Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

1 Introduction

This artefact supports the paper titled “Hyperblock Scheduling for Verified High-Level Synthesis”. The
main points that this artefact directly supports are the following:

« Description of the Coq formalisation and how it relates to the paper.
« Reproduction of cycle counts between the various different versions of Vericert and Bambu for
the results.

The following claim is only supported if Xilinx Vivado 2023.2 has been installed separately. This is a
synthesis tool for Xilinx FPGAs, which is our target for the evaluation section. This tool is needed to get
accurate timing and area information for the results to get the final plots in the evaluation. Even then,
this flow is not automated and therefore only contains instructions on how to synthesise individual
benchmarks so that the numbers can be compared against:

+ Reproduction of final timing and area plots of the evaluation.

Instead, the raw results from the synthesis tool are provided to compare the results against.

2 Getting started guide

This artefact is distributed as a VM image (. ova file). This is mainly so that Bambu, original Vericert
and the current Vericert could be bundled into a single image. Vericert itself includes a flake.nix
file for nix which describes all necessary dependencies to build the project. This document will assume
that the VM is being used, and will reference the following file paths in the VM:

« ~/vericert-pldi2024: This corresponds to the hyperblock scheduling Vericert repository
which is the main artefact of this paper.

« ~/vericert-original: The original version of Vericert 1.2.2.

- ~/bambu: Directory that contains Bambu 2023.1.

2.1 Launching the VM

After downloading the VM, we recommend using VirtualBox. After launching VirtualBox, the VM can
be imported using File -> Import Appliance and then pointing it towards the OVA file that
was downloaded.

The VM can then be started by clicking on the vericert-pldi2024 VM and pressing on the Start
arrow.

This should boot to the login screen for the pldi user. The password is also: pldi. The password for
the root user is also pldi.

https://www.xilinx.com/support/download.html
https://nixos.org/download
https://www.virtualbox.org/

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

2.2 Opening Vericert directory

These instructions are also present on the VM as a PDF for easier copy-pasting (~/vericert-
pldi2024/README.pdf or ~/Desktop/README. pdf) and can be opened by clicking on the
Document Viewer in the side bar.

Launch a terminal (from the sidebar) and then go into the vericert-pldi2024 directory:
cd ~/vericert-pldi2024

Vericert is already pre-built in the VM under the ~/vericert-pldi2024 directory. The following
step therefore can be skipped. However, if one wants to rebuild Vericert from scratch, then it should take
around 15 mins.

To rebuild Vericert from scratch, one can clean the git repository completely and restart the build:

Remove the current build
make clean-all

Build cohpred (3-valued logic solver)
NOTE: It cannot be built with the -j flag
nix develop —--command make 1lib/COHPREDSTAMP

Build CompCert and Vericert
nix develop --command make -j

Install vericert in the ./bin directory
make 1install

This uses nix deve'lop to pull in all the right dependencies for the make build to succeed.

2.3 Running preliminary experiment

From the ~/vericert-pldi2024 directory, move to the benchmark/polybench-syn direc-
tory:

cd ~/vericert-pldi2024/benchmarks/polybench-syn

Then run one of the benchmarks through all of the five tools and simulate the resulting hardware design.
This will then capture the cycle count for each of the tool configurations.

« bambu-opt: Bambu with default optimisations.

« bambu-noopt: Bambu with optimisations turned off.

. vericert-original: Original version of Vericert.

« vericert-list-scheduling: Vericert with scheduling but without if-conversion.

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

- vericert-hyperblock: Vericert with full hyperblock scheduling.

using the following command in the polybench-syn directory.
cycle-counts.sh linear-algebra/kernels/bicg

This should succeed for all the tools and it should produce five CSV files with the name of the benchmark
that was run and the cycle counts for that benchmark:

cat bambu-opt-cycles.csv
contains: bicg,18404

cat bambu-noopt-cycles.csv
contains: bicg,63024

cat vericert-hyperblock-cycles.csv
contains: bicg,65812

cat vericert-list-scheduling-cycles.csv
contains: bicg,77513

cat vericert-original-cycles.csv
contains: bicg,130790

If that is the case, then the artefact should be functional and ready for the step-by-step instructions.

3 Step-by-step instructions

These instructions contain step-by-step instructions to reproduce the results from the paper. First, a
detailed overview of the Coq formalisation is given and is related to the definitions in the paper. Next,
instructions are provided to reproduce the results provided in the evaluation section.

3.1 Coq formalisation

This section will give an overview of the Coq formalisation, and how it relates to the definitions present
in the paper. An overview of the development is given first, followed by a more detailed description of
where definitions mentioned in the paper are presented.

The top-level of the Coq formalisation is presented in src/Compiler.v, where the transf_hls
function defines all the translation and transformation passes that are performed to transform C code
into a hardware design. The transf_c_program_correct theorem then states the final backwards

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

simulation correctness proof of the compiler, stating that any behaviour of the hardware has to be a
valid behaviour of the C program.

The rest of the formalisation is mainly implemented in src/hls, where each hardware-specific
transformation pass is implemented. These will be presented in the following sections.

First, one difference that should be noted between the paper and the Coq formalisation is the naming of
the intermediate languages. RTLBlock from the paper is named GibleSeq in the Coq formalisation,
and RTLPar from the paper is named GiblePar in the Coq formalisation. In addition to that, HTL
from the paper was renamed to DHTL in the Coq formalisation.

3.1.1 Figure 1

Using Fig. 1. from the paper as a general guide, the additions that were made to Vericert can be split
into the following categories:

1. RTL: RTL is part of CompCert, the definition can be found in 1ib/CompCert/backend/RTL.v.

2. RTLBlock: RTLBlock is an intermediate language of basic blocks, with support for representing
hyperblocks through predicated instructions. It is named GibleSeq in the Coq formalisation. The
base definition of the language can be found in src/hls/Gib'le. v, which contains definitions
that are shared among other languages. Then, the specialised definition of GibleSeq can be
found in src/hls/GibleSeq.v.

3. Find BBs: This transformation pass builds basic blocks from the CompCert RTL CFG. The files
corresponding to this translation are the following:

« src/hls/GibleSeqgen. v: This file contains the implementation of the basic block gen-
eration. It transforms an RTL program into a GibleSeq program, where no instructions are
predicated. This transformation is mainly performed by an external function partition
that generates the basic blocks, so this file only defines a validation algorithm used to check
that the result of the external function was correct.

« src/hls/Partition.ml: This file implements the unverified part-ition function
that is later validated.

« src/hls/GibleSeqgenproof.v: This file implements the proof of correctness of
the basic block generation transformation, by showing that the validator will only accept
transformations if these were in fact correct.

4. If-conversion: Next, the basic blocks are transformed into hyperblocks by if-conversion. If-
conversion is split into three distinct phases:

« src/hls/CondElim.v and src/hls/CondElimproof.v: These two files contain
the implementation and proof of conditional elimination, which removes any branches from
the basic blocks and replaces them by conditional goto instructions.

« src/hls/IfConversion.v and src/hls/IfConversionproof.v: These two
files implement the actual if-conversion algorithm by selecting goto instructions that should
be replaced by the blocks they are pointing to. This translation pass is called multiple times.

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

« src/hls/DeadBlocks.vand src/hls/DeadBlocksproof.v: These two files im-
plement dead block elimination using a depth-first search algorithm, and removing any
blocks that are not reachable from the entry point of the function.

5. RTLPar: RTLPar is the intermediate language that represents the result of the scheduling
operation. It also contains hyperblocks, but contains a few more nested lists to represent
the different ways in which instructions may have been scheduled. RTLPar is also based on
src/hls/Gib'le.v, and is then mainly implemented in src/hls/GiblePar.v.

6. Schedule: The scheduling implementation and its validation is the core of the contribution of
this work.

« src/hls/Schedule.ml: This file contains the implementation of the unverified SDC
scheduler.

« src/hls/GiblePargen.v: This file contains the description of the scheduler
validation, calling the unverified schedule function and validating it using the
check_scheduled_trees function and the check_scheduled_trees_-dinc
function.

« The proof is split up into multiple files. The top-level of the proof is found in
src/hls/GiblePargenproof.v. However, this proof relies on many other files,
namely src/hls/Abstr.v, which contains the definition of the symbolic states that are
used to validate the schedule, src/hls/AbstrSemIdent. v which contains many helper
lemmas to reason about symbolic states and finally src/hls/GiblePargenproofx*.v,
which are multiple files that contain the forward and completeness proof of correctness for
symbolic states, as well as proofs about behaviour of equivalent symbolic states.

7. FSM Generation: FSM generation was slightly modified from the original Vericert implementa-
tion, and can be found in the src/hls/DHTLx*. v files.

8. Forward substitution: Finally, forward substitution is implemented in the src/hls/ClockRegisters.v
and src/hls/ClockRegistersproof.yv files.

3.1.2 Figure 2

The definitions of control-flow instructions in Fig. 2 can be found on line 73 in src/hls/Gible.v
(cf_instr). The definition of instructions can be found online 83insrc/hls/Gible.v (instr).

Next, the definition of H can be found on line 43 in src/hls/GibleSeq.v (SegBB. t), and the
definition of H 5, can be found on line 40 in src/hls/GiblePar.v (ParBB. t).

3.1.3 Figure 3

The top-level semantics of RTLBlock (ExecRtlBlock) and RTLPar (ExecRtlPar) are defined as the step
functions in src/hls/GibleSeq.v and src/hls/GiblePar.v respectively. The lower-level
semantics of executing lists of instructions is further defined in src/h'ls/Gible. v. BlockContinue
corresponds to the exec_RBcons rule of step_1l1 st in the formalisation and BlockExit corresponds

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

to the exec_RBterm rule. Finally, ExecInstr from the paper is defined as step_instr in the
formalisation.

3.1.4 Theorem 4.1 (Correctness of if-conversion)

This correctness statement in the paper for if-conversion is closer to the final correctness theorem that
is proven about the complete compiler. However, in the formalisation a weaker version of this theorem
is used, namely a forward simulation, as it is easier to prove, and is sufficient to show the top-level
correctness property.

The forward simulation for this translation is shown for the three separate steps, which are then com-
bined at the top-level. The forward simulations for each step is called transf_program_correct
and is shown in src/hls/CondElimproof.v, src/hls/IfConversionproof.v and
src/hls/DeadBlocksproof.v

3.1.5 Figure5

There is a working example showing that our validator can validate the transformation shown in Figure
5 from the paper that is implemented in debug/vericertExample.ml. This file calls the function
schedule_oracle_inc which was extracted from the src/hls/GiblePargen.v Coq code
and is the verified validator for the external scheduler. The function is called with Fig 5a and Fig 5b as
arguments.

This code can be compiled and run using the following commands, run from the root of the project
repository (i.e. ~/vericert-pldi2024):

nix develop —--command dune build debug/VericertExample.exe
make install-example
./bin/vericert-example

This should print Passed at the end if the two blocks are found to be equivalent.

Note that there are two implementations of the validator (that are both used in the final Vericert code and
therefore have both been verified): schedule_oracle and schedule_oracle_inc. The latter
supports reordering fake write-after-write conflicts due to mutually exclusive predicates, however, it is
currently quite slow due to it not pruning the value summaries. Both are used by Vericert, first checking
schedule_oracle and then trying schedule_oracle_1inc if write-after-write conflicts were
detected.

3.1.6 Figure 7

The definitions of figure 7 are defined in src/h'ls/Abstr.v in the formalisation.

+ Arithmetic expressions from the paper are named expression in the formalisation.
« Predicate expressions are named pred_expression in the formalisation.

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

+ Value summaries are named predicated in the formalisation.
« Finally, symbolic states are named forest in the formalisation. Note that contents of memory
and registers are merged into one map.

Finally, the set of encountered expressions is handled separately. It is only needed when performing
the completeness proof, which states that if a symbolic state executes to some final state, then the
RTLPar block that produced it must evaluate to that same final state. The set of encountered expres-
sions is therefore only generated in the src/hls/GiblePargenproofBackward. v file by the
remember_expr_inc function. The type of encountered expressions in the formalisation is a list of
predicated expression.

3.1.7 Figure 8

The symbolic execution of instructions is defined in src/hls/GiblePargen. v and is named the
update function. This function does not produce the set of encountered expressions, as it is often
not needed. Instead, a wrapper function called update_top_inc provides this set together with the
result of the original update function.

The paper definition uses a few more liberties as the function is defined in terms of examples and is
therefore not as general as the update function in the formalisation. However, the rough shape is the
same.

+ The first case of the paper definition corresponds to the first three cases of the update definition.
« The ‘exit instruction’ case of the paper corresponds to the last case of the update definition.
« Finally, the final case of the paper definition corresponds to the before last case in the formalisation.

The symbols can also be mapped to definitions in the formalisation:

« Equation (6): The <*> operator from the paper is called seq_app in the formalisation.
+ Equation (4): The coalescing union operator from the paper is implemented in three stages:

- app_predicated performs the union with opposing predicates

- prune_predicated then prunes the value summary and removes any expressions where
the guard is equivalent to false.

— When two value summaries are compared, elements of the value summary are coa-
lesced. The comparison function is implemented as beq_pred_expr on line 1192 in
src/hls/GiblePargenproofEquiv.v, where norm_expression performs the
coalescing.

« Equation (5): A value summary is turned back into a Boolean formula using the from_pred-icated
function in the formalisation.

Next, equation (7) corresponds to symbolically executing a whole block, which is implemented in the
abstract_sequence_top_inc function. The latter also performs some additional checks that are
needed in the proofs, like ensuring that predicates are in SSA form.

Finally, equation (8) corresponds to comparing two blocks for equivalent behaviour, which corresponds
to the schedule_oracle_inc (and schedule_oracle) function in the formalisation.

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

3.1.8 Section 6.6

The scheduleAndVer-ify definition from the paper is defined as the transl_function
function in src/hls/GiblePargen.v. The main difference is that in the formalisation, the
schedu'le function schedules a whole function instead of just one block, and so a wrapper around
schedule_oracle_inc is used to verify the equivalence between each block, defined as
check_scheduled_trees_inc. Additionally, check_scheduled_trees (which calls the
more efficient schedule_oracle check) is called first, calling the more expensive check only when
it is necessary.

3.1.9 Figure 9

All these rules are implemented in the SEMANTICS sectionin src/hls/Abstr.v.

« sem_value in the formalisation implements all the base arithmetic operations such as RegBase,
MemBase, Op, Store and Load.

« sem_exit corresponds to the Option rule.

« sem_pred corresponds to the PredBase and Pred rules.

« sem_pexpr corresponds to the PredAndTrue, PredAndFalsel, PredAndFalse2, Pre-
dOrTruel, PredOrTrue2 and PredOrFalse

. sem_pred_expr corresponds to the PredExpr rule, except that it is defined over lists instead
of a set.

« Finally, sem implements the SemState rule. Constraints are again handled at a higher level, being
added as an assumption to lemmas that need the notion of evaluability, such as the backward proof.
The evaluability of constraints is defined as evaluable_pred_T1l1ist in the formalisation, and
is only defined in the src/hls/GiblePargenproofBackward.v file.

3.1.10 Lemma 7.2

Soundness is defined and proven in src/hls/GiblePargenproofForward.v by the lemma
named abstr_sequence_correct.

3.1.11 Lemma 7.3

Symbolic refinement implying behavioural refinement is provenin src/hls/GiblePargenproofEquiv.v
through the abstr_check_correct lemma.

3.1.12 Lemma 7.4

Completeness is the largest proof and can be foundin src/hls/GiblePargenproofBackward.v
as the abstr_seq_reverse_correct_inc lemma (or the abstr_seq_reverse_correct
lemma without support for fake write-after-write dependencies). This lemma requires a few more
assumptions about the evaluability of the set of encountered expressions.

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

3.1.13 Lemma 7.5

The final correctness proof of the scheduler can be found in src/hls/GiblePargenproof.v
and is named schedule_oracle_correct_inc. This lemma is then used to prove the final
forward simulation (transf_program_correct) that can be used in the top-level composition of
transformation passes.

3.1.14 Section 7.3

The definition of the identity semantics and many associated proofs are definedin src/hls/AbstrSemIdent.v.
Instead of having a new definition, the sem_ident semantics, which does not evaluate its contents, is

passed to the sem_pred_expr definition to produce PredExprlIdentity. It is then used to prove

various useful properties, such as the one that is shown at the end of section 7.3 and can be found in the
formalisation as sem_pred_expr_seq_app.

3.1.15 SAT and SMT solver

Vericert uses a verified SAT solver and a validated SMT solver to reason about final predicates and
3-valued predicates respectively.

« src/hls/Sat.v: Contains a complete and verified Sat solver.
« lib/cohpred/theory/Smtpredicate.v: Contains a validated 3-valued logic solver using
a validated SMT solver through SMTCogq.

3.2 More detailed reproduction of evaluation

This section discusses the evaluation of the paper and how to reproduce the cycle count figures of Fig.
10, i.e. the middle plot.

3.2.1 Compiling the benchmark with all synthesis tools

The benchmark used in the evaluation is a version of the PolyBench/C benchmark that can be found at
~/vericert-pldi2024/benchmarks/polybench-syn. It includes 27 programs that should
all be successfully synthesised by all the tools.

The five tool configurations that will be tested are the following:

« bambu-opt: Bambu with default optimisations.

« bambu-noopt: Bambu with optimisations turned off.

« vericert-original: Original Version of Vericert.

« vericert-list-scheduling: Vericert with scheduling but without if-conversion.

- vericert-hyperblock: Vericert with full hyperblock scheduling, the main contribution.

To compile the benchmark, one can use the cycle-counts. sh script without any arguments.

https://smtcoq.github.io/

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

cd ~/vericert-pldi2024/benchmarks/polybench-syn
cycle-counts.sh

This should compile and simulate the benchmarks for all five HLS tool configurations and should output
five CSV files containing the cycle counts for each benchmark. These should have the same name as the
CSV files generated during the getting started section.

3.2.2 Generating figure 10 plot

Scripts are included in the repository to reproduce the plot in Fig. 10. Because this artefact does not
include Xilinx Vivado to synthesise the hardware that is produced by the HLS tools, the raw synthesis
results are provided in the following TAR file:

~/vericert-pldi2024/artefact/synthesis-results.tar.xz

Running the python script will extract the contents of the file, extract the important synthesis information
such as delay and area and will combine that with the simulation cycle counts. It then generates the
plot shown in Fig. 10 and displays it using firefox.

cd ~/vericert-pldi2024/artefact
nix develop --command python3 generate_result_csv.py

(NOTE: to reset the state of this directory one can just run git clean -dfx).

This should have displayed the figure in firefox, and if not, then it was also generated as an SVG file
under bar-plot.svg

The synthesis-results directory contains five directories corresponding to the five tool configura-
tions that are compared. Within each tool directory, there is an exec.csv file that corresponds
to the simulation cycle counts for the tool configuration. One could double check that this is
the case by comparing the exec.csv file with the corresponding CSV file in ~/vericert-
pldi2024/benchmarks/polybench-syn.

Next, it contains various directories that contain the raw synthesis results generated by the synthesis
script. These files are named <benchmark>_report.xml for each of the benchmarks. These files
are gathered up by the generate_result_csv.py script and are turned into more comprehensive
CSV files that can be found in the artefact folder for each tool configuration. These are named
vericert-hyperblock.csv for example and contains all the information from simulation and
synthesis.

These five comprehensive CSV files are then finally turned into the three final CSV files that produce
Fig 10, namely speed. csv for the first plot on execution time, cyc'les. csv for the middle plot and
for the cycle count, and finally area. csv for the bottom plot. These csv files still contain absolute
values, so to generate the plot they are compared relative to the bambu-opt configuration.

10

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

3.2.3 Vericert user guide

Finally, this section will give a quick overview of the command line version of Vericert so that it can be
experimented with. The main important command-line options that Vericert supports are:

« —fschedule: to enable scheduling.

« —fif-conv: to enable if-conversion and produce hyperblocks.

« —da'll: print all intermediate languages to the current directory. This is useful for debugging.

« —00 -finline: Sometimes unsupported instructions will be generated by the CompCert
frontend through optimisations. These can therefore be disabled, while still enabling inlining, to
get more reliable compilation.

« —0: specify output file.

For example, Vericert can then be used to compile one of the test programs, like the matrix. c file:

cd ~/vericert-pldi2024
vericert -fschedule -fif-conv -dall -o matrix.sv test/matrix.c

This will generate the matrix. sv file with the translated design. It will also generate a lot of interme-
diate files like matrix.gblpar.® which shows the intermediate RTLBlock file.

Vericert can then also be manually run on the benchmark suite by using the Makef1ile directly.

cd ~/vericert-pldi2024/benchmarks/polybench-syn
VERICERT_OPTS="-DSYNTHESIS -fschedule -fif-conv" make -j
run-vericert.sh

This should generate an exec. csv file in the current directory with the cycle counts.

3.2.4 Running Vericert outside a VM

Vericert provides a flake. nix file that specifies all the dependencies that are needed to build it. It
should therefore be straightforward to build Vericert outside of the VM and run it there, making it easy
to develop further.

3.2.4.1 Installing nix This can be skipped if nix was already installed.

These instructions are taken from the nix download page.

sh <(curl -L https://nixos.org/nix/install) --no-daemon

mkdir -p ~/.config/nix

echo "experimental-features = nix-command flakes repl-flake" \
>>~/.config/nix/nix.conf

11

https://nixos.org/download

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

3.2.4.2 Building Vericert Then build the project (which can be done from github):

git clone --recursive -b pldi2024 \
https://github.com/ymherklotz/vericert vericert-pldi2024
cd vericert-pldi2024

nix develop —--command make 1lib/COHPREDSTAMP
nix develop --command make -j
make install

This should download all the dependencies and build Vericert. It should then be present in
./bin/vericert.

3.2.5 (OPTIONAL) Running synthesis on an example

The scripts to run synthesis are also included in the repository, including the scripts to run the synthesis
on the whole benchmark suite. However, these currently assume that an external server is accessible
that has Xilinx Vivado 2023.2 installed on it. Instead, this section will briefly describe how to run Vivado
on an output manually, and will then mention how the script could be edited to run synthesis on all
benchmark programs.

To run synthesis on an example, like the matrix.sv file generated in the previous section:

cd ~/vericert-pldi2024
mv matrix.sv main.sv
vivado -mode batch -source scripts/synth.tcl

This should generate an encode_report.xml file, which is the same file as the <bench-
mark>_report.xml file mentioned in the section on generating Figure 10.

There is a similar script for bambu synthesised designs, however, it cannot use the ma-in function for
synthesis:

cp test/matrix.c main_top.c

sed -1 's/main/main_top/' main_top.c

bambu --top-fname=main_top main_top.c

vivado -mode batch -source scripts/synth-bambu.tcl

Finally, to run synthesis on the whole benchmark suite, the scripts assume that there is a server that is
accessible with Xilinx Vivado 2023.2 installed on it. This server can then be specified using the following
variables:

export VERICERT_MACHINE=<server-address>
export VERICERT_USER=<server-user-for-login>

12

Artefact: Hyperblock Scheduling for Verified High-Level Synthesis 12.03.2024

The scripts assume that ssh-keys are used for authentication.

Next, we assume that the benchmark was compiled using the configuration that should be synthesised:

cd ~/vericert-pldi2024/benchmarks/polybench-syn
VERICERT_OPTS="-DSYNTHESIS -fschedule -fif-conv" make -j

Finally, if vericert was used to synthesis the designs, the synth. sh script can be used to synthesise
all benchmark designs by spawning, for example, 4 parallel runs:

cd ~/vericert-pldi2024
~/vericert-pldi2024/scripts/synth.sh 4 benchmarks/polybench-syn output

This will generate the output directory, which should be very similar to the directories in the following
directory.

~/vericert-pldi2024/artefact/synthesis-results/vericert-hyperblock

Finally, copying over the exec. csvV file generated by the simulation will allow for the synthesis results
to be displayed as a csv file using the synthesis-results.scm script:

cd ~/vericert-pldi2024
cp ~/vericert-pldi2024/benchmarks/polybench-syn/exec.csv output/exec.csv
synthesis-results.scm output

13

	Introduction
	Getting started guide
	Launching the VM
	Opening Vericert directory
	Running preliminary experiment

	Step-by-step instructions
	Coq formalisation
	Figure 1
	Figure 2
	Figure 3
	Theorem 4.1 (Correctness of if-conversion)
	Figure 5
	Figure 7
	Figure 8
	Section 6.6
	Figure 9
	Lemma 7.2
	Lemma 7.3
	Lemma 7.4
	Lemma 7.5
	Section 7.3
	SAT and SMT solver

	More detailed reproduction of evaluation
	Compiling the benchmark with all synthesis tools
	Generating figure 10 plot
	Vericert user guide
	Running Vericert outside a VM
	(OPTIONAL) Running synthesis on an example

