⟨𝜑1 ⟩. ∃⟨𝜑2 ⟩. 𝜑2 (ℎ) > 𝜑1 (ℎ) ], which is why the entailment holds.
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⊢ {𝐼𝑛 } assume b; 𝐶 {𝐼𝑛+1 } ⊢ {
⊗

𝑛∈N 𝐼𝑛 } assume ¬b {𝑄 }
(WhileDesugared)

⊢ {𝐼0 } while (𝑏) {𝐶 } {𝑄 }

𝐼 |= low (𝑏) ⊢ {𝐼 ∧ □𝑏 } 𝐶 {𝐼 }
(WhileSync)

⊢ {𝐼 } while (𝑏) {𝐶 } {(𝐼 ∨ emp) ∧ □(¬𝑏) }
𝑃 |= low (𝑏) ⊢ {𝑃 ∧ □𝑏 } 𝐶1 {𝑄 } ⊢ {𝑃 ∧ □(¬𝑏) } 𝐶2 {𝑄 }

(IfSync)
⊢ {𝑃 } if (𝑏) {𝐶1 } else {𝐶2 } {𝑄 }

⊢ {𝐼 } if (𝑏) {𝐶 } {𝐼 } ⊢ {𝐼 } assume ¬b {𝑄 } no ∀⟨_⟩ after any ∃ in𝑄
(While−∀∗∃∗)

⊢ {𝐼 } while (𝑏) {𝐶 } {𝑄 }

∀𝑣. ⊢ {∃⟨𝜑 ⟩. 𝑃𝜑 ∧ 𝑏 (𝜑) ∧ 𝑣 = 𝑒 (𝜑) } if (𝑏) {𝐶 } {∃⟨𝜑 ⟩. 𝑃𝜑 ∧ 𝑒 (𝜑) ≺ 𝑣 } ∀𝜑. ⊢ {𝑃𝜑 } while (𝑏) {𝐶 } {𝑄𝜑 } ≺ wf

(While−∃)
⊢ {∃⟨𝜑 ⟩. 𝑃𝜑 } while (𝑏) {𝐶 } {∃⟨𝜑 ⟩.𝑄𝜑 }

Fig. 6. Hyper Hoare Logic rules for while loops (and branching). Recall that low(𝑏) ≜ (∀⟨𝜑⟩, ⟨𝜑 ′⟩. 𝑏 (𝜑) =
𝑏 (𝜑 ′)) and □(𝑏) ≜ (∀⟨𝜑⟩. 𝑏 (𝜑)). In the ruleWhileSync, ≺ must be well-founded (wf).

and (2) the invariant 𝐼𝑛 relates only the executions that perform at least 𝑛 iterations, but ignores

executions that perform fewer.

To illustrate problem (2), imagine that we want to prove that the hyper-assertion low(𝑙) ≜
(∀⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 (𝑙) = 𝜑 ′(𝑙)) holds after a while loop. A natural choice for our loop invariant 𝐼𝑛
would be 𝐼𝑛 ≜ low(𝑙) (independent of 𝑛). However, this invariant does not entail our desired
postcondition low(𝑙). Indeed,

⊗
𝑛∈N low(𝑙) holds for a set of states iff it is a union of sets of states

that all individually satisfy low(𝑙). This property holds trivially in our example (simply choose one

set per possible value of 𝑙 ) and, in particular, does not express that the entire set of states after the

loop satisfies low(𝑙). Note that this does not contradict completeness (Thm. 2), but simply means

that a stronger invariant 𝐼𝑛 is needed.

In this section, we thus present three more convenient loop rules, shown in Fig. 6, which capture

powerful reasoning principles, and overcome those limitations: The ruleWhileSync (Sect. 5.1) is
the easiest to use, and can be applied whenever all executions of the loop have the same control

flow. Two additional rules for while loops can be applied whenever the control flow differs. The

rule While-∀∗∃∗
(Sect. 5.2) supports ∀∗∃∗

postconditions, while the rule While-∃ (Sect. 5.3) handles

postconditions with a top-level existential quantifier. In our experience, these loop rules cover all

practical hyper-assertions that can be expressed in our syntax. We are not aware of any practical

hyperproperties that require multiple quantifier alternations.

5.1 Synchronized Control Flow
Standard loop invariants are sound in relational logics if all executions exit the loop simultaneously.
In our logic, this synchronized control flow can be enforced by requiring that the loop guard 𝑏 has

the same value in all states (1) before the loop and (2) after every loop iteration, as shown by the

ruleWhileSync shown in Fig. 6. After the loop, we get to assume (𝐼 ∨emp) ∧□(¬𝑏). That is, the loop
guard 𝑏 is false in all executions, and the invariant 𝐼 holds, or the set of states is empty. The emp
disjunct corresponds to the case where the loop does not terminate (i.e., no execution terminates).

Going back to our motivating example, the natural invariant 𝐼 ≜ low(𝑙) with the ruleWhileSync
is now sufficient for our example, since we get the postcondition (low(𝑙) ∨ emp) ∧ □(¬𝑏), which
implies our desired (universally-quantified) postcondition low(𝑙). In the case where the desired

postcondition quantifies existentially over states at the top-level, it is necessary to prove that the

loop terminates. We show the corresponding rules in App. E.

We also provide a rule for if statements with synchronized control flow (rule IfSync in Fig. 6),

which can be applied when all executions take the same branch. This rule is simpler to apply than

the core rule Choice, since it avoids the ⊗ operator, which usually requires semantic reasoning.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: June 2024.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

{∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)) }
{∀⟨𝜑1 ⟩. ∀⟨𝜑2 ⟩. 0 = 0 ∧ len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)) ∧ (∃⟨𝜑 ⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 0 = 0) } (Cons)

s B 0

l B []
i B 0

{∀⟨𝜑1 ⟩. ∀⟨𝜑2 ⟩. 𝜑1 (𝑖) = 𝜑2 (𝑖) ∧ len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)) ∧ (∃⟨𝜑 ⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙)) } (AssignS)

while (𝑖 < len(ℎ)) {
{(∀⟨𝜑1 ⟩. ∀⟨𝜑2 ⟩. 𝜑1 (𝑖) = 𝜑2 (𝑖) ∧ len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)) ∧ (∃⟨𝜑 ⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙))) ∧ □(𝑖 < len(ℎ)) }
{∀⟨𝜑1 ⟩. ∀𝑣1 . ∀⟨𝜑2 ⟩. ∀𝑣2 . 𝜑1 (𝑖) + 1 = 𝜑2 (𝑖) + 1 ∧ len(𝜑1 (ℎ)) = len(𝜑2 (ℎ))∧
(∃⟨𝜑 ⟩. ∃𝑣. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) ++ [(𝜑 (𝑠) + 𝜑 (ℎ) [𝜑 (𝑖) ]) ⊕ 𝑣 ] = 𝜑2 (𝑙) ++ [(𝜑2 (𝑠) + 𝜑2 (ℎ) [𝜑2 (𝑖) ]) ⊕ 𝑣2 ]) } (Cons)

s B s + h[i];
k B nonDet () ;
l B l ++ [s ⊕ k];
i B i + 1;

{∀⟨𝜑1 ⟩. ∀⟨𝜑2 ⟩. 𝜑1 (𝑖) = 𝜑2 (𝑖) ∧ len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)) ∧ (∃⟨𝜑 ⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙)) } (HavocS, AssignS)

}
{( (∀⟨𝜑1 ⟩. ∀⟨𝜑2 ⟩. 𝜑1 (𝑖) = 𝜑2 (𝑖) ∧ len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)) ∧ (∃⟨𝜑 ⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙))) ∨ emp) ∧ □(𝑖 ≥ len(ℎ)) } (WhileSync)

{∀⟨𝜑1 ⟩. ∀⟨𝜑2 ⟩. ∃⟨𝜑 ⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙) } (Cons)

Fig. 7. A proof that the program in black satisfies generalized non-interference (where the elements of list ℎ
are secret, but its length is public), using the rule WhileSync. [] represents the empty list, ++ represents list
concatenation, ℎ[𝑖] represents the i-th element of list ℎ, and ⊕ represents the XOR operator.

Example. The program in Fig. 7 takes as input a list ℎ of secret values (but whose length is public),

computes its prefix sum [ℎ[0], ℎ[0] + ℎ[1], . . .], and encrypts the result by performing a one-time

pad on each element of this prefix sum, resulting in the output [ℎ[0] ⊕ 𝑘0, (ℎ[0] + ℎ[1]) ⊕ 𝑘1, . . .].
The keys 𝑘0, 𝑘1, . . . are chosen non-deterministically at each iteration, via the variable 𝑘 .9

Our goal is to prove that the encrypted output 𝑙 does not leak information about the secret ele-

ments ofℎ, provided that the attacker does not have any information about the non-deterministically

chosen keys. We achieve this by formally proving that this program satisfies GNI. Since the length

of the list ℎ is public, we start with the precondition ∀⟨𝜑1⟩, ⟨𝜑2⟩. len(𝜑1 (ℎ)) = len(𝜑2 (ℎ)). This
implies that all our executions will perform the same number of loop iterations. Thus, we use the

rule WhileSync, with the natural loop invariant 𝐼 ≜ (∀⟨𝜑1⟩.∀⟨𝜑2⟩. 𝜑1 (𝑖) = 𝜑2 (𝑖) ∧ len(𝜑1 (ℎ)) =

len(𝜑2 (ℎ)) ∧ (∃⟨𝜑⟩. 𝜑 (ℎ) = 𝜑1 (ℎ) ∧ 𝜑 (𝑙) = 𝜑2 (𝑙))). The last conjunct corresponds to the post-

condition we want to prove, while the former entails low(𝑖 < len(ℎ)), as required by the rule

WhileSync.
The proof of the loop body starts at the end with the loop invariant 𝐼 , and works backward, using

the syntactic rules HavocS and AssignS. From 𝐼 ∧□(𝑖 < len(ℎ)), we have to prove that there exists a
value 𝑣 such that 𝜑 (𝑙) ++ [(𝜑 (𝑠) +𝜑 (ℎ) [𝜑 (𝑖)]) ⊕ 𝑣] = 𝜑2 (𝑙) ++ [(𝜑2 (𝑠) +𝜑2 (ℎ) [𝜑2 (𝑖)]) ⊕ 𝑣2]. Since
𝜑 (𝑙) = 𝜑2 (𝑙), this boils down to (𝜑 (𝑠) + 𝜑 (ℎ) [𝜑 (𝑖)]) ⊕ 𝑣 = (𝜑2 (𝑠) + 𝜑2 (ℎ) [𝜑2 (𝑖)]) ⊕ 𝑣2, which we

achieve by choosing 𝑣 ≜ (𝜑2 (𝑠) + 𝜑2 (ℎ) [𝜑2 (𝑖)]) ⊕ 𝑣2 ⊕ (𝜑 (𝑠) + 𝜑 (ℎ) [𝜑 (𝑖)]).

5.2 ∀∗∃∗-Hyperproperties
Let us now turn to the more general case, where different executions might exit the loop at

different iterations. As explained at the start of this section, the main usability issue of the rule

WhileDesugared is the precondition

⊗
𝑛∈N 𝐼𝑛 in the second premise, which requires non-trivial

semantic reasoning. The

⊗
𝑛∈N operator is required, because 𝐼𝑛 ignores executions that exited the

9
In practice, the keys used in this program should be stored somewhere, so that one is later able to decrypt the output.
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loop earlier; it relates only the executions that have performed at least 𝑛 iterations. In particular, it

would be unsound to replace the precondition

⊗
𝑛∈N 𝐼𝑛 by ∃𝑛. 𝐼𝑛 .

The rule While-∀∗∃∗
in Fig. 6 solves this problem for the general case of ∀∗∃∗

postconditions.

The key insight is to reason about the successive unrollings of the while loop: the rule requires to
prove an invariant 𝐼 for the conditional statement if (𝑏) {𝐶}, as opposed to assume b; 𝐶 in the rule

WhileDesugared. This allows the invariant 𝐼 to refer to all executions, i.e., executions that are still
running the loop (which will execute 𝐶), and executions that have already exited the loop (which

will not execute 𝐶).

Example. The program 𝐶fib in Fig. 8 takes as input an integer 𝑛 ≥ 0 and computes the 𝑛-th

Fibonacci number (in variable 𝑎). We want to prove that 𝐶fib is monotonic, i.e., that the 𝑛-th

Fibonacci number is greater than or equal to the𝑚-th Fibonacci number whenever 𝑛 ≥ 𝑚, without

making explicit what 𝐶fib computes. Formally, we want to prove the hyper-triple

{∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2⇒𝜑1 (𝑛)≥𝜑2 (𝑛)} 𝐶fib {∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2⇒𝜑1 (𝑎)≥𝜑2 (𝑎)},
where 𝑡 is a logical variable used to track the execution (as explained in Sect. 2.2). Intuitively, this

program is monotonic because both executions will perform at least 𝜑2 (𝑛) iterations, during which
they will have the same values for 𝑎 and 𝑏. The first execution will then perform 𝜑1 (𝑛) − 𝜑2 (𝑛)
additional iterations, during which 𝑎 and 𝑏 will increase, thus resulting in larger values for 𝑎 and 𝑏.

a B 0;
b B 1;
i B 0;
while (𝑖 < 𝑛) {

tmp B b;
b B a + b;
a B tmp;
i B i + 1

}

Fig. 8. The program 𝐶fib ,
which computes the 𝑛-th
Fibonacci number.

We cannot use the rule WhileSync to make this intuitive argument

formal, since both executions might perform a different number of iter-

ations. Moreover, we cannot express this intuitive argument with the rule

WhileDesugared either, since the invariant 𝐼𝑘 only relates executions that

perform at least 𝑘 iterations, as explained earlier: After the first 𝜑2 (𝑛)
iterations, the loop invariant 𝐼𝑘 cannot refer to the values of 𝑎 and 𝑏 in

the second execution, since this execution has already exited the loop.

However, we can use the ruleWhile-∀∗∃∗
to prove that𝐶fib is monotonic,

with the intuitive loop invariant 𝐼 ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2 ⇒
(𝜑1 (𝑛)−𝜑1 (𝑖) ≥ 𝜑2 (𝑛)−𝜑2 (𝑖) ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏)) ∧ □(𝑏 ≥
𝑎 ≥ 0)). The first part captures the relation between the two executions:

𝑎 and 𝑏 are larger in the first execution than in the second one, and the

first execution does at least as many iterations as the second one. The

second part □(𝑏 ≥ 𝑎 ≥ 0) is needed to prove that the additional iterations

lead to larger values for 𝑎 and 𝑏. The proof of this example is in the

appendix (App. F).

Restriction to∀∗∃∗-hyperproperties. The ruleWhile-∀∗∃∗
is quite general and powerful, since it can

be applied to prove any postcondition of the shape ∀∗∃∗
, which includes all safety hyperproperties,

as well as liveness hyperproperties such as GNI. However, it cannot be applied for postconditions

with a top-level existential quantification over states, because this would be unsound. Indeed, a

triple such as ⊢ {∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝐼 } 𝐶 {∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝐼 } implies that, for any 𝑛, there exists a state 𝜑

such that 𝐼 holds for all states 𝜑 ′
reached after unrolling the loop 𝑛 times. The key issue is that 𝜑

might not be a valid witness for states 𝜑 ′
reached after more than 𝑛 loop unrollings, and therefore

we might have different witnesses for 𝜑 for different 𝑛. We thus have no guarantee that there is

a global witness that works for all states 𝜑 ′
after any number of loop unrollings. To handle such

examples, we present a rule for ∃∗∀∗-hyperproperties next.

5.3 ∃∗∀∗-Hyperproperties
The rule While-∀∗∃∗

can be applied for any postcondition of the form ∀∗∃∗
, which includes all

safety hyperproperties as well as liveness hyperproperties such as GNI, but cannot be applied to
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1:18 Anon.

prove postconditions with a top-level existential quantifier, such as postconditions of the shape

∃∗∀∗ (e.g., to prove the existence of minimal executions, or to prove that a ∀∗∃∗
-hyperproperty

is violated). In this case, we can apply the rule While-∃ in Fig. 6. To the best of our knowledge,

this is the first program logic rule that can deal with ∃∗∀∗-hyperproperties for loops. This rule
splits the reasoning into two parts: First, we prove that there is a terminating state 𝜑 such that

the hyper-assertion 𝑃𝜑 holds after some number of loop unrollings. This is achieved via the first

premise of the rule, which requires a well-founded relation ≺, and a variant 𝑒 (𝜑) that strictly
decreases at each iteration, until 𝑏 (𝜑) becomes false and 𝜑 exits the loop.

10
In a second step, we

fix the state 𝜑 (since it has exited the loop), which corresponds to our global witness, and prove

⊢ {𝑃𝜑 } while (𝑏) {𝐶} {𝑄𝜑 } using any loop rule. For example, if 𝑃𝜑 has another top-level existential

quantifier, we can apply the rule While-∃ once more; if 𝑃𝜑 is a ∀∗∃∗
hyper-assertion, we can apply

the ruleWhile-∀∗∃∗
.

x B 0;
y B 0;
i B 0;
while (𝑖 < 𝑘) {

r B nonDet ();
assume r ≥ 2;
t B x;
x B 2 ∗ x + r ;
y B y + t ∗ r ;
i B i + 1

}

Fig. 9. A programwith a
final state with minimal
values for 𝑥 and 𝑦.

As an example, consider proving that the program 𝐶𝑚 in Fig. 9 has a

final state with a minimal value for 𝑥 and 𝑦, a hyperproperty that cannot be

expressed in any other Hoare logic. Formally, we want to prove the triple

{¬emp ∧ □(𝑘 ≥ 0)} 𝐶𝑚 {∃⟨𝜑⟩.∀⟨𝛼⟩. 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 𝜑 (𝑦) ≤ 𝛼 (𝑦)}. Since
the set of initial states is not empty and 𝑘 is always non-negative, we know

that there is an initial state with a minimal value for 𝑘 . We prove that

this state leads to a final state with minimal values for 𝑥 and 𝑦, using the

ruleWhile-∃. For the first premise, we choose the variant
11 𝑘 − 𝑖 , and the

invariant 𝑃𝜑 ≜ (∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤
𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)), capturing both that 𝜑 has minimal values for 𝑥 and

𝑦, but also that 𝜑 will be the first state to exit the loop. We prove that

this is indeed an invariant for the loop, by choosing 𝑟 = 2 for the non-

deterministic assignment for 𝜑 . Finally, we prove the second premise with

𝑄𝜑 ≜ (∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦)) and the ruleWhile-∀∗∃∗
.

The proof of this example is in the appendix (App. G).

6 RELATEDWORK
Overapproximate (relational) Hoare logics. Hoare Logic originated with the seminal works of

Floyd [Floyd 1967] and Hoare [Hoare 1969], with the goal of proving programs functionally

correct. Relational Hoare Logic [Benton 2004] (RHL) extends Hoare Logic to reason about (2-

safety) hyperproperties of a single program as well as properties relating the executions of two

different programs (e.g., semantic equivalence). RHL’s ability to relate the executions of two

different programs is also useful in the context of proving 2-safety hyperproperties of a single

program, in particular, when the two executions take different branches of a conditional statement.

In comparison, Hyper Hoare Logic can prove and disprove hyperproperties of a single program

(Sect. 3.5), but requires a program transformation to express relational properties (see end of

App. C.3). Extending Hyper Hoare Logic to multiple programs is interesting future work.

RHL has been extended in many ways, for example to deal with heap-manipulating [Yang 2007]

and higher-order programs [Aguirre et al. 2017]. A family of Hoare and separation logics [Amtoft

et al. 2006; Costanzo and Shao 2014; Eilers et al. 2023; Ernst and Murray 2019] designed to prove

non-interference [Volpano et al. 1996] specializes RHL by considering triples with a single program,

similar to Hyper Hoare Logic. Naumann [2020] provides an overview of the principles underlying

10
Note that the existentially-quantified state 𝜑 in the postcondition of the first premise of the rule While-∃ does not have to

be from the same execution as the one in the precondition.

11
We interpret ≺ as < between natural numbers, i.e., 𝑎 ≺ 𝑏 iff 0 ≤ 𝑎 and 𝑎 < 𝑏, which is well-founded.
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relational Hoare logics. Cartesian Hoare Logic [Sousa and Dillig 2016] (CHL) extends RHL to reason

about hyperproperties of 𝑘 executions, with a focus on automation and scalability. CHL has recently

been reframed [D’Osualdo et al. 2022] as a weakest-precondition calculus, increasing its support

for proof compositionality. Hyper Hoare Logic can express the properties supported by CHL, in

addition to many other properties; automating Hyper Hoare Logic is future work.

Underapproximate program logics. Reverse Hoare Logic [de Vries and Koutavas 2011] is an under-

approximate variant of Hoare Logic, designed to prove the existence of good executions. The recent

Incorrectness Logic [O’Hearn 2019] adapts this idea to prove the presence of bugs. Incorrectness

Logic has been extended with concepts from separation logic to reason about heap-manipulating

sequential [Raad et al. 2020] and concurrent [Raad et al. 2022] programs. It has also been extended

to prove the presence of insecurity in a program (i.e., to disprove 2-safety hyperproperties) [Murray

2020]. Underapproximate logics have been successfully used as foundation of industrial bug-finding

tools [Blackshear et al. 2018; Distefano et al. 2019; Gorogiannis et al. 2019; Le et al. 2022]. Hyper

Hoare Logic enables proving and disproving hyperproperties within the same logic.

Several recent works have proposed approaches to unify over- and underapproximate reasoning.

Exact Separation Logic [Maksimović et al. 2023] can establish both overapproximate and (backward)

underapproximate properties over single executions of heap-manipulating programs, by employing

triples that describe exactly the set of reachable states. Local Completeness Logic [Bruni et al. 2021,

2023] unifies over- and underapproximate reasoning in the context of abstract interpretation, by

building on Incorrectness Logic, and enforcing a notion of local completeness (no false alarm should

be produced relatively to some fixed input). HL and IL have been both embedded in a Kleene algebra

with diamond operators and countable joins of tests [Möller et al. 2021]. Dynamic Logic [Harel

1979] is an extension of modal logic that can express both overapproximate and underapproximate

guarantees over single executions of a program. To the best of our knowledge, dynamic logic has

not been extended to properties of multiple executions.

Outcome Logic [Zilberstein et al. 2023] (OL) unifies overapproximate and (forward) underapprox-

imate reasoning for heap-manipulating and probabilistic programs, by combining and generalizing

the standard overapproximate Hoare triples with forward underapproximate triples (see App. C.2).

OL (instantiated to the powerset monad) uses a semantic model similar to our extended semantics

(Def. 4), and a similar definition for triples (Def. 5). Moreover, a theorem similar to our Thm. 4 holds

in OL, i.e., invalid OL triples can be disproven within OL. The key difference with Hyper Hoare

Logic is that OL does not support reasoning about hyperproperties. OL assertions are composed of

atomic unary assertions, which allow it to express the existence and the absence of certain states,

but not to relate states with each other, which is key to expressing hyperproperties. OL does not

provide logical variables, on which we rely to express certain hyperproperties (see Sect. 2.2).

Logics for ∀∗∃∗-hyperproperties. Maillard et al. [2019] present a general framework for defining

relational program logics for arbitrary monadic effects (such as state, input-output, nondetermin-

ism, and discrete probabilities), for two executions of two (potentially different) programs. Their

key idea is to map pairs of (monadic) computations to relational specifications, using relational

effect observations. In particular, they discuss instantiations for ∀∀-, ∀∃-, and ∃∃-hyperproperties.
RHLE [Dickerson et al. 2022] supports overapproximate and (a limited form of) underapproxi-

mate reasoning, as it can establish ∀∗∃∗
-hyperproperties, such as generalized non-interference

(Sect. 2.3) and program refinement. Both logics can reason about relational properties of mul-

tiple programs, whereas Hyper Hoare Logic requires a program transformation to handle such

properties. On the other hand, our logic supports a wider range of underapproximate reasoning

and can express properties not handled by any of them, e.g., ∃∗∀∗-hyperproperties. Moreover,
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even for ∀∗∃∗
-hyperproperties, Hyper Hoare Logic provides while loop rules that have no equiva-

lent in these logics, such as the rulesWhile-∃ (useful in this context for ∃∗
-hyperproperties) and

While-∀∗∃∗
(Sect. 5).

Probabilistic Hoare logics. Many assertion-based logics for probabilistic programs have been

proposed [Barthe et al. 2018, 2019b; Corin and Den Hartog 2006; Den Hartog and de Vink 2002;

Ramshaw 1979; Rand and Zdancewic 2015]. These logics typically employ assertions over probability
(sub-)distributions of states, which bear some similarities to hyper-assertions: Asserting the existence

(resp. absence) of an execution is analogous to asserting that the probability of this execution is

strictly positive (resp. zero). Notably, our loop ruleWhile-∀∗∃∗
draws some inspiration from the

ruleWhile of Barthe et al. [2018], which also requires an invariant that holds for all unrollings of
the loop. These probabilistic logics have also been extended to the relational setting [Barthe et al.

2009], for instance to reason about the equivalence of probabilistic programs.

Verification of hyperproperties. The concept of hyperproperties has been formalized by Clarkson

and Schneider [2008]. Verifying that a program satisfies a 𝑘-safety hyperproperty can be reduced

to verifying a trace property of the self-composition of the program [Barthe et al. 2011b] (e.g., by

sequentially composing the program with renamed copies of itself). Self-composition has been

generalized to product programs [Barthe et al. 2011a; Eilers et al. 2019]. (Extensions of) product

programs have also been used to verify relational properties such as program refinement [Barthe

et al. 2013] and probabilistic relational properties such as differential privacy [Barthe et al. 2014]. The

temporal logics LTL, CTL, and CTL*, have been extended to HyperLTL and HyperCTL [Clarkson

et al. 2014] to specify hyperproperties, and model-checking algorithms [Beutner and Finkbeiner

2022, 2023; Coenen et al. 2019; Hsu et al. 2021] have been proposed to verify hyperproperties

expressed in these logics, including hyperproperties outside of the safety class. Unno et al. [2021]

propose an approach to automate relational verification based on an extension of constrained Horn-

clauses. Relational properties of imperative programs can be verified by reducing them to validity

problems in trace logic [Barthe et al. 2019a]. Finally, the notion of hypercollecting semantics [Assaf

et al. 2017] (similar to our extended semantics) has been proposed to statically analyze information

flow using abstract interpretation [Cousot and Cousot 1977].

7 CONCLUSION AND FUTUREWORK
We have presented Hyper Hoare Logic, a novel, sound, and complete program logic that supports

reasoning about a wide range of hyperproperties. It is based on a simple but powerful idea: reasoning

directly about the set of states at a given program point, instead of a fixed number of states. We

have demonstrated that Hyper Hoare Logic is very expressive: It can be used to prove or disprove

any program hyperproperty over terminating executions, including ∃∗∀∗-hyperproperties and
hyperproperties relating an unbounded or infinite number of executions, which goes beyond

the properties handled by existing Hoare logics. Moreover, we have presented syntactic rules,

compositionality rules, and rules for loops that capture important proof principles naturally.

We believe that Hyper Hoare Logic is a powerful foundation for reasoning about the correctness

and incorrectness of program hyperproperties. We plan to build on this foundation in our future

work. First, we will explore automation for Hyper Hoare Logic by developing an encoding into an

SMT-based verification system such as Boogie [Leino 2008]. Second, we will extend the language

supported by the logic, in particular, to include a heap. The main challenge will be to adapt concepts

from separation logic to hyper-assertions, e.g., to find a suitable definition for the separating

conjunction of two hyper-assertions. Third, we will explore an extension of Hyper Hoare Logic

that can relate multiple programs.
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A TECHNICAL DEFINITIONS OMITTED FROM THE PAPER
Definition 12. Evaluation of syntactic hyper-expressions and satisfiability of hyper-

assertions.
Let Σ a mapping from variables (such as 𝜑) to states, and Δ a mapping from variables (such as 𝑥) to
values.12 The evaluation of hyper-expressions is defined as follows:

⟦𝑐⟧ΣΔ ≜ 𝑐

⟦𝑦⟧ΣΔ ≜ Δ(𝑦)
⟦𝜑𝑃 (𝑥)⟧ΣΔ ≜ (Σ(𝜑))𝑃 (𝑥)
⟦𝜑𝐿 (𝑥)⟧ΣΔ ≜ (Σ(𝜑))𝐿 (𝑥)
⟦𝑒1 ⊕ 𝑒2⟧ΣΔ ≜ ⟦𝑒1⟧ΣΔ ⊕ ⟦𝑒2⟧ΣΔ
⟦𝑓 (𝑒)⟧ΣΔ ≜ 𝑓 (⟦𝑒⟧ΣΔ)

Let 𝑆 be a set of states. The satisfiability of hyper-assertions is defined as follows:

𝑆, Σ,Δ |= 𝑏 ≜ 𝑏

𝑆, Σ,Δ |= 𝑒1 ⪰ 𝑒2 ≜
(
⟦𝑒1⟧ΣΔ ⪰ ⟦𝑒2⟧ΣΔ

)
𝑆, Σ,Δ |= 𝐴 ∧ 𝐵 ≜ (𝑆, Σ,Δ |= 𝐴 ∧ 𝑆, Σ,Δ |= 𝐵)
𝑆, Σ,Δ |= 𝐴 ∨ 𝐵 ≜ (𝑆, Σ,Δ |= 𝐴 ∨ 𝑆, Σ,Δ |= 𝐵)
𝑆, Σ,Δ |= ∀𝑥 . 𝐴 ≜ (∀𝑣 . 𝑆, Σ,Δ[𝑥 ↦→ 𝑣] |= 𝐴)
𝑆, Σ,Δ |= ∃𝑥 . 𝐴 ≜ (∃𝑣 . 𝑆, Σ,Δ[𝑥 ↦→ 𝑣] |= 𝐴)
𝑆, Σ,Δ |= ∀𝜑.𝐴 ≜ (∀𝛼. 𝑆, Σ[𝜑 ↦→ 𝛼],Δ |= 𝐴)
𝑆, Σ,Δ |= ∃𝜑.𝐴 ≜ (∃𝛼. 𝑆, Σ[𝜑 ↦→ 𝛼],Δ |= 𝐴)

When interpreting hyper-assertions in hyper-triples, we start withΔ and Σ being the emptymappings,
except when there is an explicit quantifier around the triple, such as in the premises for the rule While-∃
from Fig. 6.

Definition 13. Syntactic transformation for deterministic assignments.
A𝑒

𝑥 [𝐴] yields the hyper-assertion 𝐴, where 𝜑 (𝑥) is syntactically substituted by 𝑒 (𝜑), for all (existen-
tially or universally) quantified states 𝜑 :

A𝑒
𝑥 [𝑏] ≜ 𝑏

A𝑒
𝑥 [𝑒1 ⪰ 𝑒2] ≜ 𝑒1 ⪰ 𝑒2

A𝑒
𝑥 [𝐴 ∧ 𝐵] ≜ A𝑒

𝑥 [𝐴] ∧ A𝑒
𝑥 [𝐵]

A𝑒
𝑥 [𝐴 ∨ 𝐵] ≜ A𝑒

𝑥 [𝐴] ∨ A𝑒
𝑥 [𝐵]

A𝑒
𝑥 [∀𝑥 . 𝐴] ≜ ∀𝑥 .A𝑒

𝑥 [𝐴]
A𝑒

𝑥 [∃𝑥 . 𝐴] ≜ ∃𝑥 .A𝑒
𝑥 [𝐴]

A𝑒
𝑥 [∀⟨𝜑⟩. 𝐴] ≜

(
∀⟨𝜑⟩.A𝑒

𝑥 [𝐴[𝑒 (𝜑)/𝜑 (𝑥)]]
)

A𝑒
𝑥 [∃⟨𝜑⟩. 𝐴] ≜

(
∃⟨𝜑⟩.A𝑒

𝑥 [𝐴[𝑒 (𝜑)/𝜑 (𝑥)]]
)

where 𝐴[𝑦/𝑥] refers to the standard syntactic substitution of 𝑥 by 𝑦.

12
In our Isabelle formalization, these mappings are actually lists, since we use De Bruijn indices [de Bruijn 1972].
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Definition 14. Syntactic transformation for non-deterministic assignments.
H𝑥 [𝐴] yields the hyper-assertion 𝐴 where 𝜑 (𝑥) is syntactically substituted by a fresh quantified
variable 𝑣 , universally (resp. existentially) quantified for universally (resp. existentially) quantified
states:

H𝑥 [𝑏] ≜ 𝑏

H𝑥 [𝑒1 ⪰ 𝑒2] ≜ 𝑒1 ⪰ 𝑒2

H𝑥 [𝐴 ∧ 𝐵] ≜ H𝑥 [𝐴] ∧ H𝑥 [𝐵]
H𝑥 [𝐴 ∨ 𝐵] ≜ H𝑥 [𝐴] ∨ H𝑥 [𝐵]
H𝑥 [∀𝑥 . 𝐴] ≜ ∀𝑥 .H𝑥 [𝐴]
H𝑥 [∃𝑥 . 𝐴] ≜ ∃𝑥 .H𝑥 [𝐴]
H𝑥 [∀⟨𝜑⟩. 𝐴] ≜ (∀⟨𝜑⟩.∀𝑣 .H𝑥 [𝐴[𝑣/𝜑 (𝑥)]])
H𝑥 [∃⟨𝜑⟩. 𝐴] ≜ (∃⟨𝜑⟩. ∃𝑣 .H𝑥 [𝐴[𝑣/𝜑 (𝑥)]])

Definition 15. Syntactic transformation for assume statements.

Π𝑝 [𝑏] ≜ 𝑏

Π𝑝 [𝑒1 ⪰ 𝑒2] ≜ 𝑒1 ⪰ 𝑒2

Π𝑝 [𝐴 ∧ 𝐵] ≜ Π𝑝 [𝐴] ∧ Π𝑝 [𝐵]
Π𝑝 [𝐴 ∨ 𝐵] ≜ Π𝑝 [𝐴] ∨ Π𝑝 [𝐵]
Π𝑝 [∀𝑥 . 𝐴] ≜ ∀𝑥 .Π𝑝 [𝐴]
Π𝑝 [∃𝑥 . 𝐴] ≜ ∃𝑥 .Π𝑝 [𝐴]
Π𝑝 [∀⟨𝜑⟩. 𝐴] ≜ ∀⟨𝜑⟩. 𝑝 (𝜑) ⇒ Π𝑝 [𝐴]
Π𝑝 [∃⟨𝜑⟩. 𝐴] ≜ ∃⟨𝜑⟩. 𝑝 (𝜑) ∧ Π𝑝 [𝐴]
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1:26 Anon.

B EXAMPLE OF A PROGRAM HYPERPROPERTY RELATING AN UNBOUNDED
NUMBER OF EXECUTIONS

Given a program with a low-sensitivity (low for short) input 𝑙 , a high-sensitivity (high for short)
input ℎ, and output 𝑜 , an interesting problem is to quantify how much information about ℎ is

leaked through 𝑜 . This information flow can be quantified with min-capacity [Assaf et al. 2017;

Smith 2009], which boils down to quantifying the number of different values that the output 𝑜

can have, given that the initial value of 𝑙 is fixed (but the initial value of ℎ is not). The problem

(1) of upper-bounding the number of possible values of 𝑜 is hypersafety, but not 𝑘-safety for any

𝑘 > 0 [Yasuoka and Terauchi 2010]. This problem requires the ability to reason about an unbounded
number of executions, which is not possible in any existing Hoare logic, but is possible in Hyper

Hoare Logic. The harder problem (2) of both lower-bounding (to show that there is some leakage)

and upper-bounding this quantity is not hypersafety anymore, and thus requires to be able to

reason directly about properties of sets, in this case cardinality.

o B 0;
i B 0;

while (𝑖 < max (𝑙, ℎ)) {
r B nonDet ();
assume 0 ≤ r ≤ 1;
o B o + r
i B i + 1

}

Fig. 10. The program 𝐶𝑙 that leaks information about the high input ℎ via its output 𝑜 .

As an example, consider the program 𝐶𝑙 shown in Fig. 10. Assuming that we know ℎ ≥ 0, the

output 𝑜 of this program can at most be ℎ, hence leaking information about ℎ: We learn that ℎ ≥ 𝑜 .

With respect to problem (1), we can express that this program can have at most 𝑣 + 1 output values,

where 𝑣 is the initial value of 𝑙 , with the hyper-triple

{□(ℎ ≥ 0) ∧ low(𝑙)} 𝐶𝑙 {𝜆𝑆. ∃𝑣 . (∀𝜑 ∈ 𝑆. 𝜑 (𝑙) = 𝑣) ∧ |{𝜑 (𝑜) | 𝜑 ∈ 𝑆}| ≤ 𝑣}
Moreover, with respect to the harder problem (2), we can express that this program can have

exactly 𝑣 + 1 output values, with the hyper-triple

{□(ℎ ≥ 0) ∧ low(𝑙)} 𝐶𝑙 {𝜆𝑆. ∃𝑣 . (∀𝜑 ∈ 𝑆. 𝜑 (𝑙) = 𝑣) ∧ |{𝜑 (𝑜) | 𝜑 ∈ 𝑆}| = 𝑣}
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C EXPRESSING JUDGMENTS OF HOARE LOGICS AS HYPER-TRIPLES
In this section, we demonstrate the expressivity of the logic by showing that hyper-triples can

express the judgments of existing over- and underapproximating Hoare logics (App. C.1 and

App. C.2) and enable reasoning about useful properties that go beyond over- and underapproxima-

tion (App. C.3). All theorems and propositions in this section have been proved in Isabelle/HOL.

C.1 Overapproximate Hoare Logics
The vast majority of existing Hoare logics prove the absence of bad (combinations of) program

executions. To achieve that, they prove properties for all (combinations of) executions, that is, they

overapproximate the set of possible (combinations of) executions. In this subsection, we discuss

overapproximate logics that prove properties of single executions or of 𝑘 executions (for a fixed

number 𝑘), and show that Hyper Hoare Logic goes beyond them by also supporting properties of

unboundedly or infinitely many executions.

Single executions. Classical Hoare Logic [Hoare 1969] is an overapproximate logic for properties

of single executions (trace properties). The meaning of triples can be defined as follows:

Definition 16. Hoare Logic (HL). Let 𝑃 and 𝑄 be sets of extended states. Then

|=HL {𝑃} 𝐶 {𝑄} ≜ (∀𝜑 ∈ 𝑃 .∀𝜎 ′. ⟨𝐶,𝜑𝑃 ⟩ → 𝜎 ′ ⇒ (𝜑𝐿, 𝜎 ′) ∈ 𝑄)

This definition reflects the standard partial correctness meaning of Hoare triples: executing 𝐶 in

some initial state that satisfies 𝑃 can only lead to final states that satisfy 𝑄 . This meaning can be

expressed as a program hyperproperty as defined in Def. 8:

Proposition 1. HL triples express hyperproperties. Given sets of extended states 𝑃 and𝑄 , there
exists a hyperproperty H such that, for all commands 𝐶 , 𝐶 ∈ H iff |=HL {𝑃} 𝐶 {𝑄}.

Proof sketch. We define

H ≜ {𝐶 | ∀𝜑 ∈ 𝑃 .∀𝜎 ′. (𝜑𝑃 , 𝜎 ′) ∈ Σ(𝐶) ⇒ (𝜑𝐿, 𝜎 ′) ∈ 𝑄}

and prove ∀𝐶.𝐶 ∈ H ⇐⇒|=HL {𝑃} 𝐶 {𝑄}. □

This proposition together with completeness of our logic implies the existence of a proof in Hyper

Hoare Logic for every valid classical Hoare triple. But there is an even stronger connection: we

can map any assertion in classical Hoare logic to a hyper-assertion in Hyper Hoare Logic, which

suggests a direct translation from classical Hoare logic to our Hyper Hoare Logic.

The assertions 𝑃 and 𝑄 of a valid Hoare triple characterize all initial and all final states of
executing a command𝐶 . Consequently, they represent upper bounds on the possible initial and final

states. We can use this observation to map classical Hoare triples to hyper-triples by interpreting

their pre- and postconditions as upper bounds on sets of states.

Proposition 2. Expressing HL in Hyper Hoare Logic. Let 𝑃 ≜ (𝜆𝑆. 𝑆 ⊆ 𝑃).
Then |=HL {𝑃} 𝐶 {𝑄} iff |= {𝑃} 𝐶 {𝑄}.

Equivalently, |=HL {𝑃} 𝐶 {𝑄} iff |= {∀⟨𝜑⟩. 𝜑 ∈ 𝑃} 𝐶 {∀⟨𝜑⟩. 𝜑 ∈ 𝑄}.

This proposition implies that some rules of Hyper Hoare Logic have a direct correspondence in

HL. For example, the rule Seq instantiated with 𝑃 , 𝑅, and 𝑄 directly corresponds to the sequential

composition rule from HL. Moreover, the upper-bound operator distributes over ⊗ and

⊗
, since

𝐴 ⊗ 𝐵 = 𝐴 ∪ 𝐵, and
⊗

𝑖 𝐹𝑖 =
⋃

𝑖 𝐹 (𝑖). Consequently, we can for example easily derive in Hyper

Hoare Logic the classic while-rule from HL, using the rule While from Fig. 3.
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𝑘 executions. Many extensions of HL have been proposed to deal with hyperproperties of 𝑘

executions. As a representative of this class of logics, we relate Cartesian Hoare Logic [Sousa and

Dillig 2016] to our Hyper Hoare Logic. To define the meaning of Cartesian Hoare Logic triples,

we first lift our semantic relation → from one execution on states to 𝑘 executions on extended

states. Let 𝑘 ∈ N+
. We write

#»

𝜑 to represent the 𝑘-tuple of extended states (𝜑1, . . . , 𝜑𝑘 ), and ∀#»

𝜑

(resp. ∃ #»

𝜑 ) as a shorthand for ∀𝜑1, . . . , 𝜑𝑘 (resp. ∃𝜑1, . . . , 𝜑𝑘 ). Moreover, we define the relation

𝑘→ as

⟨ #»

𝐶 ,𝜑⟩ 𝑘→ #»

𝜑 ′ ≜ (∀𝑖 ∈ [1, 𝑘] . ⟨𝐶,𝜑𝑖𝑃 ⟩ → 𝜑 ′
𝑖
𝑃 ∧ 𝜑𝑖

𝐿 = 𝜑 ′
𝑖
𝐿).

Definition 17. Cartesian Hoare Logic (CHL). Let 𝑘 ∈ N+, and let 𝑃 and𝑄 be sets of 𝑘-tuples of
extended states. Then

|=CHL(k) {𝑃} 𝐶 {𝑄} ≜(∀#»

𝜑 ∈ 𝑃 .∀
#»

𝜑 ′. ⟨ #»

𝐶 ,𝜑⟩ 𝑘→
#»

𝜑 ′ ⇒
#»

𝜑 ′ ∈ 𝑄)

|=CHL(k) {𝑃} 𝐶 {𝑄} is valid iff executing 𝐶 𝑘 times in 𝑘 initial states that together satisfy 𝑃 can

only lead to 𝑘 final states that together satisfy 𝑄 . This meaning can be expressed as a program

hyperproperty:

Proposition 3. CHL triples express hyperproperties. Given sets of 𝑘-tuples of extended states 𝑃
and𝑄 , there exists a hyperpropertyH such that, for all commands𝐶 ,𝐶 ∈ H ⇐⇒|=CHL(k) {𝑃} 𝐶 {𝑄}.

Proof sketch. We define

H ≜ {𝐶 | ∀#»

𝜑 ∈ 𝑃 .∀
#»

𝜑 ′.

(∀𝑖 ∈ [1, 𝑘] . 𝜑𝐿
𝑖 = 𝜑 ′𝐿

𝑖 ∧ (𝜑𝑃
𝑖 , 𝜑

′𝑃
𝑖 ) ∈ Σ(𝐶)) ⇒

#»

𝜑 ′ ∈ 𝑄}
and prove ∀𝐶.𝐶 ∈ H ⇐⇒|=CHL(k) {𝑃} 𝐶 {𝑄}. □

Like we did for Hoare Logic, we can provide a direct translation from CHL triples to hyper-

triples in our logic. Similarly to HL, CHL assertions express upper bounds, here on sets of 𝑘-tuples.

However, simply using upper bounds as in Prop. 2 does not capture the full expressiveness of CHL

because executions in CHL are distinguishable. For example, one can express monotonicity from 𝑥

to 𝑦 as |=CHL(k) {𝑥 (1) ≥ 𝑥 (2)} y B x {𝑦 (1) ≥ 𝑦 (2)}. When going from (ordered) tuples of states

in CHL to (unordered) sets of states in Hyper Hoare Logic, we need to identify which state in the

final set of states 𝑆 corresponds to execution 1, and which state corresponds to execution 2. As we

did in App. D.2 to express monotonicity, we use a logical variable 𝑡 to tag a state with the number 𝑖

of the execution it corresponds to.

Proposition 4. Expressing CHL in Hyper Hoare Logic. Let

𝑃 ′ ≜ (∀#»

𝜑 . (∀𝑖 ∈ [1, 𝑘] . ⟨𝜑𝑖⟩ ∧ 𝜑𝐿
𝑖 (𝑡) = 𝑖) ⇒ #»

𝜑 ∈ 𝑃)

𝑄 ′ ≜ (∀#»

𝜑 . (∀𝑖 ∈ [1, 𝑘] . ⟨𝜑𝑖⟩ ∧ 𝜑𝐿
𝑖 (𝑡) = 𝑖) ⇒ #»

𝜑 ∈ 𝑄)
where 𝑡 does not occur free in 𝑃 or 𝑄 . Then |=CHL(k) {𝑃} 𝐶 {𝑄} ⇐⇒ |= {𝑃 ′} 𝐶 {𝑄 ′}.

Recall that ⟨𝜑⟩ ≜ (𝜆𝑆. 𝜑 ∈ 𝑆). As an example, we can express the CHL assertion 𝑦 (1) ≥ 𝑦 (2)
as the hyper-assertion ∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝐿

1
(𝑡) = 1 ∧ 𝜑𝐿

2
(𝑡) = 2 ⇒ 𝜑𝑃

1
(𝑦) ≥ 𝜑𝑃

2
(𝑦). Such translations

provide a direct way of representing CHL proofs in Hyper Hoare Logic.

CHL, like Hyper Hoare Logic, can reason about multiple executions of a single command 𝐶 ,

which is sufficient for many practically-relevant hyperproperties such as non-interference or

determinism. Other logics, such as Relational Hoare Logic [Benton 2004], relate the executions

of multiple (potentially different) commands, for instance, to prove program equivalence. In case

these commands are all the same, triples of relational logics can be translated to Hyper Hoare Logic
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analogously to CHL. We explain how to encode relational properties relating different commands

to Hyper Hoare Logic in App. C.3.

Unboundedly many executions. To the best of our knowledge, all existing overapproximate Hoare

logics consider a fixed number 𝑘 of executions. In contrast, Hyper Hoare Logic can reason about

an unbounded number of executions, as we illustrate via the following example.

Consider a command 𝐶 that encrypts a plaintext𝑚 using a secret key ℎ and stores the result in

an output variable 𝑥 . We would like to prove that 𝐶 is immune to known-plaintext attacks. That

is, even though 𝐶 leaks some information about the used key, it is not possible (assuming some

computational limitations) to determine the key ℎ from the plaintext𝑚 and the output 𝑥 , no matter

how often an attacker executes 𝐶 .

In general, the more input-output pairs (𝑚, 𝑥) an attacker observes, the more they learn about ℎ,

i.e., the fewer possibilities for ℎ they have. We model this with a function 𝑓 that takes the set of

observed pairs (𝑚, 𝑥) and returns the possibilities for ℎ. We can then express that, for any number

𝑘 of executions, an attacker cannot uniquely determine ℎ:

{⊤} 𝐶 {𝜆𝑆.∀𝑘.∀𝑆 ′ ⊆ 𝑆. |𝑆 ′ | ≤ 𝑘 ⇒ |𝑓 ({(𝜑𝑃 (𝑚), 𝜑𝑃 (𝑥)) |𝜑 ∈ 𝑆 ′}) | > 1}

This hyper-triple expresses a property over an unbounded number 𝑘 of executions, which is not

possible in existing Hoare logics. Since our hyper-assertions are functions of potentially-infinite

sets of states, Hyper Hoare Logic can even express properties of infinitely-many executions, as we

illustrate in App. C.3.

C.2 Underapproximate Hoare Logics
Several recent Hoare logics prove the existence of certain (combinations of) program executions,

which is useful, for instance, to disprove a specification, that is, to demonstrate that a program

definitely has a bug. These logics underapproximate the set of possible (combinations of) executions.

In this subsection, we discuss two forms of underapproximate logics, backward and forward, and
show that both can be expressed in Hyper Hoare Logic.

Backward underapproximation. Reverse Hoare Logic [de Vries and Koutavas 2011] and Incorrect-

ness Logic [O’Hearn 2019] are both underapproximate logics. Reverse Hoare Logic is designed to

reason about the reachability of good final states. Incorrectness Logic uses the same ideas to prove

the presence of bugs in programs. We focus on Incorrectness Logic in the following, but our results

also apply to Reverse Hoare Logic. Incorrectness Logic reasons about single program executions:

Definition 18. Incorrectness Logic (IL). Let 𝑃 and 𝑄 be sets of extended states. Then

|=IL {𝑃} 𝐶 {𝑄} ≜ (∀𝜑 ∈ 𝑄. ∃𝜎. (𝜑𝐿, 𝜎) ∈ 𝑃 ∧ ⟨𝐶, 𝜎⟩ → 𝜑𝑃 )

The meaning of IL triples is defined backward from the postcondition: any state that satisfies the

postcondition 𝑄 can be reached by executing 𝐶 in an initial state that satisfies the precondition 𝑃 .

This meaning can be expressed as a program hyperproperty:

Proposition 5. IL triples express hyperproperties. Given sets of extended states 𝑃 and 𝑄 , there
exists a hyperproperty H such that, for all commands 𝐶 , 𝐶 ∈ H iff |=IL {𝑃} 𝐶 {𝑄}.

Proof sketch. We define

H ≜ {𝐶 | ∀𝜑 ∈ 𝑄. ∃𝜎. (𝜑𝐿, 𝜎) ∈ 𝑃 ∧ (𝜎, 𝜑𝑃 ) ∈ Σ(𝐶)}

and prove ∀𝐶.𝐶 ∈ H ⇐⇒|=IL {𝑃} 𝐶 {𝑄}. □
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1:30 Anon.

Hoare Logic shows the absence of executions by overapproximating the set of possible executions,

whereas Incorrectness Logic shows the existence of executions by underapproximating it. This

duality also leads to an analogous translation of IL judgments into Hyper Hoare Logic, which uses

lower bounds on the set of executions instead of the upper bounds used in Prop. 2.

Proposition 6. Expressing IL in Hyper Hoare Logic. Let 𝑃 ≜ (𝜆𝑆. 𝑃 ⊆ 𝑆). Then |=IL {𝑃} 𝐶 {𝑄}
iff |= {𝑃} 𝐶 {𝑄}.

Equivalently, |=IL {𝑃} 𝐶 {𝑄} iff |= {∀𝜑 ∈ 𝑃 . ⟨𝜑⟩} 𝐶 {∀𝜑 ∈ 𝑄. ⟨𝜑⟩}.

Analogous to the upper bounds for HL, the lower-bound operator distributes over ⊗ and

⊗
:

𝐴 ⊗ 𝐵 = 𝐴 ∪ 𝐵 and

⊗
𝑖 𝐹𝑖 =

⋃
𝑖 𝐹 (𝑖). Using the latter equality with the rulesWhile and Cons, it is

easy to derive the loop rules from both Incorrectness Logic and Reverse Hoare Logic.

Murray [2020] has recently proposed an underapproximate logic based on IL that can reason

about two executions of two (potentially different) programs, for instance, to prove that a program

violates a hyperproperty such as non-interference. We use the name k-Incorrectness Logic for

the restricted version of this logic where the two programs are the same (and discuss relational

properties between different programs in App. C.3). The meaning of triples in k-Incorrectness Logic

is also defined backward. They express that, for any pair of final states (𝜑 ′
1
, 𝜑 ′

2
) that together satisfy

a relational postcondition, there exist two initial states 𝜑1 and 𝜑2 that together satisfy the relational

precondition, and executing command 𝐶 in 𝜑1 (resp. 𝜑2) leads to 𝜑
′
1
(resp. 𝜑 ′

2
). Our formalization

lifts this meaning from 2 to 𝑘 executions:

Definition 19. k-Incorrectness Logic (k-IL). Let 𝑘 ∈ N+, and 𝑃 and 𝑄 be sets of 𝑘-tuples of

extended states. Then |=k−IL {𝑃} 𝐶 {𝑄} ≜ (∀#»

𝜑 ′ ∈ 𝑄. ∃ #»

𝜑 ∈ 𝑃 . ⟨ #»

𝐶 ,𝜑⟩ 𝑘→ #»

𝜑 ′).

Again, this meaning is a hyperproperty:

Proposition 7. k-IL triples express hyperproperties. Given sets of 𝑘-tuples of extended states 𝑃
and 𝑄 , there exists a hyperpropertyH such that, for all commands 𝐶 , 𝐶 ∈ H ⇐⇒|=k−IL {𝑃} 𝐶 {𝑄}.

Proof sketch. We define

H ≜ {𝐶 |∀
#»

𝜑 ′ ∈ 𝑄. ∃
#»

𝜑 ′ ∈ 𝑃 .

(∀𝑖 ∈ [1, 𝑘] . 𝜑𝐿
𝑖 = 𝜑 ′𝐿

𝑖 ∧ (𝜑𝑃
𝑖 , 𝜑

′𝑃
𝑖 ) ∈ Σ(𝐶))}

and prove ∀𝐶.𝐶 ∈ H ⇐⇒|=k−IL {𝑃} 𝐶 {𝑄}. □

Together with Thm. 3, this implies that we can express any k-IL triple as hyper-triple in Hyper

Hoare Logic. However, defining a direct translation of k-IL triples to hyper-triples is surprisingly

tricky. In particular, it is not sufficient to apply the transformation from Prop. 4, which uses a logical

variable 𝑡 to tag each state with the number of the execution it belongs to. This approach works for

Cartesian Hoare Logic because CHL and Hyper Hoare Logic are both forward logics (see Def. 5

and Def. 17). Intuitively, this commonality allows us to identify corresponding tuples from the

preconditions in the two logics and relate them to corresponding tuples in the postconditions.

However, since k-IL is a backward logic, the same approach is not sufficient to identify corre-

sponding tuples. For two final states 𝜑 ′
1
and 𝜑 ′

2
from the same tuple in the final set of states, we

know through the tag variable 𝑡 to which execution they belong, but not whether they originated

from one tuple (𝜑1, 𝜑2) ∈ 𝑃 , or from two unrelated tuples.

To solve this problem, we use another logical variable𝑢, which records the “identity” of the initial

𝑘-tuple that satisfies 𝑃 . To avoid cardinality issues, we define the encoding under the assumption

that 𝑃 depends only on program variables. Consequently, there are at most |PStates𝑘 | such 𝑘-tuples,
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which we can represent as logical values if the cardinality of LVals is at least the cardinality of

PStates𝑘 , as shown by the following result:

Proposition 8. Expressing k-IL in Hyper Hoare Logic. Let 𝑡,𝑢 be distinct variables in LVars
and

𝑃 ′ ≜ (∀#»

𝜑 ∈ 𝑃 .(∀𝑖 ∈ [1, 𝑘] . 𝜑𝐿
𝑖 (𝑡) = 𝑖) ⇒ (∃𝑣 .∀𝑖 ∈ [1, 𝑘] . ⟨𝜑𝑖 [𝑢 B 𝑣]⟩))

𝑄 ′ ≜ (∀
#»

𝜑 ′ ∈ 𝑄.(∀𝑖 ∈ [1, 𝑘] . 𝜑 ′𝐿
𝑖 (𝑡) = 𝑖) ⇒ (∃𝑣 .∀𝑖 ∈ [1, 𝑘] . ⟨𝜑 ′

𝑖 [𝑢 B 𝑣]⟩))

If (1) 𝑃 depends only on program variables, (2) the cardinality of LVals is at least the cardinality of
PStates𝑘 , and (3) 𝑡,𝑢 do not occur free in 𝑃 or 𝑄 , then |=k−IL {𝑃} 𝐶 {𝑄} ⇐⇒ |= {𝑃 ′} 𝐶 {𝑄 ′}.

This proposition provides a direct translation for some k-IL triples into hyper-triples. Those that

cannot be translated directly can still be verified in Hyper Hoare Logic, according to Prop. 7.

Forward underapproximation. Underapproximate logics can also be formulated in a forward way:

Executing command𝐶 in any state that satisfies the precondition reaches at least one final state that

satisfies the postcondition. Forward underapproximation has recently been explored in Outcome

Logic [Zilberstein et al. 2023], a Hoare logic whose goal is to unify correctness (in the sense of

classical Hoare logic) and incorrectness reasoning (in the sense of forward underapproximation)

for single program executions. We focus on the underapproximation aspect of Outcome Logic here;

overapproximation can be handled analogously to Hoare Logic (see App. C.1). Moreover, we restrict

the discussion to the programming language defined in Sect. 3.1; Outcome Logic also supports

heap-manipulating and probabilistic programs, which we do not consider here.

Forward underapproximation for single executions can be formalized as follows:

Definition 20. Forward Underapproximation (FU). Let 𝑃 and 𝑄 be sets of extended states.
Then |=FU {𝑃} 𝐶 {𝑄} ≜

(
∀𝜑 ∈ 𝑃 . ∃𝜎 ′. ⟨𝐶,𝜑𝑃 ⟩ → 𝜎 ′ ∧ (𝜑𝐿, 𝜎 ′) ∈ 𝑄

)
This meaning can be expressed in Hyper Hoare Logic as follows: If we execute 𝐶 in an initial set

of states that contains at least one state from 𝑃 then the final set of states will contain at least one

state in 𝑄 .

Proposition 9. Expressing FU in Hyper Hoare Logic.

|=FU {𝑃} 𝐶 {𝑄} ⇐⇒ |= {𝜆𝑆. 𝑃 ∩ 𝑆 ≠ ∅} 𝐶 {𝜆𝑆.𝑄 ∩ 𝑆 ≠ ∅}

Equivalently, |=FU {𝑃} 𝐶 {𝑄} iff |= {∃⟨𝜑⟩. 𝜑 ∈ 𝑃} 𝐶 {∃⟨𝜑⟩. 𝜑 ∈ 𝑄}.

The precondition (resp. postcondition) states that the intersection between 𝑆 and 𝑃 (resp. 𝑄)

is non-empty. If instead it required that 𝑆 is a non-empty subset of 𝑃 (resp. 𝑄), it would express

the meaning of Outcome Logic triples, i.e., the conjunction of classical Hoare Logic and forward

underapproximation.

While Outcome Logic reasons about single executions only, it is possible to generalize it to

multiple executions:

Definition 21. k-Forward Underapproximation (k-FU). Let 𝑘 ∈ N+, and let 𝑃 and 𝑄 be sets

of 𝑘-tuples of extended states. Then |=k−FU {𝑃} 𝐶 {𝑄} ≜ (∀#»

𝜑 ∈ 𝑃 . ∃ #»

𝜑 ′ ∈ 𝑄. ⟨ #»

𝐶 ,𝜑⟩ 𝑘→ #»

𝜑 ′).

Again, this meaning can be expressed as a hyperproperty:

Proposition 10. k-FU triples express hyperproperties. Given sets of 𝑘-tuples of extended states
𝑃 and𝑄 , there exists a hyperpropertyH such that, for all commands𝐶 ,𝐶 ∈ H ⇐⇒|=k−FU {𝑃} 𝐶 {𝑄}.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: June 2024.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Anon.

Proof sketch. We define

H ≜ {𝐶 |∀#»

𝜑 ∈ 𝑃 . ∃
#»

𝜑 ′ ∈ 𝑄.

(∀𝑖 ∈ [1, 𝑘] . 𝜑𝐿
𝑖 = 𝜑 ′𝐿

𝑖 ∧ (𝜑𝑃
𝑖 , 𝜑

′𝑃
𝑖 ) ∈ Σ(𝐶))}

and prove ∀𝐶.𝐶 ∈ H ⇐⇒|=k−FU {𝑃} 𝐶 {𝑄}. □

Since FU corresponds exactly to k-FU for 𝑘 = 1, this proposition applies also to FU.

Because k-FU is forward underapproximate, we can use the tagging from Prop. 4 to translate

k-FU triples into hyper-triples. The following encoding intuitively corresponds to the precondition

(𝑆1 × . . . × 𝑆𝑘 ) ∩ 𝑃 ≠ ∅ and the postcondition (𝑆1 × . . . × 𝑆𝑘 ) ∩𝑄 ≠ ∅, where 𝑆𝑖 corresponds to the

set of states with 𝑡 = 𝑖:

Proposition 11. Expressing k-FU in Hyper Hoare Logic.
Let 𝑃 ′ ≜ (∃ #»

𝜑 ∈ 𝑃 .∀𝑖 ∈ [1, 𝑘] . ⟨𝜑𝑖⟩ ∧ 𝜑𝐿
𝑖 (𝑡) = 𝑖) and 𝑄 ′ ≜ (∃ #»

𝜑 ′ ∈ 𝑄.∀𝑖 ∈ [1, 𝑘] . ⟨𝜑 ′
𝑖 ⟩ ∧ 𝜑 ′

𝑖
𝐿 (𝑡) = 𝑖).

If 𝑡 does not occur free in 𝑃 or 𝑄 , then |=k−FU {𝑃} 𝐶 {𝑄} ⇐⇒ |= {𝑃 ′} 𝐶 {𝑄 ′}.

C.3 Beyond Over- and Underapproximation
In the previous subsections, we have discussed overapproximate logics, which reason about all
executions, and underapproximate logics, which reason about the existence of executions. In this

subsection, we explore program hyperproperties that combine universal and existential quantifica-

tion, as well as properties that apply other comprehensions to the set of executions. We also discuss

relational properties about multiple programs (such as program equivalence).

∀∃-hyperproperties. Generalized non-interference (see Sect. 2.3) intuitively expresses that for

each execution that produces a given observable output, there exists another execution that pro-

duces the same output using any other secret. That is, observing the output does not reveal any

information about the secret. GNI is a hyperproperty that cannot be expressed in existing over- or

underapproximate Hoare logics. It mandates the existence of an execution based on other possible
executions, whereas underapproximate logics can show only the existence of (combinations of)

executions that satisfy some properties, independently of the other possible executions. Generalized
non-interference belongs to a broader class of ∀∃-hyperproperties.

RHLE [Dickerson et al. 2022] is a Hoare-style relational logic that has been recently proposed to

verify ∀∃-relational properties, such as program refinement [Abadi and Lamport 1991]. We call the

special case of RHLE where triples specify properties of multiple executions of the same command

k-Universal Existential; we can formalize its triples as follows:

Definition 22. k-Universal Existential (k-UE). Let 𝑘1, 𝑘2 ∈ N+, and let 𝑃 and 𝑄 be sets of
(𝑘1 + 𝑘2)-tuples of extended states. Then

|=k−UE (k1,k2) {𝑃} 𝐶 {𝑄} ≜ (∀( #»

𝜑 ,
#»

𝛾 ) ∈ 𝑃 .∀
#»

𝜑 ′. ⟨ #»

𝐶 ,𝜑⟩ 𝑘1→
#»

𝜑 ′ ⇒ (∃
#»

𝛾 ′. ⟨ #»

𝐶 ,𝛾⟩ 𝑘2→
#»

𝛾 ′ ∧ (
#»

𝜑 ′,
#»

𝛾 ′) ∈ 𝑄))

Given 𝑘1 + 𝑘2 initial states 𝜑1, . . . , 𝜑𝑘1 and 𝛾1, . . . , 𝛾𝑘2 that together satisfy the precondition 𝑃 , for

any final states 𝜑 ′
1
, . . . , 𝜑 ′

𝑘1
that can be reached by executing 𝐶 in the initial states 𝜑1, . . . , 𝜑𝑘1 , there

exist 𝑘2 final states 𝛾
′
1
, . . . , 𝛾 ′

𝑘2
that can be reached by executing 𝐶 in the initial states 𝛾1, . . . , 𝛾𝑘2 ,

such that 𝜑 ′
1
, . . . , 𝜑 ′

𝑘1
, 𝛾 ′

1
, . . . , 𝛾 ′

𝑘2
together satisfy the postcondition 𝑄 .

The properties expressed by k-UE assertions are hyperproperties:

Proposition 12. k-UE triples express hyperproperties. Given sets of (𝑘1+𝑘2)-tuples of extended
states 𝑃 and𝑄 , there exists a hyperpropertyH such that, for all commands𝐶 ,𝐶 ∈ H ⇐⇒|=k−UE (k1,k2)
{𝑃} 𝐶 {𝑄}.
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Proof sketch. We define

H ≜ {𝐶 | ∀( #»

𝜑 ,
#»

𝛾 ) ∈ 𝑃 .∀
#»

𝜑 ′.(
∀𝑖 ∈ [1, 𝑘1] . (𝜑𝑃

𝑖 , 𝜑
′𝑃
𝑖 ) ∈ Σ(𝐶) ∧ 𝜑𝐿

𝑖 = 𝜑 ′𝐿
𝑖

)
⇒ ∃

#»

𝛾 ′.

(
#»

𝜑 ′,
#»

𝛾 ′) ∈ 𝑄 ∧ (∀𝑖 ∈ [1, 𝑘2] . (𝛾𝑃𝑖 , 𝛾 ′𝑃
𝑖 ) ∈ Σ(𝐶) ∧ 𝛾𝐿𝑖 = 𝛾 ′𝐿

𝑖 )}

and prove ∀𝐶.𝐶 ∈ H ⇐⇒|=k−UE (k1,k2) {𝑃} 𝐶 {𝑄}. □

They can be directly expressed in Hyper Hoare Logic, as follows:

Proposition 13. Expressing k-UE in Hyper Hoare Logic. Let 𝑡,𝑢 be distinct variables in LVars,
and

𝑇𝑛 ≜ (𝜆 #»

𝜑 .∀𝑖 ∈ [1, 𝑘𝑛] . ⟨𝜑𝑖⟩ ∧ 𝜑𝑖 (𝑡) = 𝑖 ∧ 𝜑𝑖 (𝑢) = 𝑛)

𝑃 ′ ≜ (∀𝑖 . ∃⟨𝜑⟩. 𝜑𝐿 (𝑡) = 𝑖 ∧ 𝜑𝐿 (𝑢) = 2) ∧ (∀#»

𝜑 ,
#»

𝛾 .𝑇1 (
#»

𝜑 ) ∧𝑇2 (
#»

𝛾 ) ⇒ ( #»

𝜑 ,
#»

𝛾 ) ∈ 𝑃)

𝑄 ′ ≜ (∀
#»

𝜑 ′.𝑇1 (𝜑 ′) ⇒ (∃
#»

𝛾 ′.𝑇2 (
#»

𝛾 ′) ∧ (
#»

𝜑 ′,
#»

𝛾 ′) ∈ 𝑄))

where 𝑡,𝑢 do not occur free in 𝑃 or 𝑄 . Then |=k−UE (k1,k2) {𝑃} 𝐶 {𝑄} ⇐⇒ |= {𝑃 ′} 𝐶 {𝑄 ′}.

This proposition borrows ideas from the translations of other logics we saw earlier. In particular,

we use a logical variable 𝑡 to tag the executions, and an additional logical variable 𝑢 that indicates

whether a state is universally (𝑢 = 1) or existentially (𝑢 = 2) quantified.

∃∀-hyperproperties. To the best of our knowledge, no existing Hoare logic can express ∃∀-
hyperproperties, i.e., the existence of executions in relation to all other executions. As shown by

the example in Sect. 3, ∃∀-hyperproperties naturally arise when disproving a ∀∃-hyperproperty
(such as GNI), where the existential part can be thought of as a counter-example, and the universal

part as the proof that this is indeed a counter-example. The existence of a minimum for a function

computed by a command 𝐶 is another simple example of an ∃∀-property, as shown in App. D.2.1.

Properties using other comprehensions. Some interesting program hyperproperties cannot be

expressed by quantifying over states, but require other comprehensions over the set of states, such

as counting or summation. As an example, the hyperproperty “there are exactly 𝑛 different possible

outputs for any given input” cannot be expressed by quantifying over the states, but requires

counting. Other examples of such hyperproperties include statistical properties about a program:

Example 2. Mean number of requests. Consider a command𝐶 that, given some input 𝑥 , retrieves
and returns information from a database. At the end of the execution of 𝐶 , variable 𝑛 contains the
number of database requests that were performed. If the distribution of the inputs is restricted by the
precondition 𝑃 (e.g., the inputs are uniformly distributed), then the following hyper-triple expresses
that the average number of requests performed by 𝐶 is at most 2:

{𝑃} 𝐶 {𝜆𝑆.mean𝑥𝑛 ({𝜑𝑃 | 𝜑 ∈ 𝑆}) ≤ 2}

where mean𝑥𝑛 computes the average (using a suitable definition for the average if the set is infinite) of
the value of 𝑛 based on the distribution of inputs 𝑥 .

To the best of our knowledge, Hyper Hoare Logic is the only Hoare logic that can prove this

property; existing logics neither support reasoning about mean-comprehensions over multiple

execution states nor reasoning about infinitely many executions at the same time (which is necessary
if the domain of input 𝑥 is infinite).
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1:34 Anon.

Relational program properties. Relational program properties typically relate executions of several

different programs and, thus, do not correspond to program hyperproperties as defined in Def. 8.

However, it is possible to construct a single program that encodes the executions of several given

programs, such that relational properties can be expressed as hyperproperties of the constructed

program and proved in Hyper Hoare Logic.

We illustrate this approach on program refinement [Abadi and Lamport 1991]. A command 𝐶2

refines a command𝐶1 iff the set of pairs of pre- and post-states of𝐶2 is a subset of the corresponding

set of 𝐶1. Program refinement is a ∀∃-property, where the ∀ and the ∃ apply to different programs.

To encode refinement, we construct a new program that non-deterministically executes either 𝐶1

or 𝐶2, and we track in a logical variable 𝑡 which command was executed. This encoding allows us

to express and prove refinement in Hyper Hoare Logic (under the assumption that the constructed

program correctly reflects the executions of 𝐶1 and 𝐶2):

Example 3. Expressing program refinement in Hyper Hoare Logic.
Let 𝐶 ≜ (t B 1; 𝐶1) + (t B 2; 𝐶2). If 𝑡 does not occur free in 𝐶1 or 𝐶2 then 𝐶2 refines 𝐶1 iff

|= {⊤} 𝐶 {∀⟨𝜑⟩. 𝜑𝑃 (𝑡) = 2 ⇒ ⟨(𝜑𝐿, 𝜑𝑃 [𝑡 B 1])⟩}

This example illustrates a general methodology to transform a relational property over different

programs into an equivalent hyperproperty for a new program, and thus to reason about relational

program properties in Hyper Hoare Logic. Relational logics typically provide rules that align and

relate parts of the different program executions; we present such a rule for Hyper Hoare Logic in

App. H.

This section demonstrated that Hyper Hoare Logic is sufficiently expressive to prove and disprove

arbitrary hyperproperties as defined in Def. 8. Thereby, it captures and goes beyond the properties

handled by existing Hoare logics.
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D COMPOSITIONALITY

∀𝜑1, 𝜑2.

(
𝜑𝐿
1
= 𝜑𝐿

2
∧ ⊢ {⟨𝜑1⟩} 𝐶 {⟨𝜑2⟩} =⇒ ⊢ {𝑃𝜑1

} 𝐶 {𝑄𝜑2
}
)
(Linking)

⊢ {∀⟨𝜑⟩. 𝑃𝜑 } 𝐶 {∀⟨𝜑⟩. 𝑄𝜑 }

⊢ {𝑃1} 𝐶 {𝑄1} ⊢ {𝑃2} 𝐶 {𝑄2}
(And)

⊢ {𝑃1 ∧ 𝑃2} 𝐶 {𝑄1 ∧𝑄2}
⊢ {𝑃1} 𝐶 {𝑄1} ⊢ {𝑃2} 𝐶 {𝑄2}

(Or)
⊢ {𝑃1 ∨ 𝑃2} 𝐶 {𝑄1 ∨𝑄2}

⊢ {𝑃} 𝐶 {𝑄} no ∃⟨_⟩ in 𝐹 wr (𝐶) ∩ rd (𝐹 ) = ∅
(FrameSafe)

⊢ {𝑃 ∧ 𝐹 } 𝐶 {𝑄 ∧ 𝐹 }

∀𝑥 . (⊢ {𝑃𝑥 } 𝐶 {𝑄𝑥 })
(Forall)

⊢ {∀𝑥 . 𝑃𝑥 } 𝐶 {∀𝑥 .𝑄𝑥 }

∀𝑥 . (⊢ {𝑃𝑥 } 𝐶 {𝑄𝑥 })
(IndexedUnion)

⊢ {
⊗

𝑥 ∈𝑋
𝑃𝑥 } 𝐶 {

⊗
𝑥 ∈𝑋

𝑄𝑥 }

⊢ {𝑃1} 𝐶 {𝑄1} ⊢ {𝑃2} 𝐶 {𝑄2}
(Union)

⊢ {𝑃1 ⊗ 𝑃2} 𝐶 {𝑄1 ⊗ 𝑄2}

⊢ {𝑃} 𝐶 {𝑄}
(BigUnion)

⊢ {
⊗

𝑃} 𝐶 {
⊗

𝑄}

⊢ {𝑃} 𝐶 {𝑄} wr (𝐶) ∩ rd (𝑏) = ∅
(Specialize)

⊢ {Π𝑏 [𝑃]} 𝐶 {Π𝑏 [𝑄]}

𝑃 ⇒𝑉 𝑃 ′ ⊢ {𝑃 ′} 𝐶 {𝑄} inv𝑉 (𝑄)
(LUpdate)

⊢ {𝑃} 𝐶 {𝑄}

⊢ {𝑃 ∧ (∀⟨𝜑⟩. 𝜑 (𝑡) = 𝑒 (𝜑))} 𝐶 {𝑄} 𝑡 ∉ rd (𝑃) ∪ rd (𝑄) ∪ fv(𝑒)
(LUpdateS)

⊢ {𝑃} 𝐶 {𝑄}

⊢ {𝑃} 𝐶 {𝑄}
(AtMost)

⊢ {⊑ 𝑃} 𝐶 {⊑ 𝑄}
⊢ {𝑃} 𝐶 {𝑄}

(AtLeast)
⊢ {⊒ 𝑃} 𝐶 {⊒ 𝑄}

(True)
⊢ {𝑃} 𝐶 {⊤}

(False)
⊢ {⊥} 𝐶 {𝑄}

(Empty)
⊢ {emp} 𝐶 {emp}

Fig. 11. Compositionality rules of Hyper Hoare Logic. All these rules have been proven sound in Isabelle/HOL.
wr (𝐶) corresponds to the set of program variables that are potentially written by 𝐶 (i.e., that appear on the
left-hand side of an assignment), while rd (𝐹 ) corresponds to the set of program variables that appear in look-
up expressions for quantified states. For example, rd (∀⟨𝜑⟩. ∃𝑛. 𝜑𝑃 (𝑥) = 𝑛2) = {𝑥}. The operators

⊗
, ⊑, and ⊒

are defined as follows:
⊗

𝑃 ≜ (𝜆𝑆. ∃𝐹 . (𝑆 =
⋃

𝑆′∈𝐹 𝑆
′) ∧ (∀𝑆 ′ ∈ 𝐹 . 𝑃 (𝑆 ′))), ⊑ 𝑃 ≜ (𝜆𝑆. ∃𝑆 ′. 𝑆 ⊆ 𝑆 ′ ∧ 𝑃 (𝑆 ′)),

and ⊒ 𝑃 ≜ (𝜆𝑆. ∃𝑆 ′. 𝑆 ′ ⊆ 𝑆 ⇒ 𝑃 (𝑆 ′)).

The core rules of Hyper Hoare Logic allow one to prove any valid hyper-triple, but not necessarily

compositionally, as explained in Sect. 3.6. As an example, consider the sequential composition of a

command 𝐶1 that satisfies generalized non-interference (GNI) with a command 𝐶2 that satisfies

non-interference (NI). We would like to prove that 𝐶1; 𝐶2 satisfies GNI (the weaker property).

As discussed in Sect. 2.3, a possible postcondition for 𝐶1 is GNIℎ
𝑙
≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. ∃⟨𝜑⟩. 𝜑𝐿

1
(ℎ) =

𝜑𝐿 (ℎ)∧𝜑𝑃 (𝑙) = 𝜑𝑃
2
(𝑙)), while a possible precondition for𝐶2 is low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑙) = 𝜑2 (𝑙)).
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1:36 Anon.

The corresponding hyper-triples for𝐶1 and𝐶2 cannot be composed using the core rules. In particular,

rule Seq cannot be applied (even in combination with Cons), since the postcondition of 𝐶1 does

not imply the precondition of 𝐶2. Note that this observation does not contradict completeness: By

Thm. 2, it is possible to prove more precise triples for 𝐶1 and 𝐶2, such that the postcondition of 𝐶1

matches the precondition of𝐶2. However, to enable modular reasoning, our goal is to construct the

proof by composing the given triples for the individual commands rather than deriving new ones.

In this section, we present compositionality rules for hyper-triples (App. D.1). These rules are
admissible in Hyper Hoare Logic, in the sense that they do not modify the set of valid hyper-triples

that can be proved. Rather, these rules enable flexible compositions of hyper-triples (such as those

discussed above). We illustrate these rules on two examples (App. D.2): Composing minimality

with monotonicity, and GNI with NI. All technical results presented in this section (soundness

of the rules shown in Fig. 11 and validity of the examples) have been formalized and proved in

Isabelle/HOL.

D.1 Compositionality Rules
Fig. 11 shows a (selection of) compositionality rules for Hyper Hoare Logic, which we discuss

below.

Linking. To prove hyper-triples of the form {∀⟨𝜑1⟩. 𝑃𝜑1
} 𝐶 {∀⟨𝜑2⟩. 𝑄𝜑2

}, the rule Linking consid-

ers each pair of pre-state 𝜑1 and post-state 𝜑2 separately, and lets one assume that 𝜑2 can be reached

by executing 𝐶 in the state 𝜑1, and that logical variables do not change during this execution.

Conjunctions and disjunctions. Hyper Hoare Logic admits the usual rules for conjunction (And
and Forall) and disjunction (Or in Fig. 11, on top of the core rule Exist in Fig. 3).

Framing. Similarly to the frame rules in Hoare logic and separation logic [Reynolds 2002], Hyper

Hoare Logic admits rules that allow us to frame information about states that is not affected by

the execution of 𝐶 . The rule FrameSafe allows us to frame any hyperassertion 𝐹 if (1) it does not

refer to variables that the program can modify, and (2) it does not existentially quantify over states.

While (1) is standard, (2) is specific to hyper-assertions: Framing the existence of a state (e.g., with

𝐹 ≜ ∃⟨𝜑⟩.⊤) would be unsound if the execution of the program in the state 𝜑 does not terminate.

We show in App. E that restriction (2) can be lifted if 𝐶 terminates. We also show an example of

how this rule is used in App. F.

Decompositions. As explained at the beginning of this section, the two triples {𝑃} 𝐶1 {GNIℎ
𝑙
}

and {low(𝑙)} 𝐶2 {𝑄} cannot be composed because GNIℎ
𝑙
does not entail low(𝑙) (not all states in the

set 𝑆 of final states of 𝐶1 need to have the same value for 𝑙). However, we can prove GNI for the

composed commands by decomposing 𝑆 into subsets that all satisfy low(𝑙) and considering each

subset separately. The rule BigUnion allows us to perform this decomposition (formally expressed

with the hyper-assertion

⊗
low(𝑙)), use the specification of𝐶2 on each of these subsets (since they

all satisfy the precondition of 𝐶2), and eventually recompose the final set of states (again with the

operator

⊗
) to prove our desired postcondition. Hyper Hoare Logic also admits rules for binary

unions (rule Union) and indexed unions (rule IndexedUnion).
Note that unions (⊗ and

⊗
) and disjunctions in hyper-assertions are very different: (𝑃 ⊗ 𝑄) (𝑆)

expresses that the set 𝑆 can be decomposed into two sets 𝑆𝑃 (satisfying 𝑃 ) and 𝑆𝑄 (satisfying

𝑄), while (𝑃 ∨𝑄) (𝑆) expresses that the entire set 𝑆 satisfies 𝑃 or 𝑄 . Similarly, intersections and

conjunctions are very different: While Hyper Hoare Logic admits conjunction rules, rules based on

intersections would be unsound, as shown by the following example:
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Example 4. Let 𝑃1 ≜ (𝜆𝑆. ∃𝜑. 𝑆 = {𝜑} ∧ 𝜑 (𝑥) = 1), and 𝑃2 ≜ (𝜆𝑆. ∃𝜑. 𝑆 = {𝜑} ∧ 𝜑 (𝑥) = 2). Both
triples {𝑃1} x B 1 {𝑃1} and {𝑃2} x B 1 {𝑃1} are valid, but the triple

{𝜆𝑆. ∃𝑆1, 𝑆2 . 𝑆 = 𝑆1 ∩ 𝑆2 ∧ 𝑃1 (𝑆1) ∧ 𝑃2 (𝑆2)} x B 1 {𝜆𝑆. ∃𝑆1, 𝑆2 . 𝑆 = 𝑆1 ∩ 𝑆2 ∧ 𝑃1 (𝑆1) ∧ 𝑃1 (𝑆2)}

is invalid, as the precondition is equivalent to emp, but the postcondition is satisfiable by a non-empty
set (with states satisfying 𝑥 = 1).

Specializing hyper-triples. By definition, a hyper-triple can only be applied to a set of states that

satisfies its precondition, which can be restrictive. In cases where only a subset of the current set of
states satisfies the precondition, one can obtain a specialized triple using the rule Specialize. This
rule uses the syntactic transformation Π𝑏 defined in Sect. 4.3 to weaken both the precondition

and the postcondition of the triple, which is sound as long as the validity of 𝑏 is not influenced

by executing 𝐶 . Intuitively, Π𝑏 [𝑃] holds for a set 𝑆 iff 𝑃 holds for the subset of states from 𝑆 that

satisfy 𝑏. As an example, the triple

{□(𝑡=1⇒𝑥≥0)∧□(𝑡=2⇒𝑥<0)} 𝐶 {∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2⇒𝜑1 (𝑦)≥𝜑2 (𝑦)}, whose postcon-
dition corresponds to mono𝑡𝑦 , can be derived from the two triples {□(𝑥 ≥ 0)} 𝐶 {□(𝑦 ≥ 0)} and
{□(𝑥 < 0)} 𝐶 {□(𝑦 < 0)}, by applying the rule Specialize twice, using 𝑏 ≜ (𝑡=1) and 𝑏 ≜ (𝑡=2)
respectively, followed by the consequence rule.

Logical updates. Logical variables play an important role in the expressivity of the logic: As we

have informally shown in Sect. 2.2, and as we formally show in App. C, relational specifications are

typically expressed in Hyper Hoare Logic by using logical variables to formally link the pre-state

of an execution with the corresponding post-states. Since logical variables cannot be modified by

the execution, these tags are preserved.

To apply this proof strategy with existing triples, it is often necessary to update logical variables

to introduce such tags. The rule LUpdate allows us to update the logical variables in a set𝑉 , provided

that (1) from every set of states 𝑆 that satisfies 𝑃 , we can obtain a new set of states 𝑆 ′ that satisfies
𝑃 ′
, by only updating (for each state) the logical variables in 𝑉 , (2) we can prove the triple with the

updated set of initial states, and (3) the postcondition 𝑄 cannot distinguish between two sets of

states that are equivalent up to logical variables in 𝑉 . We formalize this intuition in the following:

Definition 23. Logical updates. Let 𝑉 be a set of logical variable names. Two states 𝜑1 and 𝜑2

are equal up to logical variables 𝑉 , written 𝜑1

𝑉
= 𝜑2, iff ∀𝑖 . 𝑖 ∉ 𝑉 ⇒ 𝜑𝐿

1
(𝑖) = 𝜑𝐿

2
(𝑖) and 𝜑𝑃

1
= 𝜑𝑃

2
.

Two sets of states 𝑆1 and 𝑆2 are equivalent up to logical variables 𝑉 , written 𝑆1
𝑉
= 𝑆2, iff every state

𝜑1 ∈ 𝑆1 has a corresponding state 𝜑2 ∈ 𝑆2 with the same values for all variables except those in 𝑉 , and
vice-versa:

(∀𝜑1 ∈ 𝑆1. ∃𝜑2 ∈ 𝑆2. 𝜑1

𝑉
= 𝜑2) ∧ (∀𝜑2 ∈ 𝑆2. ∃𝜑1 ∈ 𝑆1 . 𝜑1

𝑉
= 𝜑2)

A hyper-assertion 𝑃 entails a hyper-assertion 𝑃 ′ modulo logical variables 𝑉 , written 𝑃
𝑉⇒ 𝑃 ′, iff

∀𝑆. 𝑃 (𝑆) =⇒ (∃𝑆 ′. 𝑃 ′(𝑆 ′) ∧ 𝑆
𝑉
= 𝑆 ′)

Finally, a hyper-assertion 𝑃 is invariant with respect to logical updates in 𝑉 , written inv𝑉 (𝑃), iff

∀𝑆1, 𝑆2 . 𝑆1
𝑉
= 𝑆2 =⇒ (𝑃 (𝑆1) ⇐⇒ 𝑃 (𝑆2))

Note that inv𝑉 (𝑄) means that 𝑄 cannot inspect the value of logical variables in 𝑉 , but it usually

also implies that 𝑄 cannot check for equality between states, and cannot inspect the cardinality

of the set, since updating logical variables might collapse two states that were previously distinct

(because of distinct values for logical variables in 𝑉 ).
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⊢ {isSingleton} 𝐶2 {isSingleton}
(Specialize)

⊢ {Π𝑖=1 [isSingleton] } 𝐶2 {Π𝑖=1 [isSingleton] }
(FrameSafe)

⊢ {Π𝑖=1 [isSingleton] ∧ (∀⟨𝜑 ⟩. 𝜑𝐿 (𝑖) ∈ {1, 2})︸                                                     ︷︷                                                     ︸
𝑃′

} 𝐶2 {Π𝑖=1 [isSingleton] ∧ (∀⟨𝜑 ⟩. 𝜑𝐿 (𝑖) ∈ {1, 2})︸                                                     ︷︷                                                     ︸
𝑄′

} (1)

⊢ {𝑃 } 𝐶1 {hasMin𝑥 }
hasMin𝑥

{𝑖}
⇒ mono𝑖𝑥 ∧ 𝑃 ′

⊢ {mono𝑖𝑥 } 𝐶2 {mono𝑖𝑦 }
(1)

⊢ {𝑃 ′ } 𝐶2 {𝑄′ }
(And)

⊢ {mono𝑖𝑥 ∧ 𝑃 ′ } 𝐶2 {mono𝑖𝑦 ∧𝑄′ }
(Cons)

⊢ {mono𝑖𝑥 ∧ 𝑃 ′ } 𝐶2 {hasMin𝑦 } inv{𝑖} (hasMin𝑦 ) (LUpdate)
⊢ {hasMin𝑥 } 𝐶2 {hasMin𝑦 } (Seq)

⊢ {𝑃 } 𝐶1; 𝐶2 {hasMin𝑦 }

Fig. 12. A compositional proof that the sequential composition of a command that has a minimum and a
monotonic, deterministic command in turn has a minimum. Recall that isSingleton ≜ (∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 = 𝜑 ′),
and thus Π𝑖=1 [isSingleton] = (∃⟨𝜑⟩. 𝜑 (𝑖) = 1 ∧ (∀⟨𝜑 ′⟩. 𝜑 ′(𝑖) = 1 ⇒ 𝜑 = 𝜑 ′))

Since this rule requires semantic reasoning, we also derive a weaker syntactic version of this rule,

LUpdateS, which is easier to use. The rule LUpdateS allows us to strengthen a precondition 𝑃 to

𝑃 ∧ (∀⟨𝜑⟩. 𝜑 (𝑡) = 𝑒 (𝜑)), which corresponds to updating the logical variable 𝑡 with the expression

𝑒 , as long as the logical variable 𝑡 does not appear syntactically in 𝑃 , 𝑄 , and 𝑒 (and thus does

not influence their validity). For example, to connect the postcondition □(𝑥 = 0 ∨ 𝑥 = 1) to the

precondition mono𝑡𝑥 = (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑡) = 1 ∧ 𝜑2 (𝑡) = 2 ⇒ 𝜑1 (𝑥) ≥ 𝜑2 (𝑥)) described in Sect. 2.2,

one can use this rule to assign 1 to 𝑡 if 𝑥 = 1, and 2 otherwise. App. F shows a detailed example.

D.2 Examples
We now illustrate our compositionality rules on two examples: Composing minimality and mono-

tonicity, and composing strong and generalized non-interference.

D.2.1 Composing Minimality and Monotonicity. Consider a command 𝐶1 that computes a function

that has a minimum for 𝑥 , and a deterministic command𝐶2 that is monotonic from 𝑥 to 𝑦. We want

to prove compositionally that 𝐶1; 𝐶2 has a minimum for 𝑦.

More precisely, we assume that𝐶1 satisfies the specification {𝑃} 𝐶1 {hasMin𝑥 }, where hasMin𝑥 ≜
(∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑𝑃 (𝑥) ≤ 𝜑 ′𝑃 (𝑥)), and𝐶2 satisfies the two specifications {mono𝑖𝑥 } 𝐶2 {mono𝑖𝑦} (mono-

tonicity) and {isSingleton} 𝐶2 {isSingleton} (determinism
13
), where mono𝑖𝑥 ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝐿

1
(𝑖) =

1 ∧ 𝜑𝐿
2
(𝑖) = 2 ⇒ 𝜑𝑃

1
(𝑥) ≤ 𝜑𝑃

2
(𝑥)), and isSingleton ≜ (∃⟨𝜑⟩.∀⟨𝜑 ′⟩. 𝜑 = 𝜑 ′). With the core rules

alone, we cannot compose the two triples to prove that 𝐶1; 𝐶2 has a minimum for 𝑦 since the

postcondition of 𝐶1 does not imply the precondition of 𝐶2.

Fig. 12 shows a valid derivation in Hyper Hoare Logic of ⊢ {𝑃} 𝐶1; 𝐶2 {hasMin𝑦} (which we

have proved in Isabelle/HOL). The key idea is to use the rule LUpdate to mark the minimal state

with 𝑖 = 1, and all the other states with 𝑖 = 2, in order to match 𝐶1’s postcondition with 𝐶2’s

precondition. Note that we had to use the consequence rule to turn 𝐶2’s postcondition mono𝑖𝑦 ∧𝑄 ′

into hasMin𝑦 before applying the rule LUpdate, because the latter hyper-assertion is invariant w.r.t.

logical updates in {𝑖} (as required by the rule LUpdate), whereas the former is not.

13
This triple ensures that𝐶2 does not map the initial state with the minimum value for 𝑥 to potentially different states with

incomparable values for 𝑦 (the order ≤ on values might be partial). Moreover, it ensures that𝐶2 does not drop any initial

states because of an assume command or a non-terminating loop.
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⊢ {low (𝑙) } 𝐶2 {low (𝑙) }

⊢ {¬emp} 𝐶2 {¬emp}
(Specialize)

⊢ {Π
ℎ=𝜑𝐿

1
(ℎ) [¬emp] } 𝐶2 {Π

ℎ=𝜑𝐿
1
(ℎ) [¬emp] }

(𝐶𝑜𝑛𝑠)
⊢ {∃⟨𝜑 ⟩. 𝜑𝐿 (ℎ) = 𝜑𝐿

1
(ℎ) } 𝐶2 {∃⟨𝜑 ⟩. 𝜑𝐿 (ℎ) = 𝜑𝐿

1
(ℎ) }

(And)
⊢ {low (𝑙) ∧ (∃⟨𝜑 ⟩. 𝜑𝐿 (ℎ) = 𝜑𝐿

1
(ℎ)) } 𝐶2 {low (𝑙) ∧ (∃⟨𝜑 ⟩. 𝜑𝐿 (ℎ) = 𝜑𝐿

1
(ℎ)) }

(BigUnion)
⊢ {

⊗(
low (𝑙) ∧ (∃⟨𝜑 ⟩. 𝜑𝐿 (ℎ) = 𝜑𝐿

1
(ℎ))

)
} 𝐶2 {

⊗(
low (𝑙) ∧ (∃⟨𝜑 ⟩. 𝜑𝐿 (ℎ) = 𝜑𝐿

1
(ℎ))

)
}

(𝐶𝑜𝑛𝑠)
⊢ {∀⟨𝜑2 ⟩. ∃⟨𝜑 ⟩. 𝜑𝐿

1
(ℎ) = 𝜑𝐿 (ℎ) ∧ 𝜑𝑃

2
(𝑙) = 𝜑𝑃 (𝑙)︸                                                           ︷︷                                                           ︸

𝑃 ′
𝜑
1

} 𝐶2 {∀⟨𝜑2 ⟩. ∃⟨𝜑 ⟩. 𝜑𝐿
1
(ℎ) = 𝜑𝐿 (ℎ) ∧ 𝜑𝑃

2
(𝑙) = 𝜑𝑃 (𝑙)︸                                                           ︷︷                                                           ︸

𝑄′
𝜑
1

}

(2)

⊢ {low (𝑙) } 𝐶1 {GNIℎ
𝑙
}

using (2) and 𝜑𝐿
1
= 𝜑′𝐿

1
=⇒ 𝑄′

𝜑1

= 𝑄′
𝜑′
1

∀𝜑1, 𝜑
′
1
. (𝜑𝐿

1
= 𝜑′𝐿

1
∧ ⊢ {⟨𝜑1 ⟩ } 𝐶 { ⟨𝜑′

1
⟩ } =⇒ (⊢ {𝑃 ′

𝜑1

} 𝐶2 {𝑄′
𝜑′
1

})
(Linking)

⊢ {GNIℎ
𝑙
} 𝐶2 {GNIℎ

𝑙
}
(Seq)

⊢ {low (𝑙) } 𝐶1; 𝐶2 {GNIℎ
𝑙
}

Fig. 13. A compositional proof that the sequential composition of a command that satisfies GNI and a
command that satisfies NI in turn satisfies GNI.

The upper part of Fig. 12 shows the derivation of ⊢ {𝑃 ′} 𝐶2 {𝑄 ′}, which uses Specialize to restrict
the triple {isSingleton} 𝐶2 {isSingleton} to the subset of states where 𝑖 = 1, ensuring the existence

of a unique state (the minimum) where 𝑖 = 1 after executing 𝐶2. We also use the rule FrameSafe to
ensure that our set only contains states with 𝑖 = 1 or 𝑖 = 2.

D.2.2 Composing Generalized and Strong Non-Interference. To illustrate additional compositionality

rules, we re-visit the example introduced at the beginning of this section. Consider a command 𝐶1

that satisfies GNI (for a public variable 𝑙 and a secret variable ℎ) and a command𝐶2 that satisfies NI

(for the public variable 𝑙 ). We want to prove that 𝐶1; 𝐶2 satisfies GNI (for 𝑙 and ℎ).

More precisely, we assume that𝐶1 satisfies the hyper-triple ⊢ {low(𝑙)} 𝐶1 {GNIℎ
𝑙
}, where GNIℎ

𝑙
≜

(∀⟨𝜑1⟩, ⟨𝜑2⟩. ∃⟨𝜑⟩. 𝜑𝐿
1
(ℎ) = 𝜑𝐿 (ℎ)∧𝜑𝑃 (𝑙) = 𝜑𝑃

2
(𝑙)). Moreover, we assume that𝐶2 satisfies the triples

⊢ {low(𝑙)} 𝐶2 {low(𝑙)}, where low(𝑙) ≜ (∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑𝑃
1
(𝑙) = 𝜑𝑃

2
(𝑙)), and ⊢ {¬emp} 𝐶2 {¬emp}.

The second triple is needed to ensure that 𝐶2 does not drop executions depending on some values

for ℎ (e.g., because of secret-dependent non-termination), which might cause 𝐶1; 𝐶2 to violate GNI.

Fig. 13 shows a valid derivation of the triple ⊢ {low(𝑙)} 𝐶1; 𝐶2 {GNIℎ
𝑙
} (which we have proved in

Isabelle/HOL). The first key idea of this derivation is to use the rule Linking to eliminate the ∀⟨𝜑1⟩
in the pre- and postcondition of the triple {GNIℎ

𝑙
} 𝐶2 {GNIℎ

𝑙
}, while assuming that they have the

same value for the logical variable ℎ (implied by the assumption 𝜑𝐿
1
= 𝜑 ′𝐿

1
). The second key idea is

to decompose any set of states 𝑆 that satisfies 𝑃 ′
𝜑1

(defined as ∀⟨𝜑2⟩. ∃⟨𝜑⟩. 𝜑𝐿
1
(ℎ) = 𝜑𝐿 (ℎ) ∧𝜑𝑃

2
(𝑙) =

𝜑𝑃 (𝑙)) into a union of smaller sets that all satisfy low(𝑙) ∧ (∃⟨𝜑⟩. 𝜑𝐿
1
(ℎ) = 𝜑𝐿 (ℎ)). More precisely,

we rewrite 𝑆 as the union of all sets {𝜑, 𝜑2} for all 𝜑, 𝜑2 ∈ 𝑆 such that 𝜑𝐿
1
(ℎ) = 𝜑𝐿 (ℎ)∧𝜑𝑃

2
(𝑙) = 𝜑𝑃 (𝑙),

using the rule Cons. Unlike 𝑆 , these smaller sets all satisfy the precondition low(𝑙) of 𝐶2, which

allows us to leverage the triple ⊢ {low(𝑙)} 𝐶2 {low(𝑙)}. Finally, we use the rule Specialize to prove

that, after executing 𝐶2 in each of the smaller sets {𝜑, 𝜑2}, there will exist at least one state 𝜑 ′
with

𝜑 ′𝐿 (ℎ) = 𝜑𝐿
1
(ℎ).
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E TERMINATION-BASED REASONING
E.1 Termination-Based Rules
In App. D, we have introduced the rule FrameSafe (Fig. 4), which is sound only for hyper-assertions

that do not contain any ∃⟨_⟩, because the program 𝐶 around which we want to frame some hyper-

assertion might not terminate. Moreover, in Sect. 5.1, we have introduced the synchronized while

rule WhileSync (Fig. 6), which contains a emp disjunct in the postcondition of the conclusion,

which prevents this rule from being useful to prove hyperproperties of the form ∃+∀∗, i.e., with a

top-level existential quantifier over state. This emp disjunct corresponds to the case where the loop

terminates.

In this section, we show that we can overcome those two limitations by introducing total hyper-
triples, which are stronger than normal hyper-triples, in that they also ensure the existence of at

least one terminating execution for any initial state:

Definition 24. Total hyper-triples.

|=⇓ {𝑃} 𝐶 {𝑄} ≜
(
∀𝑆. 𝑃 (𝑆) ⇒ (𝑄 (sem(𝐶, 𝑆)) ∧ (∀𝜑 ∈ 𝑆. ∃𝜎 ′. ⟨𝐶,𝜑𝑃 ⟩ → 𝜎 ′))

)
For any program statement 𝐶 that does not contain any assume statement, both triples are

equivalent: |=⇓ {𝑃} 𝐶 {𝑄} ⇐⇒|= {𝑃} 𝐶 {𝑄}.
Using total hyper-triples, we can now express and prove sound (which we have done in Isabelle)

the following rules, which solve the aforementioned limitations:

wr (𝐶) ∩ fv(𝐹 ) = ∅ ⊢⇓ {𝑃} 𝐶 {𝑄} 𝐹 is a syntactic hyper-assertion

(Frame)
⊢⇓ {𝑃 ∧ 𝐹 } 𝐶 {𝑄 ∧ 𝐹 }

⊢⇓ {𝐼 ∧ □(𝑏 ∧ 𝑒 = 𝑡𝐿)} 𝐶 {𝐼 ∧ low(𝑏) ∧ □(𝑒 ≺ 𝑡𝐿)} ≺ well-founded 𝑡𝐿 ∉ rd (𝐼 )
(WhileSyncTot)

⊢⇓ {𝐼 ∧ low(𝑏)} while (𝑏) {𝐶} {𝐼 ∧ □(¬𝑏)}

As can be seen, the rule Frame can be used for any hyper-assertion expressed in the syntax

defined in Sect. 4.1. Unlike the ruleWhileSync, the ruleWhileSyncTot does not have the emp disjunct

in the postcondition of its conclusion anymore, and thus can be used to prove hyperproperties

of the form ∃+∀∗! It achieves this by requiring that (1) the loop body 𝐶 terminates (in the sense

of Def. 24), and (2) that the loop itself terminates, by requiring that a variant 𝑒 decreases in all

executions. The initial value of the variant 𝑒 is stored in the logical variable 𝑡𝐿 , such that it can be

referred to in the postcondition. Note that we can prove a total variant of each loop rule presented

in Sect. 5, by doing something similar as point (2) here, in order to obtain a complete proof system

for total hyper-triples.

E.2 (Dis-)Proving Termination
Hyper Hoare Logic in its current version is a “partial correctness” logic, in the sense that it proves

(hyper)properties about the set of terminating executions. By slightly strengthening the definition

of total hyper-triples (Def. 24) such that all executions are required to terminate, we could obtain

a “total correctness” version of Hyper Hoare Logic, with which we can prove that all considered

executions terminate. Note that, evenwith this stronger definition, the rules Frame andWhileSyncTot
would stay the same.

Notably, HHL could also be extended to disprove termination. To prove non-termination of a

loop while (𝑏) {𝐶}, one can express and prove that a set of states 𝑅, in which all states satisfy the
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loop guard 𝑏, is a recurrent set [Gupta et al. 2008]. 𝑅 is a recurrent set iff executing 𝐶 in any state

from 𝑅 leads to at least another state in 𝑅, which can easily be expressed as a hyper-triple:

{∃⟨𝜑⟩. 𝜑 ∈ 𝑅} 𝐶 {∃⟨𝜑⟩. 𝜑 ∈ 𝑅}
Thus, if one state from 𝑅 reaches while (𝑏) {𝐶}, we know that there is at least one non-

terminating execution.

Note that both extensions of Hyper Hoare Logic (to prove and disprove termination) would

require modifying the underlying semantic model of the logic; in particular, the extended semantics

in Def. 4 should be modified to also capture non-terminating executions. We do not expect such a

modification to pose any significant challenge.
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F FIBONACCI EXAMPLE
In this section, we show the proof that the program 𝐶fib from Fig. 8 is monotonic. Precisely, we

prove the triple

⊢ {∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2⇒𝜑1 (𝑛)≥𝜑2 (𝑛)} 𝐶fib {∀⟨𝜑1⟩,⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2⇒𝜑1 (𝑎)≥𝜑2 (𝑎)}
using the ruleWhile-∀∗∃∗

with the loop invariant 𝐼 ≜ ((∀⟨𝜑1⟩, ⟨𝜑2⟩. 𝜑1 (𝑡)=1∧𝜑2 (𝑡)=2 ⇒ (𝜑1 (𝑛)−𝜑1 (𝑖) ≥
𝜑2 (𝑛)−𝜑2 (𝑖) ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏))) ∧ □(𝑏 ≥ 𝑎 ≥ 0)).

{∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2⇒𝜑1 (𝑛) ≥𝜑2 (𝑛) }
{(∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−0 ≥ 𝜑2 (𝑛)−0 ∧ 0 ≥ 0 ∧ 1 ≥ 1)) ∧ □(1 ≥ 𝑎 ≥ 0) } (Cons)

a B 0;

{(∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−0 ≥ 𝜑2 (𝑛)−0 ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 1 ≥ 1)) ∧ □(1 ≥ 𝑎 ≥ 0) } (AssignS)

b B 1;

{(∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−0 ≥ 𝜑2 (𝑛)−0 ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏))) ∧ □(𝑏 ≥ 𝑎 ≥ 0) }
(AssignS)

i B 0;

{(∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−𝜑1 (𝑖) ≥ 𝜑2 (𝑛)−𝜑2 (𝑖) ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏))) ∧ □(𝑏 ≥ 𝑎 ≥ 0) }
(AssignS)

Fig. 14. First part of the proof, which proves that the loop invariant 𝐼 holds before the loop.

Fig. 14 shows the (trivial) first part of the proof, which proves that the loop invariant 𝐼 holds before

the loop, and Fig. 15 shows the proof of ⊢ {𝐼 } if (𝑖 < 𝑛) {𝐶𝑏𝑜𝑑𝑦} {𝐼 }, the fist premise of the rule

While-∀∗∃ (the second premise is trivial). In Fig. 15, we first record the initial values of 𝑎, 𝑏, and 𝑖 in

the logical variables 𝑣𝑎 , 𝑣𝑏 , and 𝑣𝑖 , respectively, using the rule LUpdateS presented in App. D.We then

split our new hyper-assertion into a simple part, ∀⟨𝜑⟩. 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧𝜑 (𝑎) = 𝜑 (𝑣𝑎) ∧𝜑 (𝑏) = 𝜑 (𝑣𝑏),
and a frame 𝐹 which stores the relevant information from the invariant 𝐼 with the initial values.

This frame is then framed around the if-statement, using the rule FrameSafe from App. D. The

proof of the branches is straightforward; the postconditions of the two branches are combined via

the rule Choice.
We finally conclude with the consequence rule. This last entailment is justified by a case distinc-

tion. Let 𝜑1, 𝜑2 be two states such that 𝜑1 (𝑡) = 1, 𝜑2 (𝑡) = 2, and ⟨𝜑1⟩ and ⟨𝜑2⟩ hold. From the frame

𝐹 , we know that 𝜑1 (𝑣𝑎) ≥ 𝜑2 (𝑣𝑎), and 𝜑1 (𝑣𝑏) ≥ 𝜑2 (𝑣𝑏). We conclude the proof by distinguishing

the following three cases (the proof for each case is straightforward): (1) Both 𝜑1 and 𝜑2 took the

then branch of the if statement, i.e., 𝜑1 (𝑣𝑖 ) < 𝜑1 (𝑛) and 𝜑2 (𝑣𝑖 ) < 𝜑2 (𝑛), and thus both are in the set

characterized by𝑄1. (2) Both 𝜑1 and 𝜑2 took the else branch, i.e., 𝜑1 (𝑣𝑖 ) ≥ 𝜑1 (𝑛) and 𝜑2 (𝑣𝑖 ) ≥ 𝜑2 (𝑛).
and thus both are in the set characterized by 𝑄2. (3) 𝜑1 took the then branch and 𝜑2 took the else

branch, i.e., 𝜑1 (𝑣𝑖 ) < 𝜑1 (𝑛) and 𝜑2 (𝑣𝑖 ) ≥ 𝜑2 (𝑛), and thus 𝜑1 is in the set characterized by𝑄1 and 𝜑2

is in the set characterized by 𝑄2.

Importantly, the fourth case is not possible, because this would imply 𝜑2 (𝑛) − 𝜑2 (𝑣𝑖 ) > 0 ≥
𝜑1 (𝑛) − 𝜑1 (𝑣𝑖 ), which contradicts the inequality 𝜑1 (𝑛) − 𝜑1 (𝑣𝑖 ) ≥ 𝜑2 (𝑛) − 𝜑2 (𝑣𝑖 ) from the frame 𝐹 .
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{∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−𝜑1 (𝑖) ≥ 𝜑2 (𝑛)−𝜑2 (𝑖) ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏)) ∧ □(𝑏 ≥ 𝑎 ≥ 0) }
{∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−𝜑1 (𝑖) ≥ 𝜑2 (𝑛)−𝜑2 (𝑖) ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏)) ∧ □(𝑏 ≥ 𝑎 ≥ 0) ∧ □(𝑣𝑎 = 𝑎 ∧ 𝑣𝑏 = 𝑏 ∧ 𝑣𝑖 = 𝑖) }

(LUpdateS)

{(∀⟨𝜑 ⟩. 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑎 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ))
∧ (∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 ) = 1 ∧ 𝜑2 (𝑡 ) = 2 ⇒ 𝜑1 (𝑣𝑎 ) ≥ 𝜑2 (𝑣𝑎 ) ≥ 0 ∧ 𝜑1 (𝑣𝑏 ) ≥ 𝜑2 (𝑣𝑏 ) ≥ 0 ∧ 𝜑1 (𝑛) − 𝜑1 (𝑣𝑖 ) ≥ 𝜑2 (𝑛) − 𝜑2 (𝑣𝑖 ))︸                                                                                                                                                                          ︷︷                                                                                                                                                                          ︸

𝐹

} (Cons)

{∀⟨𝜑 ⟩. 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑎 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ) }
if (∗) {

{∀⟨𝜑 ⟩. 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑎 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ) }
{∀⟨𝜑 ⟩. 𝜑 (𝑖) < 𝜑 (𝑛) ⇒ 𝜑 (𝑣𝑖 ) < 𝜑 (𝑛) ∧ 𝜑 (𝑖) + 1 = 𝜑 (𝑣𝑖 ) + 1 ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ) ∧ 𝜑 (𝑎) + 𝜑 (𝑏) = 𝜑 (𝑣𝑎 ) + 𝜑 (𝑣𝑏 ) } (Cons)

assume i < n;

{∀⟨𝜑 ⟩. 𝜑 (𝑣𝑖 ) < 𝜑 (𝑛) ∧ 𝜑 (𝑖) + 1 = 𝜑 (𝑣𝑖 ) + 1 ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ) ∧ 𝜑 (𝑎) + 𝜑 (𝑏) = 𝜑 (𝑣𝑎 ) + 𝜑 (𝑣𝑏 ) } (AssumeS)

tmp B b;

b B a + b;

a B tmp;

i B i + 1

{∀⟨𝜑 ⟩. 𝜑 (𝑣𝑖 ) < 𝜑 (𝑛) ∧ 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) + 1 ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑏 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑎 ) + 𝜑 (𝑣𝑏 )︸                                                                                                            ︷︷                                                                                                            ︸
𝑄
1

} (AssignS)

}
else {

{∀⟨𝜑 ⟩. 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑎 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ) }
{∀⟨𝜑 ⟩. 𝜑 (𝑖) ≥ 𝜑 (𝑛) ⇒ 𝜑 (𝑣𝑖 ) ≥ 𝜑 (𝑛) ∧ 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑎 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 ) } (Cons)

assume ¬(i < n)
{∀⟨𝜑 ⟩. 𝜑 (𝑣𝑖 ) ≥ 𝜑 (𝑛) ∧ 𝜑 (𝑖) = 𝜑 (𝑣𝑖 ) ∧ 𝜑 (𝑎) = 𝜑 (𝑣𝑎 ) ∧ 𝜑 (𝑏) = 𝜑 (𝑣𝑏 )︸                                                                                           ︷︷                                                                                           ︸

𝑄
2

} (AssumeS)

}
{𝑄1 ⊗𝑄2 } (Choice)

{(𝑄1 ⊗𝑄2) ∧ 𝐹 } (FrameSafe)

{∀⟨𝜑1 ⟩, ⟨𝜑2 ⟩. 𝜑1 (𝑡 )=1∧𝜑2 (𝑡 )=2 ⇒ (𝜑1 (𝑛)−𝜑1 (𝑖) ≥ 𝜑2 (𝑛)−𝜑2 (𝑖) ∧ 𝜑1 (𝑎) ≥ 𝜑2 (𝑎) ∧ 𝜑1 (𝑏) ≥ 𝜑2 (𝑏)) ∧ □(𝑏 ≥ 𝑎 ≥ 0) } (Cons)

Fig. 15. Second part of the proof. This proof outline shows ⊢ {𝐼 } if (𝑖 < 𝑛) {𝐶𝑏𝑜𝑑𝑦} {𝐼 }, the first premise of
the ruleWhile-∀∗∃, where 𝐶𝑏𝑜𝑑𝑦 refers to the body of the loop.
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1:44 Anon.

G MINIMUM EXAMPLE
This section contains the proof, using the ruleWhile-𝑒𝑥𝑖𝑠𝑡𝑠 , that the program𝐶𝑚 from Fig. 9 satisfies

the triple

{¬emp ∧ □(𝑘 ≥ 0)} 𝐶𝑚 {∃⟨𝜑⟩.∀⟨𝛼⟩. 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 𝜑 (𝑦) ≤ 𝛼 (𝑦)}
Fig. 16 contains the (trivial) first part of the proof, which justifies that the hyper-assertion

∃⟨𝜑⟩. 𝑃𝜑 , where 𝑃𝜑 ≜ (∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)),
holds before the loop, as required by the precondition of the conclusion of the rule While-∃.
Fig. 17 shows the proof of the first premise of the ruleWhile-∃, namely

∀𝑣 . ∃⟨𝜑⟩. ⊢ {𝑃𝜑 ∧ 𝜑 (𝑖) < 𝜑 (𝑘) ∧ 𝑣 = 𝜑 (𝑘) − 𝜑 (𝑖)} if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} {∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝜑 (𝑘) − 𝜑 (𝑖) ≺ 𝑣}
where 𝐶𝑏𝑜𝑑𝑦 is the body of the loop.

Finally, Fig. 18 shows the proof of the second premise of the rule While-∃. More precisely, it

shows

∀𝜑. ⊢ {𝑄𝜑 } if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} {𝑄𝜑 }
where 𝑄𝜑 ≜ ∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦), from which we easily derive the second

premise of the rule While-∃, using the consequence rule (since 𝑃𝜑 clearly entails 𝑄𝜑 ), and the rule

While-∀∗∃∗
rule.

{¬emp ∧ □(𝑘 ≥ 0)}
{∃⟨𝜑⟩.∀⟨𝛼⟩. 0 ≤ 0 ≤ 0 ∧ 0 ≤ 0 ≤ 0 ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 0 = 0} (Cons)

x B 0;

{∃⟨𝜑⟩.∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 0 ≤ 0 ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 0 = 0} (AssignS)

y B 0;

{∃⟨𝜑⟩.∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 0 = 0} (AssignS)

i B 0;

{∃⟨𝜑⟩.∀⟨𝛼⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)} (AssignS)

Fig. 16. First part of the proof: Establishing the first loop invariant ∃⟨𝜑⟩. 𝑃𝜑 .
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{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑖) < 𝜑 (𝑘) ∧ 𝑣 = 𝜑 (𝑘)−𝜑 (𝑖) }
if (𝑖 < 𝑘) {

{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑖) < 𝜑 (𝑘) ∧ 𝑣 = 𝜑 (𝑘)−𝜑 (𝑖) ∧ □(𝑖 < 𝑘) }
{∃⟨𝜑 ⟩. ∃𝑢.𝑢 ≥ 2 ∧ (∀⟨𝛼 ⟩. ∀𝑣. 𝑣 ≥ 2 ⇒ 0 ≤ 2 ∗ 𝜑 (𝑥) +𝑢 ≤ 2 ∗ 𝛼 (𝑥) + 𝑣 ∧ 0 ≤ 𝜑 (𝑦) + 𝜑 (𝑥) ∗𝑢 ≤ 𝛼 (𝑦) + 𝛼 (𝑥) ∗ 𝑣
∧𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) + 1 = 𝛼 (𝑖) + 1) ∧ 𝜑 (𝑘)−𝜑 (𝑖) ≺ 𝑣 } (Cons (1))

r B nonDet () ;
assume r ≥ 2;

{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 2 ∗ 𝜑 (𝑥) + 𝜑 (𝑟 ) ≤ 2 ∗ 𝛼 (𝑥) + 𝛼 (𝑟 ) ∧ 0 ≤ 𝜑 (𝑦) + 𝜑 (𝑥) ∗ 𝜑 (𝑟 ) ≤ 𝛼 (𝑦) + 𝛼 (𝑥) ∗ 𝛼 (𝑟 ) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) + 1 = 𝛼 (𝑖) + 1)
∧𝜑 (𝑘)−𝜑 (𝑖) ≺ 𝑣 } (HavocS, AssumeS)

t B x;

x B 2 ∗ x + r ;

y B y + t ∗ r ;

i B i + 1

{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑘)−𝜑 (𝑖) ≺ 𝑣 } (AssignS)

}
else {

{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑖) < 𝜑 (𝑘) ∧ 𝑣 = 𝜑 (𝑘)−𝜑 (𝑖) ∧ □(𝑖 ≥ 𝑘) }
{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑘)−𝜑 (𝑖) ≺ 𝑣 } (Cons (2))

skip

{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑘)−𝜑 (𝑖) ≺ 𝑣 } (Skip)

}
{∃⟨𝜑 ⟩. (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) ∧ 𝜑 (𝑘) ≤ 𝛼 (𝑘) ∧ 𝜑 (𝑖) = 𝛼 (𝑖)) ∧ 𝜑 (𝑘)−𝜑 (𝑖) ≺ 𝑣 } (IfSync)

Fig. 17. Second part of the proof. Establishing the first premise of the ruleWhile-∃,
∀𝑣 . ∃⟨𝜑⟩. ⊢ {𝑃𝜑 ∧ 𝜑 (𝑖) < 𝜑 (𝑘) ∧ 𝑣 = 𝜑 (𝑘) − 𝜑 (𝑖)} if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} {∃⟨𝜑⟩. 𝑃𝜑 ∧ 𝜑 (𝑘) − 𝜑 (𝑖) ≺ 𝑣}.
For Cons (1), we simply choose 𝑢 = 2. For Cons (2), we notice that 𝜑 (𝑖) < 𝜑 (𝑘) and □(𝑖 ≥ 𝑘) are inconsistent
(this branch is not taken at this stage), and thus the entailment trivially holds.
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1:46 Anon.

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) }
if (∗) {

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) }
{∀⟨𝛼 ⟩. 𝛼 (𝑖) < 𝛼 (𝑘) ⇒ ∀𝑣. 𝑣 ≥ 2 ⇒ 0 ≤ 𝜑 (𝑥) ≤ 2 ∗ 𝛼 (𝑥) + 𝑣 ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) + 𝛼 (𝑥) ∗ 𝑣 } (Cons)

assume i < k;

{∀⟨𝛼 ⟩. ∀𝑣. 𝑣 ≥ 2 ⇒ 0 ≤ 𝜑 (𝑥) ≤ 2 ∗ 𝛼 (𝑥) + 𝑣 ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) + 𝛼 (𝑥) ∗ 𝑣 } (AssumeS)

r B nonDet () ;
{∀⟨𝛼 ⟩. 𝛼 (𝑟 ) ≥ 2 ⇒ 0 ≤ 𝜑 (𝑥) ≤ 2 ∗ 𝛼 (𝑥) + 𝛼 (𝑟 ) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) + 𝛼 (𝑥) ∗ 𝛼 (𝑟 ) } (HavocS)

assume r ≥ 2;

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 2 ∗ 𝛼 (𝑥) + 𝛼 (𝑟 ) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) + 𝛼 (𝑥) ∗ 𝛼 (𝑟 ) } (AssumeS)

t B x;

x B 2 ∗ x + r ;

y B y + t ∗ r ;

i B i + 1

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) } (AssignS)

}
else {

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) }
{∀⟨𝛼 ⟩. 𝛼 (𝑖) ≥ 𝛼 (𝑘) ⇒ 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) } (Cons)

assume i ≥ k;

skip

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) } (AssumeS, Skip)

}
{(∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦)) ⊗ (∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦)) } (Choice)

{∀⟨𝛼 ⟩. 0 ≤ 𝜑 (𝑥) ≤ 𝛼 (𝑥) ∧ 0 ≤ 𝜑 (𝑦) ≤ 𝛼 (𝑦) } (Cons)

Fig. 18. Third part of the proof. This proof outline shows ∀𝜑. ⊢ {𝑄𝜑 } if (𝑖 < 𝑘) {𝐶𝑏𝑜𝑑𝑦} {𝑄𝜑 }.
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H SYNCHRONOUS REASONING OVER DIFFERENT BRANCHES
The central thesis of this paper is that reasoning about how sets of states are affected by one program
command is powerful enough to reason about any program hyperproperty, which is supported by

our completeness result (Thm. 2).

However, reasoning about (for example) two executions of the same program sometimes boils

down to reasoning about two executions of two different but similar programs, because of branching.

One a priori appeal of relational program logics over Hyper Hoare Logic is thus the ability to reason

about two different branches synchronously.
As an example, imagine that we want to reason about 𝐶 ′ ≜ (x B x ∗ 2; 𝐶) +𝐶 . Except for the

assignment that happens only in one branch, the two branches are extremely similar. In a relational

program logic, we can exploit this similarity by first reasoning about the assignment on its own,

and then reasoning about the two remaining branches 𝐶 and 𝐶 synchronously, since they are the

same.

On the other hand, with the rule If from Fig. 3, we would have to reason about the two branches

x B x ∗ 2; 𝐶 and 𝐶 separately, even though they are closely related.

This is not a fundamental limitation of Hyper Hoare Logic. We can indeed enable this kind of

synchronous reasoning in Hyper Hoare Logic, by adding specialized rules, as illustrated by Prop. 14

below.

Let us first define the following notation:

Notation 1.

(𝐴 ⊗𝑥=1,2 𝐵) (𝑆) ≜ (𝐴({(𝑙, 𝜎) | (𝑙, 𝜎) ∈ 𝑆 ∧ 𝑙 (𝑥) = 1})∧
𝐵({(𝑙, 𝜎) | (𝑙, 𝜎) ∈ 𝑆 ∧ 𝑙 (𝑥) = 2}))

The assertion 𝐴⊗𝑥=1,2 holds in a set 𝑆 iff the subset of all states in 𝑆 such that 𝑙 (𝑥) = 1 satisfies 𝐴,

and the subset of all states in 𝑆 such that 𝑙 (𝑥) = 2 must satisfy 𝐵.

Proposition 14. Synchronized if rule. If
(1) |= {𝑃} 𝐶1 {𝑃1}
(2) |= {𝑃} 𝐶2 {𝑃2}
(3) |= {𝑃1 ⊗𝑥=1,2 𝑃2} 𝐶 {𝑅1 ⊗𝑥=1,2 𝑅2}
(4) |= {𝑅1} 𝐶 ′

1
{𝑄1}

(5) |= {𝑅2} 𝐶 ′
2
{𝑄2}

(6) 𝑥 ∉ rd (𝑃1) ∪ rd (𝑃2) ∪ rd (𝑅1) ∪ rd (𝑅2)
Then |= {𝑃} (𝐶1; 𝐶; 𝐶

′
1
) + (𝐶2; 𝐶; 𝐶

′
2
) {𝑄1 ⊗ 𝑄2}.

This proposition shows how to reason synchronously about the program command (𝐶1; 𝐶; 𝐶
′
1
) +

(𝐶2; 𝐶; 𝐶
′
2
). Points 1) and 2) show that we can reason independently about the different parts of the

branches 𝐶1 and 𝐶2. Point 3) then shows how we can reason synchronously about the execution

of 𝐶 in both branches. Finally, points 4) and 5) show how to go back to reasoning independently

about each branch.
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