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Abstract—This paper proves that the problem of finding connected
vertex cover in a 2-connected planar graph ( CVC-2 ) with maximum
degree 4 is NP-complete. The motivation for proving this result is to
give a shorter and simpler proof of NP-Completeness of TRA-MLC
(the Top Right Access point Minimum-Length Corridor) problem
[1], by finding the reduction from CVC-2. TRA-MLC has many
applications in laying optical fibre cables for data communication
and electrical wiring in floor plans.The problem of finding connected
vertex cover in any planar graph ( CVC ) with maximum degree 4
is NP-complete [2]. We first show that CVC-2 belongs to NP and
then we find a polynomial reduction from CVC to CVC-2. Let a
graph G0 and an integer K form an instance of CVC, where G0 is a
planar graph and K is an upper bound on the size of the connected
vertex cover in G0. We construct a 2-connected planar graph, say G,
by identifying the blocks and cut vertices of G0, and then finding
the planar representation of all the blocks of G0, leading to a plane
graph G1. We replace the cut vertices with cycles in such a way that
the resultant graph G is a 2-connected planar graph with maximum

degree 4. We consider L = K − 2t + 3
t∑

i=1

di where t is the number

of cut vertices in G1 and di is the number of blocks for which ith

cut vertex is common. We prove that G will have a connected vertex
cover with size less than or equal to L if and only if G0 has a
connected vertex cover of size less than or equal to K.

Keywords—NP-complete, 2-Connected planar graph, block, cut
vertex.

I. INTRODUCTION

A brief overview of the relevent definitions of graph theory
( [3],[4]) is presented in this section before introducing the
problem.

Any graph G is said to be planar or embeddable in the
plane, if it can be drawn in the plane so that the vertices are
distinct points in the plane and its edges intersect only at their
end points. Such a drawing of a planar graph G is called a
planar embedding of G or a plane graph. There are many
polynomial time algorithms for finding a planar embedding
of planar graph [5]. A subset V2 of V is said to be a vertex
cut if the removal of the vertices in V2 disconnects the graph.
A cut vertex is a single vertex, removal of which disconnects
the graph. A graph G is said to be 2-connected if and only if
any two vertices of G are connected by atleast two internally-
disjoint paths. Any 2-connected graph does not have a cut
vertex. A block of a graph G is a maximal connected subgraph
of G that has no cut vertex for itself. Any block of a graph G
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is an isolated vertex or a cut edge, or a maximal 2-connected
component with more than 2 vertices. Every pair of blocks
will have at the most one vertex in common and that will
be a cut vertex. So, any cut vertex will be adjacent to a cut
vertex in another block, or any other vertex in a 2-connected
component, or a pendent vertex . A Graph G is planar if and
only if each of its blocks is planar. There are polynomial time
algorithms to identify the blocks in any planar graph and also
to find out the cut vertices in a graph [3][6].

A vertex cover in a planar graph G is a subset V1 of V such
that every edge of G has atleast one end in V1 and it is said
to be connected if the vertices in this subset are all connected
in G. A vertex cover V1 is said to be a Minimum Vertex Cover
if G has no other vertex cover V̄ with |V̄ | < |V1|.

The problem of finding a Minimum vertex cover in a graph
is NP-complete [7]. Garey and Johnson proved many restricted
versions of this problem and specifically, the vertex cover in
planar graphs to be NP-complete [2],[8]. They also proved
that the problem of finding Minimum connected vertex cover
in planar graphs with maximum degree 4 ( hereafter referred
to as CVC ) is NP-complete [4] .

In this paper, we attempt to prove that the problem of
connected vertex cover in 2-connected planar graph with
maximum degree 4 (hereafter referred to as CVC-2) is NP-
complete. Given a 2-connected planar graph with maximum
degree 4, the problem is to find a conneted vertex cover with
minimum size. The decision version of this problem can be
stated as follows:

Instance: A 2-connected planar graph G(V,E) with all
the vertices having degree less than or equal to 4 and an
integer L.
Question: Does there exist a subset V2 of V , with |V2| =
c2, such that c2 ≤ L, V2 is connected and it covers all
the edges in G.

The motivation behind giving the proof of the complexity
of CVC-2 is to give a proof of NP-completeness of Top Right
Access point Minimum-Length Corridor ( TRA-MLC )prob-
lem. In the Minimum-Length Corridor (MLC) problem [1],
a rectangular boundary partitioned into rectilinear polygons is
given and the problem is to find a corridor of least total length.
A corridor is a tree containing a set of line segments lying
along the outer rectangular boundary and/or on the boundary
of the rectilinear polygons. The corridor must contain at least
one point from the boundaries of the outer rectangle and also
the rectilinear polygons. An access point of a cooridor is
any point on the rectangular boundary. If this access point is
constrained to be at the top right corner of the outer rectangular
boundary, then this problem is referred to as TRA-MLC. In
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the MLC problem, and in its variants, it is assumed that the
rectangular boundary and the partitions are orthogonal.

This problem has many applications in laying optical fibre
cables for data communication and electrical wiring in floor
plans.There are many other applcations which include signal
communication in circuit layout design [1]. We are going to
work towards finding a polynomial reduction from CVC-2 to
TRA-MLC thereby proving TRA-MLC is NP-complete.

To prove that any problem P to be NP-complete we need
to show that

1. P ∈ NP : x is a yes instance of P if and only if there
exists a concise certificate c(x), and it is verifiable by a
polynomial time algorithm.

2. Some known NP-complete problem P ′ is polynomially
reducible to P : For any given instance x of P ′ , we
should be able to construct an instance y of P within
polynomial in |x| time, such that x is a yes instance of
P ′ if and only if y is a yes instance of P .

For more explanation on NP-completeness, reader is re-
ferred to [7][9]. In the next section, we give a proof of NP-
completeness of CVC-2 by giving a polynomial reduction from
CVC to CVC-2.

II. THE PROOF

Theorem:“Connected vertex cover in 2 - connected planar
graph with maximum degree 4” is NP-complete.

Proof: Inorder to prove that CVC-2 is NP-complete, first we
need to show that CVC-2 ∈ NP. For any instance of CVC-
2 given by a 2-connected planar graph G with maximum
degree 4 and an integer K, assume that a certificate V2 which
is a subset of vertices of G is given. We can find whether
the vertices of V2 are connected and whether they cover all
the edges of G in polynomial time. Also we can find, in
polynomial time, whether the size of V2 is less than or equal
to K or not. So it is obvious to say that CVC-2 ∈ NP.

Now, we give a polynomial reduction from CVC to CVC-
2. Assume that an instance of the decision version of CVC
is given by a connected planar graph G0 = (V0, E0) ( as the
required vertex cover is connected, the given graph should
obviously be connected ) , in which the vertex degree is at the
most 4 and an integer K, which is the upper bound on the
size of the connected vertex cover. We restrict our problem to
graphs with more than 2 vertices.

We construct an instance of our problem from G0. First we
find the blocks and cut vertices of G0, and let the number
of cut vertices be t. As G0 is connected, it does not have
isolated vertices as blocks. Let C = {c1, c2, ...ct} be the set
of cut vertices in G0. For any cut vertex ci, let di be the
number of blocks having ci as common vertex for 1 ≤ i ≤ t.
Now, we find planar representation of each block in G0, by
using any polynomial time algorithm, thereby finding a plane
graph G1 of G0.

Now the construction of the instance begins with G1.
For every integer i from 1 to t, we construct a plane
graph Gi+1 from Gi. Consider the cut vertex ci which is
a common vertex for di blocks and let b0, b1, ...bdi−1 be
the blocks in clockwise order around ci in Gi. Replace

ci with a cycle consisting of 3di vertices namely vi(j) for
0 ≤ j ≤ (3di − 1). There will be 3di edges in this cycle
and they are (vi(j), vi(j+1)) for 0 ≤ j ≤ (3di − 2) and the
edge (vi(3di−1), vi(1)). For any block bk ( 0 ≤ k ≤ di − 1
) containing ci, assume that there are p vertices (p > 1),
v1, v2, ...vp adjacent to ci in clockwise order around ci within
bk. We replace these edges, (ci, v1), (ci, v2), ...(ci, vp−1) with
(vi(3k), v1), (vi(3k), v2), ...(vi(3k), vp−1) and (vi(3k+1), vp).
Any cut vertex is a common vertex for atleast two blocks.
As the degree of any cut vertex in G1 can not exceed 4, there
can be at the most three vertices in a block, which are adjacent
to the cut vertex ie. p ≤ 3. So the degree of the vertex vi(3k),
will be at the most 4 and the degree of vi(3k+1) will be at the
most 3. If p = 1, then the block is a cut edge, ie. ci is adjacent
to only one vertex v1 in that block which is either a pendent
vertex or another cut vertex. In this case we replace the edge
(ci, v1) with two edges namely (vi(3k), v1) and (vi(3k+1), v1).
Here, the degrees of vi(3k) and vi(3k+1) becomes equal to 3.
The degrees of all other vertices in the cycle will be equal to
2.

Fig.1(a), 1(b), 1(c) give an example of this construction.
The resultant graph after t steps , Gt+1 = G , is a 2-connected
graph as there will be atleast two paths between every pair of
vertices. maximum degree in G is 4, as we are replacing only
the cut vertices of G1 with cycles in such a way that the
degrees of all the vertices in each cycle does not exceed 4. It
is also a planar graph as the individual blocks are planar [1]
and we are replacing only cut vertices of G0 with cycles. This
construction can obviously be done in Polynomial time.

Fig 1(a): Given plane graph G1

Fig 1(b): G2 (After first interation)
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Fig 1(c): G3 (After second iteration)
( 2-connected plane graph )

Hereafter, in any cycle of G representing a cut vertex of G0,
let us call the vertices connected to the other vertices of blocks,
as B-type vertices. All other vertices ( in the form vi(3k−1))
which have degree 2, will be called as Connector-type vertices
for further reference.

Let us take an integer L = K − 2t + 3
t∑

i=1

di. Now, we

show that graph G will have a connected vertex cover of size
c2 ≤ L if and only if G0 has a connected vertex cover of size
c1 ≤ K.

First assume that G0 has a subset of vertices V1 , which is
a connected vertex cover of size c1 ≤ K. V1 must contain all
the cut vertices of G0, because the blocks of G0 are connected
only through their common cut vertex. Let us construct a
subset V2 of vertices of G initially starting with (c1−t) vertices
corresponding to the vertices of the set (V1 −C) in G0. From
any cycle in G, corresponding to a cut vertex ci, except vi(2) (
a connector-type vertex ), we add all other 3di − 1 vertices to
V2 and they cover all the edges of the cycle. There are t cycles
of this type and the number of vertices added to V2 will be

(3
t∑

i=1

di) − t. It can easily be understood that the set V2 will

cover all the edges of G and it is connected. The size of the

set V2, given by c2, will be (c1− t)+ (3
t∑

i=1

di)− t and we

can say that c2 ≤ K − 2t + (3
t∑

i=1

di) because c1 ≤ K. So,

we proved that G will have a connected vertex cover of size
less than or equal to L if G0 has a connected vertex cover of
size less than or equal to K.

Conversely, suppose G has a connected vertex cover V2

of size c2 ≤ L. We have to prove that G0 will also have a
connected vertex cover of size c1 ≤ K. First let us consider
the cycles in G corresponding to cut vertices in G0. V2 should
contain r − 1 vertices from any of these cycles containing r
vertices ie.only one vertex can be absent from these cycles in
V2. If possible , let us assume that two vertices vi(j), vi(k), in
any cycle Si corresponding to a cut vertex ci for 1 ≤ i ≤ t,
are not present in V2 and also without loss of generality we
can assume that j < k. If those 2 vertices are adjacent , then
the edge between them will not be covered by V2, so they
will not be adjacent. Now let us consider vertices of the cycle

Si as a union of four subsets : A = {vi(j)} , B = {vi(k)} ,
C = {vi(l) / j < l < k} and D = { vi(l) / 0 ≤ l ≤ (3di −
1) ∧ vi(l) /∈ (A ∪ B ∪ C) }. We know that a cut vertex is a
common vertex for atleast two blocks in any graph. So, we can
assume that the vertices other than the cut vertex in atleast two
blocks b1, b2, in G0, are connected to Si representing the cut
vertex ci. Also let us recollect that the vertices from different
blocks in G0 are connected to each other only through cut
vertices and there will not be any other path between them.
Now let us consider the cases that can arise.

1. Both vi(j), vi(k) are of B-type :
As they can not be adjacent, vi(j), vi(k) will not be
connected to the vertices of a single block. Without loss
of generality, assume that vi(j) is connected to the vertices
of a block b1 and vi(k) to that of b2. The vertices of b1,
present in V2, will be connected to the cycle through only
one vertex ( either vi(j−1) or vi(j+1) ). In the same way,
the vertices of b2, present in V2, will be connected to the
cycle through only one vertex ( either vi(k−1) or vi(k+1)

). Now , two cases arise.
(a) Either C or D, consists of only one vertex which is

of connector-type :
If either C or D has only one vertex which is of
connector-type, then it should be in V2. On either
side of this vertex, there will be vi(j) & vi(k) and
hence it will not be connected to the vertices of V2

from b1 and b2.
(b) Atleast two vertices are present in each set C &D :

By the way we constructed G, we can say that atleast
one block each will be connected to vertices of each
set, and the veritices of V2 from these two blocks are
not connected because of the absence of vi(j), vi(k)

in V2.
2. Both vi(j), vi(k) are of connector-type :

By the way of construction of G, the vertices of V2 from
atleast one block each will be connected to the vertices of
C and D. So, the absence of vi(j), vi(k) will disconnect
V2.

3. one vertex is of connector-type, and another is of B-type:
Atleast one vertex of B-type, connected to a block say
b1, will be present in either C or D, say C, as vi(j) and
vi(k) are not adjacent. The vertices of V2 from b1 are
connected to the cycle through this vertex. Atleast one
more block will be connected to the other set D, and the
vertices of V2 from that block are not connected to that
of b1 as vi(j), vi(k) are not present in V2.

From the above discussion, we can say that any cycle with r
vertices , corresponding to the cut vertex in G0, either r−1 or
r vertices should be present in V2. Even with the absence of
one vertex of connector-type ( in some cases B-type vertex can
be absent ) in V2, all the edges of the cycle will be covered and
the set V2 will be connected. So for any cycle Si corresponding
to cut vertex ci in G0, only r − 1 vertices are sufficient to be
present in V2. Let vi(j) in Si be the single vertex not present in
V2, and if it is not of connector type, check whether there is a
subgraph K3, formed by vi(j), vi(j+1), vk or vi(j−1), vi(j), vk

and vk is of degree 2. If yes, vk must be present in V2. This
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implies that vk is a pendent vertex in G0. We can replace vk

with vi(j) without affecting the covering. Consider the cycles
corresponding to the cut vertices and which are having all the
r vertices in V2. We can take out a connector-type vertex,
of these cycles, from V2 without affecting the covering and
reducing the size of the vertex cover. Now, from each cycle
Si corresponding to ci for 1 ≤ i ≤ t, di−1 vertices are present

in V2, implying that (3
t∑

i=1

di)− t vertices of V2 will be from

the cycles corresponding to cut vertices of G0. So the number
of vertices in V2, which are outside these cycles will be at the
most K − t. These K − t vertices will cover the edges in all
the blocks , in G0, probably excepting those incident on cut
vertices. If we consider a subset V1 of V0 in G0 containing
these K − t vertices along with t cut vertices , it will cover
all the edges in G0 and is connected. The size of V1 will be
at the most K. Hence the proof.

III. CONCLUSIONS

As we have already mentioned, The inspiration to prove
this result is to next prove that TRA-MLC is NP-complete.
A.Gonzalez-Gutierrez & T.F.Gonzalez have proved this prob-
lem and many of its varients to be NP-complete [1]. But we
are going to work towards a shorter proof and also by using
most commonly known graph theory concepts.

ACKNOWLEDGMENTS

We wish to thank Dr. Venkatesh Raman professor of IMS,
Chennai for his timely help in getting important references
without which this work would have been delayed further.We
also would like to thank Dr. A. Ramakalyan, Asst. Professor,
NITT for his support.

REFERENCES

[1] A.Gonzalez-Gutierrez and T.F.Gonzalez, “ Complexity of the Minimum-
Length Corridor Problem”, J. Comp. Geometry, Theory and Applns.,Els.
vol.37, no.2,2007,pp. 72-103.

[2] M.R.Garey and D.S.Johnson, “The Rectilinear Steiner Tree Problem is
NP - complete”,J. Appl. Math.(SIAM), vol. 32, no. 4, 1977, pp. 826-834.

[3] D.B.West, Introduction to Graph Theory, Prentice Hall of India, 1999.
[4] J.A.Bondy and U.S.R.Murty, Graph Theory With Applications, The

Macmillan press Ltd, 1976
[5] R.Weiskircher, “Drawing Planar Graphs”, from M.Kaufmann &

D.Wagner (Eds.): Drawing Graphs, LNCS 2025,Springer-Verlag, 2001,
pp. 23-45.

[6] D.Jungnickel, Graphs, Networks and Algorithms, Springer-verlag, 2005.
[7] M.R.Garey & D.S.Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman & Co., 1979.
[8] M.R.Garey, D.S.Johnson and Stockmeyer, “Some simplified NP-complete

problems”,Proc. of the sixth annual ACM Symposium on theory of
computing, 1974, pp. 47-63

[9] C.H.Papadimitriou & K.Steiglitz, Combinatorial optimization: Algorithms
and Complexity, Prentice Hall India, 1997.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:1, No:11, 2007 

573International Scholarly and Scientific Research & Innovation 1(11) 2007 scholar.waset.org/1307-6892/13006

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, M

at
he

m
at

ic
al

 a
nd

 C
om

pu
ta

tio
na

l S
ci

en
ce

s 
V

ol
:1

, N
o:

11
, 2

00
7 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
13

00
6

http://waset.org/publication/Connected-Vertex-Cover-in-2-Connected-Planar-Graph-with-Maximum-Degree-4-is-NP-complete/13006
http://scholar.waset.org/1307-6892/13006



