
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

111

Towards Trustworthy Automated Program Verifiers:
Formally Validating Translations into an Intermediate
Verification Language

ANONYMOUS AUTHOR(S)

Automated program verifiers are typically implemented using an intermediate verification language (IVL),

such as Boogie or Why3. A verifier front-end translates the input program and specification into an IVL

program, while the back-end generates proof obligations for the IVL program and employs an SMT solver

to discharge them. Soundness of such verifiers therefore requires that the front-end translation faithfully

captures the semantics of the input program and specification in the IVL program, and that the back-end

reports success only if the IVL program is actually correct. For a verification tool to be trustworthy, these

soundness conditions must be satisfied by its actual implementation, not just the program logic it uses.

In this paper, we present a novel validation methodology that provides formal soundness guarantees for

front-end implementations. For each successful run of the verifier, we automatically generate a proof in Isabelle

showing that the correctness of the produced IVL program implies the correctness of the input program.

This proof can be checked independently from the verifier in Isabelle and can be combined with existing

work on validating back-ends to obtain an end-to-end soundness guarantee. Our methodology based on

forward simulation employs several modularisation strategies to handle the large semantic gap between the

input language and the IVL, as well as the intricacies of practical, optimised translations. We present our

methodology for the widely-used Viper and Boogie languages. Our evaluation demonstrates that it is effective

in validating the translations performed by the existing Viper implementation.

CCS Concepts: • Software and its engineering→ Formal software verification; Semantics.

Additional Key Words and Phrases: Software Verification, Intermediate Verification Languages, Formal Se-

mantics, Proof Certification

1 INTRODUCTION
Program verifiers are tools that try to automatically establish the correctness of an input program

with respect to a specification. A standard approach to achieve automation is by reducing the input

program and specification to a set of first-order formulas whose validity implies the correctness of

the input program; this is automatically checked using an SMT solver. Instead of directly producing

logical formulas, many program verifiers are translational verifiers: they translate an input program

and specification into a program in an intermediate verification language (IVL); we call this a

front-end translation. An IVL comes with its own back-end verifier that ultimately reduces IVL

programs to logical formulas. This translational approach via an IVL allows for the reuse of the

IVL’s back-end technology across multiple front-end verifiers, and makes for a more understandable

target representation than direct mappings to logical formulas, simplifying the development of

state-of-the-art program verifiers.

A very wide variety of practical program verifiers are translational verifiers; e.g. Corral [Lal and

Qadeer 2014], Dafny [Leino 2010], SMACK [Carter et al. 2016], SYMDIFF [Lahiri et al. 2012], and

Viper [Müller et al. 2016] target the imperative Boogie IVL [Leino 2008], while Creusot [Denis

et al. 2022] and Frama-C [Kirchner et al. 2015] translate to the functional Why3 IVL [Filliâtre

and Paskevich 2013]. Multiple layers of front-end translations and IVLs can also be composed (e.g.

Prusti [Astrauskas et al. 2019] builds on Viper as an IVL).

To ensure that successful verification indeed implies that the input program satisfies its specifi-

cation, any translational verifier must meet two soundness conditions: (1) Front-end soundness: the
translation into the IVL is faithful, i.e. correctness of the produced IVL program implies correctness

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

111:2 Anon.

of the input program, and (2) IVL back-end soundness: if the back-end IVL verifier reports success,

the IVL program is correct. Trustworthiness of program verifiers requires formal guarantees for

both soundness conditions. It is not sufficient to prove soundness of the program logics they employ

in principle: automated verifiers are complex systems, and it is essential that formal guarantees

also cover their actual implementations, where soundness bugs can and do arise.

Existing work on ensuring front-end soundness is based on idealised implementations that can

be formalised on paper or in an interactive theorem prover. In practice, practical front-end transla-

tions are implemented in efficient mainstream programming languages, use diverse libraries and

programming paradigms, and include subtle optimisations omitted from idealised implementations;

there is a very large gap between the translations proved correct and the actual translations used

in practice. In this paper, we bridge this gap for the first time, developing an approach to formally

validate the front-end soundness of translations used in existing, practical verifier implementations.

IVL back-end verifier soundness, which includes the soundness of the underlying SMT solver, is

a better-studied and orthogonal concern; our results can be combined with work in that area to

obtain end-to-end guarantees for an entire verification toolchain [Böhme and Weber 2010; Ekici

et al. 2017; Fleury and Schurr 2019; Garchery 2021; Parthasarathy et al. 2021].

Proving front-end soundness once and for all for a realistic verifier implementation is practically

infeasible, since such implementations are large (e.g. 17.2 KLOC and 8.5 KLOC for the Dafny-to-

Boogie and Viper-to-Boogie front-ends, respectively) and are typically written in languages that

lack a full formalisation (C# and Scala, in the example above). Instead, we develop a translation

validation approach that automatically generates a formal proof on every successful run of the

verifier via an instrumentation of the existing implementation. Our proofs are expressed in the

Isabelle theorem prover [Nipkow et al. 2002], and thus can be checked independently, effectively

removing the (substantial) front-end translation from the trusted code base of the verifier.

Challenges. Formally validating front-end translations is challenging for three main reasons:

1. Semantic gap: There is a large semantic gap between a front-end and an IVL language, which

concerns the state model (e.g. neither Boogie nor Why3 have a built-in heap, whereas most front-

end languages do), the execution model (e.g. Boogie and Why3 allow unguarded access to program

state, while e.g. Viper heap accesses are partial operations and must be guarded by checks), and the

program logics used to specify and verify programs (e.g. Boogie and Why3 use first-order predicate

transformers, whereas front-end languages use complex logics, such as dynamic frames [Kassios

2006] in Dafny and a flavour of separation logic [Parkinson and Summers 2012; Smans et al. 2012] in

Viper). To bridge the semantic gap, front-ends translate input programs into a complex combination

of low-level operations and background logical axiomatisations of input language concepts; a

validation technique needs to precisely account for the combination of these logical ingredients,

while allowing the separation of translation aspects for the sake of modularity and maintainability.

2. Diverse translations: Practical front-end translations are diverse in the sense that they use

multiple alternative translations for the same feature, e.g. more efficient translations that are sound

only in certain cases. These translations also evolve frequently over time, as new techniques and

features are developed or optimized; ideally a formal approach to validation should provide means

of minimizing the impact of the exchange of one translation for another.

3. Non-locality: The soundness of the translation of a fragment of the input program may depend

on several checks that are performed at different places in the IVL program. For instance, the

translation of a procedure call might be sound only because well-formedness of the procedure

specification has been checked elsewhere in the generated IVL code. Such non-local checks are

commonly used to speed up verification, for instance, to check well-formedness conditions once

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Formally Validating Translations into an Intermediate Verification Language 111:3

and for all rather than each time a specification is used. However, they complicate the soundness

argument, which needs to somehow track the dependencies on properties checked elsewhere.

This paper. We present the first approach for enabling automatic formal validation for existing

implementations of the front-end translations employed in many practical program verifiers.

This validation guarantees front-end soundness and, thus, makes automatic program verifiers

substantially more trustworthy.

The core of our approach is a general methodology for generating forward simulations [Lynch
and Vaandrager 1995] between the statements of the input and the IVL program in a modular way.

Our methodology provides solutions to the three challenges above. It (1) bridges the semantic gap

with a novel approach by which the simulation proof is split into smaller simulations, (2) supports

diverse translations by modularising the proof in terms of our smaller simulations, and (3) handles

non-locality by systematically and formally tracking dependencies during a simulation proof.

For concreteness, we present our methodology for the translation from a core fragment of Viper

to Boogie, as implemented in a pre-existing and actively-used verification tool. This translation is

significant both because it exhibits all of the challenges discussed above and because both Viper

and Boogie are widely used. For instance, Viper is used in Gobra (Go) [Wolf et al. 2021], Prusti

(Rust) [Astrauskas et al. 2019], Nagini (Python) [Eilers and Müller 2018], VerCors (Java) [Blom

et al. 2017], and Gradual C0 [DiVincenzo et al. 2022]. The soundness of each of these tools relies

on the Viper verifiers being sound. Note that these tools use Viper as an IVL, but for the purpose

of this paper, we will treat it solely as a front-end language that is translated to Boogie. While

our methodology is phrased in terms of Viper and Boogie, we have designed our approach, which

solves the three key challenges above, to generalise to other front-end translations, for example,

the Dafny-to-Boogie translation.

Contributions. We make the following technical contributions:

• We develop a general methodology for the automated validation of front-end translations

based on forward simulation proofs. We present this methodology for the translation from

Viper to Boogie. As a foundation for the generated proofs, we formalise a semantics for a

core subset of Viper in Isabelle and connect this with an existing Isabelle formalisation for

Boogie [Parthasarathy et al. 2021].

• We instrument the existing Viper-to-Boogie implementation such that, for a subset of Viper,

it automatically produces a proof in Isabelle justifying the soundness of the translation. These

proofs can be checked independently in Isabelle, which ensures front-end soundness of the

Viper verifier.

• Our evaluation on a diverse set of Viper programs demonstrates our approach’s effectiveness:

we were able to generate proofs and check them in Isabelle fully automatically in all cases.

• As part of the consistency proof for the axiomatisations used in Boogie programs, we provide

the first approach to formally deal with a restricted version of Boogie’s (impredicatively-

)polymorphic maps [Leino and Rümmer 2010].

Outline. Sec. 2 provides the necessary background on Viper and Boogie. Sec. 3 introduces our

forward simulation methodology for relating Viper and Boogie statements. Sec. 4 presents how

we formally validate the existing implementation of the Viper-to-Boogie translation using our

forward simulation methodology. Sec. 5 evaluates the proofs generated by our instrumentation.

Sec. 6 presents related work and Sec. 7 concludes. All our technical results (Sec. 3, Sec. 4) have
been proved in Isabelle; the mechanisation and an appendix that we refer to is included
in the supplementary material.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

111:4 Anon.

VExpr ∋ 𝑒 ::= 𝑥 | lit | 𝑒.𝑓 | 𝑒 bop 𝑒 | uop(𝑒) VAssert ∋ 𝐴 ::= 𝑒 | acc(𝑒.𝑓 , 𝑒) | 𝐴 ∗𝐴 | 𝑒 ⇒ 𝐴 | 𝑒 ? 𝐴 : 𝐴

VStmt ∋ 𝑠 ::= 𝑥 := 𝑒 | 𝑒.𝑓 := 𝑣 | ®𝑦 :=𝑚(®𝑥) | 𝑚(®𝑥) | var 𝑥 : 𝜏 | inhale 𝐴 | exhale 𝐴 | assert 𝐴 |
𝑠; 𝑠 | if(𝑒) {𝑠} else {𝑠}

BExpr ∋ 𝑒𝑏 ::= 𝑥 | lit𝑏 | 𝑒𝑏 bop 𝑒𝑏 | uop(𝑒𝑏) | 𝑓 [®𝜏𝑏] (®𝑒𝑏) | ∀𝑥 : 𝜏𝑏 . 𝑒𝑏 | ∃𝑥 : 𝜏𝑏 . 𝑒𝑏 | ∀ty 𝑡 . 𝑒𝑏 | ∃ty 𝑡 . 𝑒𝑏
BSimpleCmd ∋ 𝑐𝑏 ::= assume 𝑒𝑏 | assert 𝑒𝑏 | 𝑥 := 𝑒𝑏 | havoc 𝑥 BStmtBlock ∋ 𝑏𝑏 ::=

−→𝑐𝑏 ; if𝑏
BIfOpt ∋ if𝑏 ::= if(𝑒𝑏) {𝑠𝑏 } else {𝑠𝑏 } | if(∗) {𝑠𝑏 } else {𝑠𝑏 } | 𝜖 BStmt ∋ 𝑠𝑏 ::=

−→
𝑏𝑏

Fig. 1. The syntax of our formalised Viper subset (top, blue keywords) and corresponding Boogie subset

(bottom, with subscript 𝑏, orange keywords) without top-level declarations. 𝜏 (𝜏𝑏), bop, and uop denote types,

binary and unary operations, respectively.

2 VIPER AND BOOGIE: BACKGROUND AND SEMANTICS
In this section, we present the necessary background on the Viper and Boogie languages We

introduce and compare the language subsets targeted by the Viper-to-Boogie translation (Sec. 2.1),

give an overview of the operational semantics of Boogie (Sec. 2.2) and Viper (Sec. 2.3), and finally

show an example of the translation used by the pre-existing Viper verifier implementation (Sec. 2.4).

2.1 The Viper and Boogie languages
Viper programs in the subset considered here consist of a set of top-level declarations of fields

(reference-field pairs are used to access the heap) and methods. Boogie programs consist of a set

of top-level declarations of global variables, constants, uninterpreted (polymorphic) functions,

type constructors, axioms (which constrain the constants and functions), and procedures. Both

languages are imperative and separate statements from expressions (whose evaluation have no

side-effects) and specification-only assertions. The body of each Viper method / Boogie procedure

is a statement. Viper methods have pre- and post-conditions (assertions); method calls are verified

modularly against these assertions.
1
In Viper, variables can be declared within statements; Boogie

procedures declare all variables upfront. Our supported Viper and Boogie statements, assertions,

and expressions are shown in Fig. 1. Both languages have the same control flow elements and

have some built-in types in common (e.g. Booleans and integers). Viper additionally provides a

single reference type, and supports reading from and writing to heap locations via a field access

e.f, where e is a reference expression and f a field.

Our validation generates proofs that connect the abstract syntax tree (AST) of a Viper program

with the AST of the corresponding Boogie program
2
. Proof generation is complicated by the fact

that the Viper and Boogie AST are structured differently. As shown in Fig. 1, the Viper AST uses a

standard sequential composition 𝑠1; 𝑠2, whereas a Boogie statement is given by a list of statement
blocks. Each statement block

−→𝑐𝑏 ; if𝑏 consists of a list of simple commands (i.e. no control flow),

followed by either an if-statement or empty statement (𝜖).

As is typical for verifiers for higher-level languages, Viper’s verification methodology employs a

custom advanced program logic, in this case based on a flavour of separation logic called implicit dy-
namic frames (IDF) [Parkinson and Summers 2012; Smans et al. 2012] which reasons about the heap

via permissions. Viper’s assertions include the accessibility predicate acc(e.f,p), which represents

1
Boogie supports pre-/post-conditions and procedure calls, but they are not used by the Viper-to-Boogie implementation.

2
The actual verifier implementation produces a Boogie AST by generating and then parsing a text file. Targeting the

resulting AST directly avoids the need to trust a Boogie parser, and also generalises to verifier implementations that choose

to directly target the Boogie AST such as Dafny’s.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Formally Validating Translations into an Intermediate Verification Language 111:5

a resource (a logical notion which can be neither freely fabricated nor duplicated): the fractional

(p) amount of permission to access heap location e.f 3
. Fractional permission amounts [Boyland

2003] range between 0 and 1; nonzero permission is required to read heap locations and full (1)

permission is required to write to heap locations. 𝐴 ∗ 𝐵 expresses the separating conjunction from

separation logic, which specifies that the permissions in 𝐴 and 𝐵 must sum up to an amount cur-
rently held. One difference between IDF and separation logic is that IDF (and thus, Viper) supports

general heap-dependent expressions such as x.val = 5 or x.f.f, whose evaluation is partial
(only allowed with suitable permissions); this necessitates a notion of well-definedness checks on
expressions (see Sec. 2.3). Boogie does not provide built-in heap reasoning, and uses a much simpler

program logic: its assertions are (total) formulas in first-order logic.

The presence of a heap in Viper also results in a very different state model. A Viper state consists

of a variable store, a heap (mapping heap locations to current values) and a permission mask
(mapping heap locations to current permission amounts); a Boogie state is simply a variable store.

The main Viper features not included in our subset are loops, more-complex resource assertions

(predicates, magic wands, iterated separating conjunctions), heap-dependent functions, and domains.

Adding support for loops is straightforward: their semantics can be desugared via their invariant,

in a pattern similar to method calls that we already support. For other features more work would be

required, but we are confident that these extensions would fit within in our general methodology.

2.2 Boogie Semantics
We extend the operational Boogie semantics formalised in Isabelle by Parthasarathy et al. [2021]

to support the statements in Fig. 1, and reuse many components including the state model and

the semantics of simple commands. The semantics of Boogie statements is expressed via program

executions. A finite program execution has one of three outcomes: (1) it fails, because an assert 𝑒

command is reached in a state that does not satisfy the Boolean expression 𝑒 , (2) it stops, because
an assume 𝑒 command is reached in a state that does not satisfy the Boolean expression 𝑒 , or (3) it

succeeds, because neither of the first two situations occur. The three outcomes are represented

formally via: (1) a failure outcome F, (2) a magic outcomeM for when the execution stops, and (3) a

normal outcome N(𝜎𝑏) in all other cases, where 𝜎𝑏 is the resulting Boogie state, which is given by a

mapping from variables to values. Assignments and havoc commands always succeed; havoc 𝑥

nondeterministically assigns a value of 𝑥 ’s declared type to 𝑥 .

Formally, executions of Boogie statements are expressed via a small-step semantics. The judge-

ment Γ𝑏 ⊢ (𝛾,N(𝜎𝑏)) →∗
b
(𝛾 ′, 𝑟𝑏) expresses a finite execution w.r.t. Boogie context Γ𝑏 that takes 0

or more steps starting from the program point 𝛾 and Boogie state 𝜎𝑏 , and ending in the program

point 𝛾 ′
and outcome 𝑟𝑏 . A Boogie context includes the interpretation of uninterpreted types and

functions, and the types of declared variables. A program point is given by a pair of the currently

active statement block 𝑏 and the continuation representing the statement to be executed after 𝑏.

A continuation is either the empty continuation (i.e. there is nothing to execute) or a sequential

continuation (i.e. a statement block followed by a continuation). A continuation-based small-step

semantics avoids local search rules commonly required in a small-step semantics [Appel and Blazy

2007].

2.3 Viper Semantics
To our knowledge, there is no mechanised semantics for any fragment of the Viper language;

we outline the main points of the one we have formalised here. We give a big-step operational

semantics to Viper statements via program executions again with three possible outcomes for finite

3
For readers familiar with separation logics, this is analogous to a fractional points-to assertion in a separation logic.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 Anon.

executions: failure F, magic M, and normal outcomes N(𝜎𝑣) where 𝜎𝑣 is a Viper state. A Viper state

𝜎𝑣 comprises a local variable mapping st(𝜎𝑣), a heap ℎ(𝜎𝑣) (a total mapping from heap locations to

values), and a permission mask 𝜋 (𝜎𝑣) (a total mapping from heap locations to permission amounts).

The judgement Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v 𝑟𝑣 holds if, in the Viper context Γ𝑣 (fixing the declarations of methods,

fields and local variables) for statement 𝑠 in the state 𝜎𝑣 terminates with outcome 𝑟𝑣 . Determining

the outcome of a Viper execution is much more complex than for Boogie; for example, our semantics

takes care that all Viper states have consistent permission masks (mapping each location to values

between 0 and 1); executions that would produce inconsistent states in this sense are pruned by

going to M.

Formalising expression evaluation requires care for Viper, since, in a given state, not even all

type-correct expressions are well-defined: in our subset this can be either because of (1) division

by zero, or (2) dereferencing a heap location for which no permission is held (subsuming null

dereferences). In our semantics, evaluating an ill-defined expression causes execution to fail (in

contrast to Boogie, where expression evaluation is always allowed and defined). Our judgement

⟨𝑒, 𝜎𝑣⟩ ⇓ V(𝑣) expresses that expression 𝑒 evaluates to a value 𝑣 in state 𝜎𝑣 (in particular, 𝑒 is

well-defined in 𝜎𝑣) and ⟨𝑒, 𝜎𝑣⟩ ⇓ expresses that 𝑒 is ill-defined in 𝜎𝑣 .

Viper uses two main statement primitives to encode separation logic reasoning: (1) inhale 𝐴

adds the permissions specified by assertion 𝐴 to the state, and stops any execution where either a

logical constraint in 𝐴 does not hold (these are assumed) or the added permissions would yield an

inconsistent permission mask. (2) exhale 𝐴 removes the permissions specified by 𝐴, and fails if
either insufficient permissions are held or if a constraint in 𝐴 does not hold; for any heap locations

to which all permission was removed, an exhale also non-deterministically assigns arbitrary values
4

This non-deterministic assignment reflects the fact that, while our Viper states employ total heaps

(as is typical for IDF formalisms [Parkinson and Summers 2012]), the values stored in heap locations

without permission should be completely unconstrained.

inhale and exhale operations are typically used in Viper to encode external or more-complex

operations [Müller et al. 2016]. For instance, a Viper method calls can be desugared into exhaling the

precondition and then inhaling the postcondition of the callee; the nondeterministic assignments

made by the exhale model possible side effects of the call. We present here some of the key rules

for exhale, which will be used later in this paper. Additional rules for inhale are presented in

the appendix (App. A); the complete rules are included in our Isabelle formalisation.

An exhale 𝐴 must cause the loss of heap information (via non-deterministic assignments) in

general, but also needs to check that logical constraints were true when the exhale started. Our

semantics for exhale 𝐴 first removes the permissions and checks the constraints specified in 𝐴

without changing the heap yet via an intermediate operation remcheck 𝐴; only then, it applies

nondeterministic assignments. The inference rule exh-succ in Fig. 2 formalises this behaviour for

the case when exhale 𝐴 succeeds. The big-step judgement 𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′′
𝑣) defines the

successful execution of an remcheck 𝐴 operation from 𝜎𝑣 to 𝜎
′′
𝑣 . nonDet specifies the nondeter-

ministic assignment for all heap locations for which remcheck 𝐴 removed all permission. The

case when remcheck 𝐴 (and thus exhale 𝐴) fails, is captured by the rule exh-fail.

Our semantics for remcheck 𝐴 decomposes the assertion𝐴 from left to right: That is, remcheck 𝐴∗
𝐵 first executes remcheck 𝐴 and then remcheck 𝐵 (rule rc-sep formalises the case when

remcheck 𝐴 succeeds; if remcheck 𝐴 fails, then remcheck 𝐴 ∗ 𝐵 also fails). However, we need to

also take care that the removal of permissions on-the-fly doesn’t cause subexpressions to be consid-

ered ill-defined, e.g. for the subexpression x.f==1 in exhale(acc(x.f)*x.f==1) which comes

4
For separation-logic-versed readers, the Hoare triples {𝑅 } inhale 𝐴 {𝑅 ∗𝐴} and {𝑅 ∗𝐴} exhale 𝐴 {𝑅 } reflect this
behavior (assuming the expressions in 𝐴 and 𝑅 are well-defined).

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Formally Validating Translations into an Intermediate Verification Language 111:7

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′′
𝑣)

nonDet(𝜎𝑣, 𝜎 ′′
𝑣 , 𝜎

′
𝑣) (exh-succ)

Γ𝑣 ⊢ ⟨exhale 𝐴, 𝜎𝑣⟩ →v N(𝜎 ′
𝑣)

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F

(exh-fail)
Γ𝑣 ⊢ ⟨exhale 𝐴, 𝜎𝑣⟩ →v F

𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣)

𝜎0

𝑣 ⊢ ⟨𝐵, 𝜎 ′
𝑣⟩ →rc 𝑟𝑣 (rc-sep)

𝜎0

𝑣 ⊢ ⟨𝐴 ∗ 𝐵, 𝜎𝑣⟩ →rc 𝑟𝑣

⟨𝑒, 𝜎0

𝑣 ⟩ ⇓ V(𝑟) ⟨𝑒𝑝 , 𝜎0

𝑣 ⟩ ⇓ V(𝑝)
𝑟𝑣 = if exhAccSucc(𝑟, 𝑝, 𝜎𝑣) then N(𝜎𝑅

𝑣) else F (rc-acc)
𝜎0

𝑣 ⊢ ⟨acc(𝑒.𝑓 , 𝑒𝑝), 𝜎𝑣⟩ →rc 𝑟𝑣

nonDet(𝜎𝑣, 𝜎 ′′
𝑣 , 𝜎

′
𝑣) ≜

st(𝜎 ′
𝑣) = st(𝜎 ′′

𝑣) ∧ 𝜋 (𝜎 ′
𝑣) = 𝜋 (𝜎 ′′

𝑣) ∧
∀𝑙 . (𝜋 (𝜎𝑣) (𝑙) = 0 ∨ 𝜋 (𝜎 ′′

𝑣) (𝑙) > 0) ⇒ ℎ(𝜎 ′
𝑣) (𝑙) = ℎ(𝜎 ′′

𝑣) (𝑙)
exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ≜ 𝑝 ≥ 0 ∧ (𝑟 = null ? 𝑝 = 0 : 𝜋 (𝜎𝑣) (𝑟 .𝑓) ≥ 𝑝) 𝜎𝑅

𝑣 ≜ rem(𝜎𝑣, 𝑟 , 𝑓 , 𝑝)

Fig. 2. A subset of the rules for the formal semantics of exhale. rem(𝜎𝑣, 𝑟 , 𝑓 , 𝑝) is the state 𝜎𝑣 where permission

𝑝 is removed from 𝑟 .𝑓 .

after the permission to x.f is removed. Thus, our judgement carries both an expression evaluation
state (𝜎0

𝑣 in rc-sep) in which expressions are evaluated and a reduction state (𝜎𝑣 and 𝜎 ′
𝑣 in rc-sep)

from which permissions are removed. Rule rc-acc for remcheck acc(𝑒.𝑓 , 𝑒𝑝) models removing 𝑒𝑝
permission for heap location 𝑒.𝑓 . The operation succeeds (expressed by exhAccSucc(𝑟, 𝑝, 𝜎𝑣)) iff
(1) the to-be-removed permission is nonnegative and, (2) there is sufficient permission.

2.4 Example Viper-to-Boogie Translation
To give a flavour of a translation of a Viper statement into a Boogie, consider Fig. 3, which shows a

simplified translation used by the standard Viper-to-Boogie implementation. The Viper statement

first adds permission to x.f, then updates y.g, and finally removes the added permission to x.f
and checks that y.g is greater than x.f. This sequence of operations occurs, for instance, when
verifying a method with the permission to x.f as precondition, the field update as method body,

and the exhaled assertion as postcondition.

The corresponding Boogie program is significantly larger. The inhale is encoded on lines 1-4,

the assignment is encoded on lines 5-7, and the exhale is encoded on lines 8-18. The Boogie

program uses map-typed variables H and M to model the heap and permissions, respectively.
5

The uninterpreted function GoodMask expresses when a permission map is consistent; an axiom

constrains the function correspondingly. The permission mask of the expression evaluation state

during the remcheck operation is captured by the auxiliary variable WM (line 8). The corresponding

nondeterministic assignment of heap values is performed on line 16. Even this tiny snippet of code

illustrates the explosion in concerns, complexity and the inobvious mapping between concepts in

one language and the other, all of which must be taken care of for formal translation validation.

3 A FORWARD SIMULATION METHODOLOGY FOR FRONT-END TRANSLATIONS
A translational verifier is sound iff the correctness any input program is implied by the correctness

of the correspondingly-translated IVL program. In our setting: a Viper program (resp. a Boogie

program) is correct if each of its methods (resp. procedures) is correct. At a high level (details in

Sec. 4.5), a method (resp. procedure) is correct if its body has no failing executions. Our goal, for a

5
The notation m[a] is syntactic sugar here. We describe in Sec. 5 how maps are represented using the subset from Fig. 1.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

111:8 Anon.

inhale acc(x.f, q)
y.g := x.f+1
exhale acc(x.f, q) * y.g > x.f

{

1 tmp := q; assert tmp >= 0
2 assume tmp > 0 ==> x != null;
3 M[x,f] += tmp
4 assume GoodMask(M)
5 assert M[x,f] > 0; assert M[y,g] == 1
6 H[y,g] := H[x,f]+1
7 assume GoodMask(M)
8 WM := M, tmp := q;
9 assert tmp >= 0
10 if(tmp != 0) {
11 assert M[x,f] >= tmp
12 }
13 M[x,f] -= tmp
14 assert WM[y,g] > 0; assert WM[x,f] > 0
15 assert H[y,g] > H[x,f]
16 havoc H'; assume idOnPositive(H,H',M)
17 H := H'
18 assume GoodMask(M)

Fig. 3. A Viper statement (on the left) and the corresponding (simplified) Boogie statement (on the right)

that is emitted by the current Viper-to-Boogie implementation.

given run of the Viper-to-Boogie translation, is to generate automatically a formal proof that shows

that if the Viper program has a failing execution, the translated Boogie program has one also.

We generate such proofs via a novel general methodology for proving forward simulations [Lynch
and Vaandrager 1995] between source and IVL target statements. We observed early on that

generating such simulation proofs directly based on global knowledge of the entire translationwould

require handling the entire semantic gap between the source and target languages monolithically

in one result, which would be both unfeasible to automate effectively and highly-brittle to any

changes in the translation.

Instead, our methodology employs a combination of key technical strategies that work together to

achieve reliable and robust automation of our formal simulation results: (1) syntactic and semantic

decompositions into smaller and more-focused simulation sub-results that are easier to automate, (2)

generic simulation judgements which can be instantiated to obtain the diverse simulation notions we

require, (3) generic composition lemmas which factor out common idioms arising in diverse facets of

the overall translation, and (4) contextual hypotheses which can be injected into specific simulation

proofs to handle non-locality of certain translation checks. We present these key ingredients of

our methodology in the remainder of this section. We illustrate them concretely for Viper and

Boogie, but they can be naturally ported to other front-end translations because they are designed

to abstract over the specifics of states, relations and specific statements employed in a translation.

3.1 Focusing Forward Simulation Proofs by Decomposition
Intuitively, a forward simulation between a Viper and a Boogie statement shows that for any

execution of the Viper statement, there exists a corresponding execution of the Boogie statement

that simulates it. By defining the simulation such that a failing Viper execution is simulated only

by failing Boogie executions, a forward simulation implies our desired result in particular.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Formally Validating Translations into an Intermediate Verification Language 111:9

simΓ𝑏 (𝑅in, 𝑅out, Succ, Fail, 𝛾in, 𝛾out) ≜ ∀𝜏, 𝜎𝑏 . 𝑅in (𝜏, 𝜎𝑏) =⇒(
∀𝜏 ′. Succ(𝜏, 𝜏 ′) =⇒ ∃𝜎 ′

𝑏
. Γ𝑏 ⊢ (𝛾in,N(𝜎𝑏)) →∗

b
(𝛾out,N(𝜎 ′

𝑏
)) ∧ 𝑅out (𝜏 ′, 𝜎 ′

𝑏
)
)
∧ (Success case)(

Fail(𝜏) =⇒ ∃𝛾 ′. Γ𝑏 ⊢ (𝛾in, 𝜎𝑏) →∗
b
(𝛾 ′, F)

)
(Failure case)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, 𝑠, 𝛾, 𝛾 ′) ≜ simΓ𝑏 (𝑅, 𝑅′, 𝜆𝜎𝑣 𝜎
′
𝑣 . Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v N(𝜎 ′

𝑣), 𝜆𝜎𝑣 . Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v F, 𝛾, 𝛾
′)

wfSimΓ𝑏 (𝑅, 𝑅′, 𝑒𝑠, 𝛾,𝛾 ′) ≜ simΓ𝑏

(
𝑅, 𝑅′, (𝜆𝜎𝑣 𝜎 ′

𝑣 . 𝜎𝑣 = 𝜎 ′
𝑣 ∧ ∃𝑣𝑠. ⟨𝑒𝑠, 𝜎𝑣⟩[⇓]V(𝑣𝑠)),

(𝜆𝜎𝑣 . ⟨𝑒𝑠, 𝜎𝑣⟩[⇓]), 𝛾, 𝛾 ′

)
rcSimΓ𝑏 (𝑅, 𝑅′, 𝐴,𝛾,𝛾 ′) ≜ simΓ𝑏

(
𝑅, 𝑅′, (𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣). 𝜎0

𝑣 = 𝜎1

𝑣 ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣)),

(𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F), 𝛾, 𝛾 ′

)
Fig. 4. The definition of the generic forward simulation judgement and three common instantiations. The

judgement ⟨𝑒𝑠, 𝜎𝑣⟩[⇓]𝑟 lifts the judgement for the evaluation of an expression (see Sec. 2.3) to a list of

expressions 𝑒𝑠 .

To tackle the complexity of automatically (and reliably) generating simulation proofs in general

for the Viper-to-Boogie translation, we employ a variety of strategies for aggressively decomposing

the desired simulation result into smaller and simpler sub-goals that are themselves still simulation

results. These decompositions are sometimes intuitive based on the syntax: for example, in the case

of decomposing simulation of a Viper sequential composition into simulations for its constituent

statements. However, we go further than the syntax, decomposing across different semantic concerns
for the same Viper statement, into what we call Viper effects.
For example, we discussed in Sec. 2.3 that the semantics of exhale consists of two effects,

remcheck and a nondeterministic assignment. The atomic simulation proofs for each of these

Viper effects are made separately, and then composed for a simulation proof for the primitive

statement as a whole; this would in turn be composed with simulation proofs for other sequentially-

composed statements, and so on. Note in particular, that atomic simulation proofs may need to relate

only a part of the semantics of a Viper statement to some appropriate Boogie code, a technicality

which requires special care when tracking the relations between corresponding states in the two

programs.

Via our decompositions, each atomic simulation proof focuses on a different specific semantic

concern with respect to the translation in question; these proofs can be made simple enough to

discharge automatically, optionally with tailored tactics. However without care, our decomposition

approach could lead easily to an explosion of ad hoc simulation judgements with disparate forms

and parameters. Instead, our simulation methodology defines a single, generic simulation judgement

which can be instantiated appropriately to define each particular simulation judgement required.

We design our generic judgements to support instantiations which reflect not only the semantics

of the particular effect in isolation, but to optionally include additional contextual information to

be propagated to specialise and aid the simulation proof itself.

3.2 One Simulation Judgement to Rule Them All
Our generic forward simulation judgement sim is defined in Fig. 4. All concrete forward simulations

(e.g. for statements, well-definedness checks, etc.) are instantiations of this judgement. As well as

aiding understanding, this approach enables both tactics which manipulate this generic judgement

directly, and generic composition proof rules which embody recurring proof idioms in a way which

is again parametric with the specific simulations in question (Sec. 3.3).

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

111:10 Anon.

sim is defined in terms of multiple parameters: (1) the Boogie context Γ𝑏 , (2) an input relation 𝑅in
and an output relation 𝑅out on Viper and Boogie states, (3) a success predicate Succ characterising
the set of input and output Viper state pairs (𝜏, 𝜏 ′) for which there is a successful Viper execution

from 𝜏 to 𝜏 ′, (4) a failure predicate Fail characterising the set of input Viper states that result in a

failing execution, (5) input and output Boogie program points 𝛾 and 𝛾 ′
where the Boogie executions

are expected to start and end, respectively. The success and failure predicate together abstractly

describe the set of Viper executions that must be shown to be simulated.

simΓ𝑏 (𝑅in, 𝑅out, Succ, Fail, 𝛾in, 𝛾out) holds iff for any Viper and Boogie input states related by 𝑅in,

the following two conditions hold: (1) if the Viper execution from the input Viper state is successful

for some output Viper state 𝜏 ′, then there must be a Boogie execution from program point 𝛾in and

the input Boogie state to program point 𝛾out and some output Boogie state that is related to 𝜏 ′

by 𝑅out , and (2) if the Viper execution fails in the input state, then there must be a failing Boogie

execution from 𝛾in and the input Boogie state (the reached Boogie program point need not be

𝛾out). The second condition is the end goal that we need to show soundness of the Viper-to-Boogie

translation. The first condition is needed in order to derive sim compositionally; it guarantees, for

example, that not all Boogie executions for a successful Viper execution produce a magic outcome.

Three important instantiations of sim that we use are shown at the bottom of Fig. 4. stmSim is the

forward simulation for Viper statements, where the success and failure predicates are instantiated to

be a successful and a failing Viper statement reduction, respectively. Thus, the resulting failure case

in sim directly gives us the key property to show the soundness of a Viper-to-Boogie translation.

wfSim is the forward simulation for the well-definedness check of a list of Viper expressions.

Here, the instantiation of the success predicate explicitly expresses that the Viper state does

not change during the evaluation of expressions. rcSim is the forward simulation for remcheck.
Here, the instantiation makes use of the fact that the generic simulation judgement sim is in fact

also (implicitly, here) parametric with the notions of states employed: the “Viper state” is in fact

instantiated to be a pair of standard Viper states in this case, where the first Viper state represents

the expression evaluation state and the second Viper state represents the reduction state (see Sec. 2.3

for this distinction). The success predicate expresses that the expression evaluation state does

not change during an remcheck operation. These three common instantiations are all expressed

directly via the Viper reduction judgements introduced in Sec. 2.3. Like the generic simulation

judgement, the three instantiations are themselves generic, abstracting away how the Viper and

Boogie states are related by taking the input and output state relations as parameters. As we will

show in Sec. 3.4, we also use instantiations that do not just use Viper reduction judgements (e.g. to

express the non-deterministic assignment of heap values in remcheck).

3.3 Instantiation-Independent Rules
Many simulation idioms arise repeatedly (but differently) in a complex translation. Notions of

sequential composition, conditional evaluation, stuttering steps are all good example idioms, which

require a certain stylised formal justification to reason about. Our generic simulation judgement

allows us to identify and formalise these idioms once and for all, providing, for example generic

composition lemmas that can be proved once and instantiated for different purposes. In this

subsection, we visualise these idioms as inference rules, but in our Isabelle formalisation they are

expressed and proved as regular lemmas.

For example, we prove a single general composition rule from which we derive concrete rules to

combine (1) simulations of 𝑠1 and 𝑠2 to a simulation of 𝑠1; 𝑠2, (2) simulations of remcheck 𝐴1 and

remcheck 𝐴2 to remcheck 𝐴1∗𝐴2, (3) simulations of inhale 𝐴1 and inhale 𝐴2 to inhale 𝐴1∗𝐴2.

The general composition rule comp in Fig. 5 captures the composition of two, possibly different,

instantiations of sim, where the output relation and Boogie program point of the first instantiation

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Formally Validating Translations into an Intermediate Verification Language 111:11

simΓ𝑏 (𝑅, 𝑅′′, 𝑆1, 𝐹1, 𝛾, 𝛾 ′′)
simΓ𝑏 (𝑅′′, 𝑅′, 𝑆2, 𝐹2, 𝛾 ′′, 𝛾 ′)

∀𝜏, 𝜏 ′. 𝑆 (𝜏, 𝜏 ′) ⇒ ∃𝜏 ′′. 𝑆1 (𝜏, 𝜏 ′′) ∧ 𝑆2 (𝜏 ′′, 𝜏 ′)
∀𝜏 . 𝐹 (𝜏) ⇒ 𝐹1 (𝜏) ∨ ∃𝜏 ′′. 𝑆1 (𝜏, 𝜏 ′′) ∧ 𝐹2 (𝜏 ′′) (comp)

simΓ𝑏 (𝑅, 𝑅′, 𝑆, 𝐹 ,𝛾,𝛾 ′)

bSimΓ𝑏 (𝑅, 𝑅1, 𝛾, 𝛾1)
simΓ𝑏 (𝑅1, 𝑅2, 𝑆, 𝐹 ,𝛾1, 𝛾2)
bSimΓ𝑏 (𝑅2, 𝑅′, 𝛾2, 𝛾 ′)

(bprop)
simΓ𝑏 (𝑅, 𝑅′, 𝑆, 𝐹 ,𝛾,𝛾 ′)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, 𝑠1, 𝛾, 𝛾 ′′)
stmSimΓ𝑣 ,Γ𝑏 (𝑅′′, 𝑅′, 𝑠2, 𝛾 ′′, 𝛾 ′)

(seq-sim)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, (𝑠1; 𝑠2), 𝛾, 𝛾 ′)

where
bSimΓ𝑏 (𝑅, 𝑅′, 𝛾, 𝛾 ′) ≜

simΓ𝑏 (𝑅, 𝑅′, 𝜆𝜏 𝜏 ′. 𝜏 = 𝜏 ′, 𝜆_. ⊥, 𝛾, 𝛾 ′)

Fig. 5. The instantiation-independent rules comp and bprop and the concrete rule for the simulation of 𝑠1; 𝑠2.

rcSimΓ𝑏 ([𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣, 𝜎𝑏)], 𝑅1, 𝐴,𝛾,𝛾1) (sim. of remcheck 𝐴)
simΓ𝑏 (𝑅1, [𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅′(𝜎𝑣, 𝜎𝑏)], Succ2, 𝜆_. ⊥, 𝛾1, 𝛾 ′) (non-det. selection)

(exh-sim)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, exhale 𝐴,𝛾,𝛾 ′)

Succ2 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣) (_, 𝜎 ′
𝑣). nonDet(𝜎0

𝑣 , 𝜎𝑣, 𝜎
′
𝑣) ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎0

𝑣 ⟩ →rc 𝜎𝑣

Fig. 6. Rule for the simulation of exhale 𝐴. The definition of nonDet is given in Fig. 2.

match the input relation and program point of the second one. The two final premises constrain

the resulting success and failure predicates. In particular, the composed Viper execution should fail

only if either the first instantiation fails or if the second instantiation fails in a state successfully

reached by the first one. The rule seq-sim in Fig. 5 shows the concrete composition rule for 𝑠1; 𝑠2,

which is derived from comp. Note that seq-sim does not impose any constraints on the Boogie

program points, which is crucial to handle Viper’s and Boogie’s disparate ASTs (see Sec. 2.1).

As a second example, the notion of simulation stuttering steps also arises in many diverse ways,

whenever some auxiliary Boogie code is generated as a translation feature without fully reflecting

a step in the Viper source. This includes initialisations of auxiliary variables, or Boogie assume
statements for properties from the current simulation state relation. This idiom is captured by the

Boogie propagation rule bprop in Fig. 5, in which bSim expresses simulations in which only the

Boogie state may change (causing adjustment to the state relations).

3.4 Examples: Generic Decomposition in Action
As outlined above, the general strategy for our simulation methodology is to decompose our

simulation goals as far as possible, while leaving as many parameters generic as we can to enable

maximal reuse of our results and composition lemmas. While decomposition handles the semantic

gap, our use of generic parameterisation provides the abstraction necessary to address the diverse

translations used in practical translational verifiers. In the following, we showcase our methodology

on one rule, but the same ideas apply to all our formal rules (see a second example in App. B).

Consider the rule exh-sim for the simulation of exhale 𝐴 in Fig. 6. The first premise is expressed

as a simulation of the first effect, remcheck, which we can express via the rcSim instantiation

(see Fig. 4). The second premise models nondeterministic assignment, which is captured by the

first conjunct nonDet of the corresponding success predicate and by the failure predicate, which

reflects that the nondeterministic assignment cannot fail.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

111:12 Anon.

rcInvSim
𝑄

Γ𝑣
(𝑅, 𝑅′′, 𝐴1, 𝛾, 𝛾

′′) rcInvSim
𝑄

Γ𝑣
(𝑅′′, 𝑅′, 𝐴2, 𝛾

′′, 𝛾 ′)

∀𝜎0

𝑣 , 𝜎𝑣 . 𝑄 (𝐴1 ∗𝐴2, (𝜎0

𝑣 , 𝜎𝑣)) ⇒
(
𝑄 (𝐴1, (𝜎0

𝑣 , 𝜎𝑣)) ∧
∀𝜎 ′

𝑣 . 𝜎
0

𝑣 ⊢ ⟨𝐴1, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣) ⇒ 𝑄 (𝐴2, (𝜎 ′

𝑣, 𝜎
0

𝑣))

)
(rsep-sim)

rcInvSim
𝑄

Γ𝑣
(𝑅, 𝑅′, (𝐴1 ∗𝐴2), 𝛾, 𝛾 ′)

rcInvSim
𝑄

Γ𝑏
(𝑅, 𝑅′, 𝐴,𝛾,𝛾 ′) ≜ rcSimΓ𝑏 ((𝜆𝜏, 𝜎𝑏 . 𝑅(𝜏, 𝜎𝑏) ∧𝑄 (𝐴, 𝜏)), 𝑅′, 𝐴,𝛾,𝛾 ′)

Fig. 7. The instantiation for simulating remcheck 𝐴 with assertion predicate 𝑄 (bottom) and the corre-

sponding rule for the separating conjunction (top).

By modularly abstracting over the details of these premises, as well as the precise definitions of

the states and state relations (e.g. the intermediate relation 𝑅1 in this rule), we obtain robustness to

diverse translations: crucially, our rules do not constrain which exact Boogie statements correspond
to a Viper effect. For example, the Viper-to-Boogie implementation establishes the nondeterministic

heap assignment premise in exh-sim in two different ways depending on whether the assertion

contains an accessibility predicate acc(𝑒.𝑓 , 𝑒𝑝) or not. In the latter case, the implementation does

not emit any Boogie code for the nondeterministic assignment, which is sound, since no permission

is removed. We are able to justify even this special case with the exact same rule because the success

predicate in the premise includes the fact that the current Viper state was reached via remcheck 𝐴.

This allows us, when proving the third premise, to conclude that the nondeterministic assignment

would have no effect.

Note that this genericity does not prevent the rule from exploiting specific contextual information:

for example, the input state relation of the first premise makes explicit that at the beginning of

the remcheck 𝐴 effect the expression evaluation state state and the reduction state are the same.

This property does not hold in general for executions of remcheck (e.g. it might not hold when

performing the effect on the second conjunct of a separating conjunction), but it does hold here, at

the beginning of an exhale.

3.5 Injecting Non-Local Hypotheses into Simulation Proofs
Our rules are designed to be parametric in the state relation between the Viper and Boogie state

and permit adjusting this state relation at different points in the simulation proof (e.g. via the

Boogie propagation rule bprop in Fig. 5). In principle, this allows the injection of arbitrary non-

locally-justified hypotheses into all of our simulation judgements. However, automating the usage
of general logical assumptions embedded into our state relations can become a challenge in itself.

For example, in cases that we will discuss in detail in Sec. 4.2, the Viper-to-Boogie implementation

omits the well-definedness checks of expressions in the translation of remcheck 𝐴 and inhale 𝐴.

This is justified, because 𝐴 is checked to be well-formed non-locally in those cases, but to use this
additional hypothesis requires propagating and adjusting it through the cases of the definition of

remcheck 𝐴.

As a last key ingredient of our methodology, to avoid these recurring adaptations and proof

steps, we allow specialised instantiations of the generic forward simulation judgement sim that

encapsulate these extra hypotheses as additional premises. Consequently, applications of the rule

can work with a fixed state relation and replace recurring proof steps by the justification of an

additional premise.

Fig. 7 shows (at the bottom) an instantiation of sim that expresses the simulation of remcheck 𝐴,

parameterised with a predicate 𝑄 on assertions. Its definition in terms of rcSim requires 𝑄 (𝐴, 𝜏) to

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Formally Validating Translations into an Intermediate Verification Language 111:13

hold as part of the input state relation. The specialised rule rsep-sim (top of Fig. 7) for remcheck 𝐴1∗
𝐴2 decomposes the simulation into simulations for 𝐴1 and 𝐴2. Both sub-simulations use the same
predicate 𝑄 , such that applications of the rule do not need to adjust the state relations explicitly to

reflect that, for example, 𝑄 holds for 𝐴1 and 𝐴2 in the respective states. This property is ensured by

the third premise. In practice, for a specific 𝑄 , we prove the third premise once and for all for all

assertions 𝐴1 and 𝐴2, which avoids the recurring proof steps that would be necessary without the

specialised rule. Note that the same parameter can be instantiated many different ways to capture

different non-local hypotheses for different applications of the same rule.

In summary, our methodology solves all three challenges outlined in the introduction. The

large semantic gap between input language and IVL is handled by decomposing the statements of

the input language into smaller effects and defining for each of them instantiations of a generic

forward simulation relation. The parameterisation of this relation allows us, in particular, to capture

information about the context in which the effects are execute. This parameterisation also supports

diverse translations by abstracting from the details of the translation. Finally, non-locality is handled

by capturing properties checked elsewhere in the state relations, and by devising specialised

rules that simplify the proof generation. All of these ideas are needed to validate the existing

Viper-to-Boogie translation, but apply equally to other front-end translations.

4 PUTTING THE METHODOLOGY TOWORK
This section presents ideas for applying the methodology from Sec. 3 to concrete front-end transla-

tions. In particular, the section presents our instantiation of the state relation (Sec. 4.1), a concrete

instance of non-local reasoning (Sec. 4.2), and how our proof automation works (Sec. 4.3). Finally,

the section discusses the background theory for Boogie (Sec. 4.4), which includes polymorphic

maps, and shows how to use forward simulation proofs to generate the final theorem (Sec. 4.5).

4.1 State Relation
Our rules for deriving forward simulation judgements (Sec. 3) allow us to adjust state relations as

needed during a simulation proof. We use this flexibility in manyways, e.g. when (E1) a scoped Viper

variable is introduced, (E2) a new auxiliary Boogie variable is introduced, (E3) the Boogie variables

tracking the Viper state are changed.To facilitate proof automation for handling such adjustments,

we build in a stylised form for expressing state relations for this translation via two parameters: a

partial auxiliary variable map from auxiliary Boogie variables to logical conditions they each satisfy,
and a translation record specifying how key Viper components are represented in the Boogie state;

the scenarios above are all handled by adjusting one of these two parameters. Translation records

comprise: (1) a mapping var (Tr) from Viper variables to their Boogie counterparts, (2) the pair

HM (Tr) of Boogie variables representing the Viper heap and permission mask (and optionally

an additional pair HM0 (𝑇𝑟) whenever we use a separate expression evaluation state) and (3) a

mapping field (Tr) from Viper fields to corresponding Boogie constants.

The following definition shows a simplified excerpt of our state relation instantiation for transla-

tion record Tr and auxiliary variable map AV , where 𝜎𝑣 and 𝜎𝑏 are the Viper and Boogie states,

and 𝜎0

𝑣 is a distinguished Viper expression evaluation state (if there is none, then 𝜎𝑣 = 𝜎0

𝑣):

𝑅
Tr,AV
Γ𝑏

((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) ≜ consistent(𝜎0

𝑣) ∧ consistent(𝜎𝑣) ∧
fieldRelΓ𝑏 (field (Tr), 𝜎𝑏) ∧ (∀𝑥, 𝑃 . AV (𝑥) = 𝑃 ⇒ 𝑃 (𝜎𝑏 (𝑥))) ∧
stRelΓ𝑏 (var (Tr), 𝜎𝑣, 𝜎𝑏) ∧ hmRelΓ𝑏 (HM (Tr), 𝜎𝑣, 𝜎𝑏) ∧ hmRelΓ𝑏 (HM0 (Tr), 𝜎0

𝑣 , 𝜎𝑏) ∧ · · ·

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

111:14 Anon.

The first line ensures that the Viper states are consistent. The second ensures that the Viper fields

are represented in the Boogie state (fieldRel) and that for each (𝑥, 𝑃) in the auxiliary variable map,

𝑃 holds for the value of 𝑥 . The third line ensures that the Boogie state correctly captures the Viper

state: both in terms of its variable store (stRel) and heap and permission mask (hmRel).

4.2 Non-Locality
For most occurrences of remcheck 𝐴 the translation to Boogie generates well-definedness checks

corresponding to expressions evaluated in𝐴. However, specifically in the case of exhaling a method

call’s precondition, the translation completely omits these well-definedness checks. This is justified

by a non-local check: the method precondition is checked once-and-for-all to be always well-defined

as part of translating the method declaration6.
Given Viper’s semantics, our standard simulation proof for remcheck 𝐴 would fail if we did not

reflect the consequences of this non-local guarantee in a way that is used automatically during the
proof. We instantiate the general strategy outlined in Sec. 3.5 for this purpose, which allows us to

choose a predicate 𝑄pre on assertions 𝐴 that will be applied throughout the simulation proof for

remcheck 𝐴. Our strategy requires us to find 𝑄pre such that (a) it is implied by the non-local check

elsewhere, and (b) it can be propagated identically to sub-expressions of 𝐴 during the proof (e.g.

satisfying the third premise of rsep-sim in Fig. 7, and similarly for other connectives).

In this case, we instantiate the predicate in our strategy with the following definition:

𝑄pre (𝐴, 𝜎0

𝑣 , 𝜎𝑣) ≜ consistent(𝜎0

𝑣) ∧ ∃𝜎 i
𝑣 . 𝜎𝑣 ⊕ 𝜎 i

𝑣 ⪯ 𝜎0

𝑣 ∧ ¬⟨𝐴, 𝜎 i
𝑣⟩ →inh F

Here, ⊕ and ⪯ (and later, ⊖) have standard pointwise meanings on permission masks, leaving

heaps and stores identical. This predicate expresses that possibly after restoring some permissions

(in 𝜎 i
𝑣) that we had at the start of this exhale, at least an inhale of 𝐴 would not fail (in particular,

guaranteeing that all expressions within it are well-defined). This matches the non-local check of

the method precondition (which effectively checks that an inhale would not fail starting from an

empty 𝜎 i
𝑣). Showing formally that it can be propagated over connectives occurring in 𝐴 requires in

particular a technical lemma stating a partial inversion property between exhale and inhale:

Lemma 4.1. Let 𝐴 be an assertion and 𝜎0

𝑣 , 𝜎
′
𝑣 , 𝜎

𝑖
𝑣 , 𝜎

𝑠
𝑣 be Viper states, where 𝜎

𝑠
𝑣 = 𝜎𝑖𝑣 ⊕ (𝜎𝑣 ⊖ 𝜎 ′

𝑣) and
𝜎𝑠𝑣 is consistent. If 𝜎

0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎 ′
𝑣) and ¬⟨𝐴, 𝜎 i

𝑣⟩ →inh F holds, then ⟨𝐴, 𝜎 i
𝑣⟩ →inh N(𝜎𝑠𝑣).

We prove this result by induction on the reduction of remcheck. The lemma essentially states

that the permissions that get removed by remcheck 𝐴 (expressed by 𝜎𝑣 ⊖ 𝜎 ′
𝑣) are exactly those

that will be added by a corresponding (non-failing) inhale 𝐴 operation.

4.3 Proof Automation
We developed an Isabelle tactic to automatically generate proofs of our forward simulation judge-

ments for the Viper-to-Boogie translation using hints provided by our lightweight instrumentation

of its implementation. Our tactic applies the rules provided by our methodology (Sec. 3.3) to

decompose simulations into smaller ones; for atomic simulations we explain our approach below.

A general challenge when applying the rules from Sec. 3 is that the Viper and Boogie ASTs are

structured differently (see Sec. 2.1). As a result, the automatic selection of Boogie program points

in the premises of rules is not immediate. For example, in the case of rule seq-sim for 𝑠1; 𝑠2, we

cannot easily choose the intermediate program point 𝛾 ′′
by inspecting the initial program point

𝛾 . Instead, we start proving the first premise with an existentially quantified 𝛾 ′′
. Once the proof

reaches a primitive construct such as a Viper assignment, then it becomes clear how to advance

the Boogie program 𝛾 and by the end of the proof of the first premise, the choice of 𝛾 ′′
becomes

6
There is an analogous non-local check for𝑚’s postcondition that we do not discuss here for simplicity of presentation.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formally Validating Translations into an Intermediate Verification Language 111:15

Correct
𝐺
𝑏
(𝑝) ≜ ∀T , F , 𝜎𝑏 . [DeclsWf𝐺,𝑝 (T , F) ∧ AxiomSat𝐺 (T , F , 𝜎𝑏)] =⇒

∀𝛾 ′, 𝑟 ′
𝑏
. initCtxt𝐺

𝑏
(𝑝,T , F) ⊢ (init𝑏 (𝑝),N(𝜎𝑏)) →∗

b
(𝛾 ′, 𝑟 ′

𝑏
) ⇒ 𝑟 ′

𝑏
≠ F

Correct
𝐹,𝑀
𝑣 (𝑚) ≜

∀𝜎𝑣 . (∀𝑙 .𝜋 (𝜎𝑣) (𝑙) = 0) =⇒
∀𝑟𝑣 . initCtxt𝑀,𝐹

𝑣 (𝑚) ⊢ ⟨inhale pre(𝑚); body(𝑚); exhale post(𝑚), 𝜎𝑣⟩ →v 𝑟𝑣 ⇒ 𝑟𝑣 ≠ F

Fig. 8. The correctness definitions for a Boogie procedure 𝑝 (top) and Viper method𝑚 (bottom).

possible. This proof strategy is enabled by the our routine use of schematic variables in Isabelle

(evars in other tools), for postponing the choice of witnesses for existentially-quantified values.

Our instrumentation generates hints for various cases including: (1) to aid some cases of diverse

translations (e.g. a hint for when the translation of the usual nondeterministic assignments for

remcheck 𝐴 is omitted (when 𝐴 contains no accessibility predicates), (2) to instantiate the parame-

ters for our strategies for handling non-local checks (cf. the previous subsection), and (3) to suggest

when/how to apply the Boogie propagation rule (bprop in Fig. 5), e.g. when replacing the Boogie

variables representing the Viper state elements.

For proving atomic simulations, we use two main automation approaches. Firstly, we prove (once

and for all) simple lemmas about the behaviours of small sequences of simple Boogie commands;

these are applied (and their hypotheses discharged) automatically when needed. These are used for

only small parts of the overall translation; their applicability is robust to most (but not all) changes

to the translation over time. Secondly, we employ more-general tactics which abstract over parts of

the statements involved (e.g. grouping the effect of a sequence of Boogie assert statements).

We apply both approaches in the translation example given by Fig. 3 in Sec. 2. For example, we

apply the second approach for the justification of the nonfailure check for remcheck acc(𝑒.𝑓 , 𝑝)
shown on lines 9-12. We apply the first approach for the justification of the translation of the

nondeterministic heap assignment that is a part of the exhale 𝐴 operation shown on lines 16-17.

Note that this Boogie encoding overapproximates the nondeterministic assignment specified by

the Viper semantics: assigning new values to all locations without permission, rather than only

those newly without permission. We still prove the necessary forward simulation automatically;

this requires just one Boogie execution that simulates the Viper-required effect precisely.

4.4 Background Theory and Polymorphic Maps
Boogie does not have any notion of a heap location or a Viper state. Such Viper (and other front-end)

constructs are translated using particular global declarations in Boogie. A subset of the Boogie

declarations always emitted by the Viper-to-Boogie translation is given by:

• Uninterpreted types bref and bfield to model references and fields. bfield takes one

type argument indicating the type of the corresponding Viper field.

• An uninterpreted function goodMask that maps a permission map to a Boolean and an axiom

restricting this function to return true only if the permission map models a consistent Viper

permission mask.

• Global variables H and M to model the heap and permission mask, respectively. H[x,f] stores

the heap value for heap location x.f and M[x,f] stores the permission value for x.f. The
types of both variables are represented via Boogie’s impredicatively-polymorphic maps [Leino
and Rümmer 2010], which we explain below.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Anon.

The correctness of a Boogie procedure guarantees no failing executions of the procedure’s body for

any interpretation of the uninterpreted types and functions for which (1) the function interpretation

respects the declared function signatures, and (2) all the Boogie axioms in the Boogie program

are satisfied. The formal correctness definition for a Boogie procedure 𝑝 reflects this directly (a

simplified version is shown at the top of Fig. 8). T and F are the type and function interpretation,

respectively.𝐺 denotes the global declarations in the Boogie program. init𝑏 (𝑝) is the initial Boogie
program point in the procedure 𝑝 . initCtxt𝐺

𝑏
(𝑝,T , F) constructs a Boogie context from the provided

parameters. Thus, to use the correctness of a Boogie procedure, we must choose a type and function

interpretation that satisfy the required conditions. The main challenge here is formally expressing

instantiations which deal with polymorphic Boogie maps, as we discuss next.

Polymorphic maps. The heap and permission maps are represented (via the Viper-to-Boogie

translation) using Boogie’s polymorphic maps; this choice is not unusual (e.g. the Dafny-to-Boogie

implementation also currently uses polymorphic maps with similar polymorphic map types as the

ones used by Viper-to-Boogie implementation). The Boogie maps used to model Viper heaps have

the polymorphic map type <T>[bref, bfield T]T: a total map storing, for any type T, values
of type T given (as key) a reference and field with type argument T.
To the best of our knowledge, there exists no formal model for Boogie’s polymorphic maps.

Providing a general model is challenging: in particular, Boogie’s polymorphic types are impredicative:
a map type such as <T>[T]T’, which permit any type of value as a key, including the map itself!

Instead of providing a formal model for such polymorphic maps in general, we provide one tailored

to the polymorphic maps that the Viper-to-Boogie implementation uses. To aid the incorporation

of our model, we adjust the implementation to represent its polymorphic maps via uninterpreted

types (HType), polymorphic functions upd and read, and two axioms expressing their expected

meanings. The only change in the translation itself is to simply rewrite heap and mask lookups

and updates into calls to these functions; everything else remains identical. Then, we provide

instantiations of the types and functions, and prove that the axioms hold for these instantiations

for any state; the same approach could be used for e.g. the Dafny-to-Boogie translation.

What remains for our simulation proofs is to instantiate these new features HType, upd, and
read such that the axioms are fulfilled. The challenge here is avoiding circularities: e.g. if the field

provided to read has type parameter HType, then the instantiation of read must itself return a

heap; to construct an initial heap, we already need a heap of the same type. To break this circularity,

we instantiate HType as a partial mapping from reference and fields to values, and allow the empty

map to be of type HType, which provides us with a concrete heap. read is defined to return a

default value for reference and field pairs that are not in the domain of the partial map; for heaps

the default value is the empty map. This is sufficient to prove the axioms, since in practice the

axioms only require read returning specific values when those values were previously inserted by

update.

4.5 Generating A Proof of the Final Theorem
We will now discuss, given a Viper program and its Boogie translation, how forward simulation

proofs can be used to generate a proof of the final theorem justifying the soundness of the translation:

The correctness of the Boogie program (i.e. the correctness of all contained Boogie procedures)

implies the correctness of the Viper program (i.e. the correctness of all contained Viper methods).

We decompose the proof of the final theorem into smaller parts. At a high level, the Viper-to-

Boogie translation works as follows. Let 𝐹 and 𝑀 be the set of Viper fields and methods in the

Viper program, respectively. The Viper-to-Boogie translation (1) emits global Boogie declarations

𝐺 (see Sec. 4.4) and (2) generates a separate Boogie procedure 𝑝 (𝑚) for every Viper method𝑚

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Formally Validating Translations into an Intermediate Verification Language 111:17

Translation
method𝑚1 { proc 𝑝1
· · ·
method𝑚𝑛 { proc 𝑝𝑛

Relational proofs
Rel

𝐺
𝐹,𝑀 (𝑚1, 𝑝1)

· · ·
Rel

𝐺
𝐹,𝑀 (𝑚𝑛, 𝑝𝑛)

Final proof
(∀𝑝 ∈ 𝑃 . Correct𝐺

𝑏
(𝑝))

=⇒
∀𝑚 ∈ 𝑀. Correct

𝐹,𝑀
𝑣 (𝑚)

𝑀 = {𝑚1,𝑚2, ...,𝑚𝑛} 𝑃 = {𝑝1, ..., 𝑝𝑛}
Rel

𝐺
𝐹,𝑀 (𝑚, 𝑝) ≜ Correct

𝐺
𝑏
(𝑝) ⇒ SpecWf(𝑚)︸ ︷︷ ︸

(C1)

∧
[
(∀𝑚′ ∈ 𝑀. SpecWf(𝑚′)) ⇒ Correct

𝐹,𝑀
𝑣 (𝑚)

]︸ ︷︷ ︸
(C2)

Fig. 9. Two-step proof strategy for the Viper-to-Boogie translation. First, a proof is generated relating each

Viper method with the corresponding Boogie procedure. Second, the final proof is deduced. 𝐹 denotes the

Viper fields,𝐺 denotes the global constants, variables, Boogie axioms, and functions emitted by the translation.

in 𝑀 . The intended relation between 𝑚 and 𝑝 (𝑚) is given by Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)) in Fig. 9, which

states that the correctness of 𝑝 (𝑚) w.r.t. 𝐺 guarantees two things: (C1) the well-formedness of𝑚’s

specification, and (C2) the correctness of𝑚 w.r.t. 𝐹 and𝑀 if the specifications of all methods in

the Viper program well-formed. The reason that the correctness of𝑚 is not implied directly is due

to the optimised translation of method calls (as explained in Sec. 4.2).

Fig. 9 shows how we generate the proof of the desired theorem in two steps. First, for each Viper

method 𝑚 and its translated Boogie procedure 𝑝 (𝑚), we generate a proof for Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)),

explained next. Second, we obtain the desired theorem directly from these per-method relational

proofs, since the correctness of all Boogie procedures implies that all Viper method specifications

are well-formed using (C1), which implies that each Viper method is correct using (C2).

Next, we turn the focus to our strategy for proving Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)). For the sake of presentation,

we focus on the proof of (C2) (correctness of𝑚), and omit the proof of (C1) (well-formedness of

𝑚’s specification). Intuitively, to prove that𝑚 is correct, we have to show that for any state that

satisfies𝑚’s precondition, executing𝑚’s body in 𝜎𝑣 results in a state that satisfies𝑚’s postcondition.

The correctness definition for a Viper method
7
(shown at the bottom of Fig. 8) expresses this by

requiring that any execution starting in a state with no permissions that inhales the precondition,

then executes the body, and finally exhales the postcondition, cannot fail. As planned, we obtain

this result by contradiction, via a forward simulation proof between the executed Viper statement

and 𝑝 (𝑚)’s procedure body using our presented methodology. Formally, we show:

∃𝑅′, 𝛾 ′. stmSimΓ0𝑣 ,Γ
0

𝑏
(𝑅0, 𝑅′, 𝑠0𝑣 , init𝑏 (𝑝 (𝑚)), 𝛾 ′)

where 𝑠0𝑣 ≜ inhale pre(𝑚); body(𝑚); exhale post(𝑚)

In the statement above, Γ0𝑣 ≜ initCtxt
𝑀,𝐹
𝑣 (𝑚) is the initial Viper context. Γ0

𝑏
is a Boogie context that

is defined in terms of our chosen type and function interpretation (see Sec. 4.4). 𝑅0 is an instantiation

of the state relation shown in Sec. 4.1. init𝑏 (𝑝 (𝑚)) is the initial Boogie program point in 𝑝 (𝑚). The
output state relation and output Boogie program point are irrelevant, since we care only about the

simulation of failing Viper executions here. To complete the proof, we choose an initial Boogie state

𝜎𝑏 such that 𝑅0 (𝜎𝑣, 𝜎𝑏). As a result, using the failing Viper execution 𝐸𝑣 of statement 𝑠0𝑣 in 𝜎𝑣 , the

forward simulation provides us with a failing Boogie execution 𝐸𝑏 of 𝑝 (𝑚). Using the correctness

of 𝑝 (𝑚), we conclude that 𝐸𝑏 cannot fail, and thus obtain a contradiction, which concludes the

proof of Rel
𝐺
𝐹,𝑀 (𝑚, 𝑝 (𝑚)).

7
We ignore typing related aspects here, but they are included in the formalisation.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

111:18 Anon.

Test suite Files Methods Viper Boogie Isabelle Proof Check
Nr. Nr. Mean LoC Mean LoC Mean LoC Mean sec Median sec

Viper 34 105 33 297 1759 42.3 27.2

Gobra 17 65 60 287 1976 38.8 30.1

VerCors 14 96 59 302 3090 50.5 49.4

MPP 3 13 206 1060 5220 122.7 54.3

Total 68 279 53 329 2240 46.6 32.6

Table 1. Overview of benchmarks and results. For each test suite, we report the number of Viper files, the

total number of Viper methods contained in those files, as well as the mean number of non-empty lines of

code for the Viper files, Boogie files, and produced Isabelle proofs. We measured the mean and median time

it took to check the Isabelle proofs in seconds.

5 IMPLEMENTATION AND EVALUATION
We instrumented the existing Viper verifier implementation to automatically produce an Isabelle

proof justifying the soundness of its translation to Boogie, and evaluated this validation on a diverse

set of Viper benchmarks.

Implementation. Even though Viper passes the generated Boogie program to Boogie as a text file,

our soundness proof directly connects the input Viper AST to the internal AST representation of

the Boogie verifier. Therefore, we do not have to trust the Boogie parser.

We make the following four adjustments to the Viper verifier implementation. First, we desugar

the uses of polymorphic maps as described in Sec. 4.4, since there is no formal model for polymorphic

maps. Second, we adjust the implementation to not emit Boogie declarations or commands that

are used only for features outside of our subset (the implementation always emits those without

checking whether the corresponding features are actually used). Third, we switch off simple

syntactic transformations that the Viper verifier applies to the produced Boogie program (e.g.

constant folding, elimination of if-statements with no branches), since we do not support them

yet; justifying those transformations should be straightforward and is orthogonal to our work.

Fourth, we introduce a havoc statement in the Boogie program at the point when a scoped Viper

variable is introduced, which faithfully models the semantics of such a variable. The original Viper

implementation instead just introduces a fresh Boogie variable at the beginning of the Boogie

procedure. Proving the equivalence of both translations is straightforward.

Benchmark Selection. To evaluate our implementation on representative examples, we considered

the Viper test suite as well as the test suites of three tools that produce Viper code: Gobra [Wolf et al.

2021] (for Go), VerCors [Blom et al. 2017] (for Java), and MPP [Eilers et al. 2018] (a tool performing

a modular product transformation on Viper programs).

To eliminate trivial translations, we focused on Viper programs that use the heap, as indicated by

the occurrence of at least one accessibility predicate. Out of those, we included all Viper programs

that fall into our supported Viper subset. We followed different strategies to systematically obtain

additional examples from the different test suites. For Viper and MPP, we additionally included all

files that have an old-expression (by manually removing the corresponding assertion, i.e. verifying

weaker postconditions) or a new statement (by manually desugaring the allocation primitive into

our subset). For Gobra and VerCors, we removed boilerplate code that is emitted for each file and

then followed the same process as for Viper and MPP. Moreover, we additionally included files

generated by Gobra that had at most two occurrences of features outside of our subset if those

could be desugared into our subset (e.g. by eliminating a function by inlining its body).

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Formally Validating Translations into an Intermediate Verification Language 111:19

Test suite File Methods Viper Boogie Isabelle Proof Check
Nr. Total LoC Total LoC Total LoC Total sec

Viper testHistoryProcesses.vpr 13 204 1709 7085 156.3

Gobra defer-simple-02 9 211 853 4755 69.4

VerCors SwapIntegerPass 8 81 469 3732 63.7

MPP banerjee.vpr 8 414 2014 9601 266.8

MPP darvas.vpr 2 91 582 2856 46.9

MPP kusters.vpr 3 112 583 3202 54.3

Table 2. Detailed results of our evaluation for a selection of files showing the number of methods, the

nonempty lines of code for the Viper program, Boogie program, and produced Isabelle proof, and the time it

took to check the proof in seconds.

As summarised in Tab. 1, we collected a total of 68 Viper files (containing 279 methods), with a

mean of 53 non-empty lines of code. The generated Boogie translations are on average 6.2x larger

(329 non-empty LoC on average), illustrating the semantic gap between Viper and Boogie.

Results. Our implementation successfully generated Isabelle proofs for all of the Viper files,

including the Viper programs automatically generated by other tools. This shows that our approach

is effective for practical verifiers. The resulting Isabelle proofs have on average over 2000 lines

and are checked in less than a minute. The measurements were run on a Lenovo T480 with 32GB,

i7-8550U 1.8GhZ, Ubuntu 18.04 on the Windows Subsystem for Linux.

Tab. 2 shows the results for a selection of examples (the detailed results for each test suite are

shown in App. C): All three examples from MPP, as well as the largest (in terms of lines of Viper

code) example from each of the other test suites. The three MPP examples are drawn from different

research papers and show that our tool can certify challenging programs.

For this selection, the times to check the proofs range from 47 seconds to 4.4 minutes, which is

acceptable since we expect the validation to be performed occasionally (in particular, before the

verified program is released), but not on every run of the verifier. Moreover, most of our proof

strategies are not yet optimised to make proof checking faster. For example, field and variable

accesses currently result in an overhead in the proof that is proportional to the number of fields

and active variables, respectively. This could be improved by constructing and updating lookup

tables efficiently.

6 RELATEDWORK
Various works prove the soundness of front-end translations once and for all. For instance, Lehner
and Müller [2007] prove a simplified translation from Java Bytecode to Boogie, and Vogels et al.

[2009] target a translation from a toy object-oriented programming language to Boogie. Both proofs

are done on paper and do not consider an actual implementation of the translation. Backes et al.

[2011] prove a translation sound from the Dminor data processing language to the Bemol IVL in

Coq. They do not provide a proof connecting the formalised translation to their F# implementation.

Herms [2013] proves a translation from C to the WhyCert IVL (inspired by the Why3 IVL) sound in

Coq, which they then turn into an executable tool via Coq’s extraction to OCaml. The resulting tool

has similarities to the Jessie Frama-C implementation [Marché and Moy 2018], which translates C

programs to Why3; Herms [2013] discusses mismatches between their mechanisation and the Jessie

implementation. In contrast, our certification applies to existing front-end implementations, which

are typically implemented in efficient mainstream programming languages, use diverse libraries,

and include subtle optimisations omitted from idealised implementations. Smans et al. [2012] prove

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Anon.

soundness of a verification condition generator for a language with implicit dynamic frames (IDF)

assertions once and for all on paper. They also implement a prototype, but do not formally connect

the proof to the implementation. We also applied our methodology to a verifier based on IDF, but

validate an actual implementation.

Validation has been used to obtain formal guarantees for implementations of verifiers, but none

of the existing works target front-end translations and the challenges they entail. Parthasarathy

et al. [2021] validate the verification condition generation of Boogie programs, including various

Boogie-to-Boogie transformations. Consequently, they neither face the semantic gap we handle,

nor did they have to support diverse translations and non-local checks. Their work can in principle

be combined with ours to enable end-to-end soundness guarantees for Viper, but first requires

extending their validation to all the Boogie-to-Boogie transformations applied by the Boogie verifier.

Lin et al. [2023] and [Wils and Jacobs 2023] validate verifiers obtained via the K framework and

VeriFast, respectively. These verifiers use symbolic execution, which requires a fundamentally

different validation approach. Garchery [2021] validate certain logical transformations in Why3,

but not the actual verification condition generation.

There are multiple works that also embed programs in an ITP and then automate forward

simulation proofs involving those programs. Rizkallah et al. [2016] define a refinement calculus

for the Cogent compiler to automatically produce a forward simulation proof in Isabelle for a

Cogent expression and its C translation. Their calculus includes syntax-directed rules for deriving

a concrete forward simulation judgement, but these rules do not provide the abstraction we needed

to handle diverse translations. The Cogent compiler was developed with formal validation in

mind, which simplifies, for instance, the treatment of optimisations. In contrast, our goal was to

validate existing verifier implementations with all their intricacies. The verification of the seL4

kernel includes two large forward simulation proofs (involving the C kernel implementation), for

which automation techniques were developed [Cock et al. 2008; Klein et al. 2010; Winwood et al.

2009]. This automation reduces the manual proof overhead, but still require user interaction. In

contrast, our validation proofs are generated and checked completely automatically. They prove

rules to decompose the forward simulation for composite statements but contrary to us, they do not

decompose non-composite statements further via rules. Instead, they develop a symbolic execution

technique to deal with forward simulation judgements by turning them into Hoare triples.

Formal translation validation approaches for compilers express a per-run validator in an ITP [Gour-

din et al. 2023; Tristan and Leroy 2008, 2009], prove it correct once and for all, and then extract

executable code (the extraction must be trusted). For many of these validators, the source and target

languages are similar. It would be interesting to test the feasibility of such approaches for front-end

translations, where the semantic gap between between the languages is large.

Zimmerman et al. [2023] define a formal Viper semantics for a Viper subset in order to prove

formal results for the gradual verifier Gradual C0 that uses Viper. However, in contrast to ours,

their formalisation is not mechanised.

7 CONCLUSION
Wepresented amethodology for the validation of the front-end translations implemented in practical

automated program verifiers. We demonstrated that it handles the complexity and intricacies of

the Viper-to-Boogie translation as implemented in the Viper tool. To the best of our knowledge,

this is the first formal soundness guarantee for a practical front-end translation. Together with

existing work on back-end (and SMT) validation, our work provides a path towards trustworthy

automated verifiers. As future work, we plan to extend the supported Viper subset and to apply

our methodology to verifiers that target Viper as an IVL and that verify, for instance, concurrent or

object-oriented programs.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Formally Validating Translations into an Intermediate Verification Language 111:21

REFERENCES
Andrew W. Appel and Sandrine Blazy. 2007. Separation Logic for Small-Step cminor. In Theorem Proving in Higher Order

Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings (Lecture
Notes in Computer Science), Klaus Schneider and Jens Brandt (Eds.), Vol. 4732. Springer, 5–21. https://doi.org/10.1007/978-

3-540-74591-4_3

Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for Modular

Specification and Verification. Proc. ACMProgram. Lang. 3, OOPSLA, Article 147, 30 pages. https://doi.org/10.1145/3360573
Michael Backes, Cătălin HriŢcu, and Thorsten Tarrach. 2011. Automatically Verifying Typing Constraints for a Data

Processing Language. In Certified Programs and Proofs (CPP), Jean-Pierre Jouannaud and Zhong Shao (Eds.). https:

//doi.org/10.1007/978-3-642-25379-9_22

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of Parallel

and Concurrent Software. In Integrated Formal Methods (IFM), Nadia Polikarpova and Steve Schneider (Eds.). https:

//doi.org/10.1007/978-3-319-66845-1_7

Sascha Böhme and Tjark Weber. 2010. Fast LCF-Style Proof Reconstruction for Z3. In Interactive Theorem Proving (ITP),
Matt Kaufmann and Lawrence C. Paulson (Eds.). https://doi.org/10.1007/978-3-642-14052-5_14

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis (SAS), Radhia Cousot (Ed.). 55–72.
https://doi.org/10.1007/3-540-44898-5_4

Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamaric, and Michael Emmi. 2016. SMACK software

verification toolchain. In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016 - Companion Volume, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, 589–592.

https://doi.org/10.1145/2889160.2889163

David A. Cock, Gerwin Klein, and Thomas Sewell. 2008. Secure Microkernels, State Monads and Scalable Refinement. In

Theorem Proving in Higher Order Logics (TPHOLS), Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar (Eds.).

https://doi.org/10.1007/978-3-540-71067-7_16

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verification of Rust

Programs. In International Conference on Formal Engineering Methods (ICFEM), Adrián Riesco and Min Zhang (Eds.),

Vol. 13478. 90–105. https://doi.org/10.1007/978-3-031-17244-1_6

Jenna DiVincenzo, Ian McCormack, Hemant Gouni, Jacob Gorenburg, Mona Zhang, Conrad Zimmerman, Joshua Sun-

shine, Éric Tanter, and Jonathan Aldrich. 2022. Gradual C0: Symbolic Execution for Efficient Gradual Verification.

arXiv:cs.LO/2210.02428

Marco Eilers and Peter Müller. 2018. Nagini: A Static Verifier for Python. In Computer Aided Verification (CAV), Hana
Chockler and Georg Weissenbacher (Eds.). https://doi.org/10.1007/978-3-319-96145-3_33

Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs. In European Symposium on Programming
(ESOP), Amal Ahmed (Ed.). https://doi.org/10.1007/978-3-319-89884-1_18

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and ClarkW. Barrett. 2017. SMTCoq:

A Plug-In for Integrating SMT Solvers into Coq. In Computer Aided Verification (CAV), Rupak Majumdar and Viktor

Kuncak (Eds.). https://doi.org/10.1007/978-3-319-63390-9_7

J.-C. Filliâtre and A. Paskevich. 2013. Why3 — Where Programs Meet Provers. In European Symposium on Programming
(ESOP), Matthias Felleisen and Philippa Gardner (Eds.). https://doi.org/10.1007/978-3-642-37036-6_8

Mathias Fleury and Hans-Jörg Schurr. 2019. Reconstructing veriT Proofs in Isabelle/HOL. InWorkshop on Proof eXchange
for Theorem Proving (PxTP), Giselle Reis and Haniel Barbosa (Eds.). https://doi.org/10.4204/EPTCS.301.6

Quentin Garchery. 2021. A Framework for Proof-carrying Logical Transformations. In Workshop on Proof eXchange for
Theorem Proving (PxTP), Chantal Keller and Mathias Fleury (Eds.). https://doi.org/10.4204/EPTCS.336.2

Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard. 2023. Formally Verifying

Optimizations with Block Simulations. Proc. ACM Program. Lang. 7, OOPSLA2, Article 224 (oct 2023), 30 pages. https:

//doi.org/10.1145/3622799

Paolo Herms. 2013. Certification of a Tool Chain for Deductive Program Verification. (Certification d’une chaine de vérification
déductive de programmes). Ph.D. Dissertation. University of Paris-Sud, Orsay, France. https://tel.archives-ouvertes.fr/tel-

00789543

Ioannis T. Kassios. 2006. Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions. In Formal
Methods (FM), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). https://doi.org/10.1007/11813040_19

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software

analysis perspective. Formal Aspects of Computing 27, 3 (2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

Gerwin Klein, Thomas Sewell, and Simon Winwood. 2010. Refinement in the Formal Verification of the seL4 Microkernel.

In Design and Verification of Microprocessor Systems for High-Assurance Applications, David S. Hardin (Ed.). Springer,

323–339. https://doi.org/10.1007/978-1-4419-1539-9_11

https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-3-031-17244-1_6
http://arxiv.org/abs/cs.LO/2210.02428
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.336.2
https://doi.org/10.1145/3622799
https://doi.org/10.1145/3622799
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-1-4419-1539-9_11

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

111:22 Anon.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. SYMDIFF: A Language-Agnostic

Semantic Diff Tool for Imperative Programs. In Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes in Computer Science), P. Madhusudan and Sanjit A. Seshia

(Eds.), Vol. 7358. Springer, 712–717. https://doi.org/10.1007/978-3-642-31424-7_54

Akash Lal and Shaz Qadeer. 2014. Powering the static driver verifier using corral. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey (Eds.). ACM, 202–212. https://doi.org/10.1145/

2635868.2635894

Hermann Lehner and Peter Müller. 2007. Formal Translation of Bytecode into BoogiePL. Electronic Notes in Theoretical
Computer Science 190, 1 (2007), 35–50. https://doi.org/10.1016/j.entcs.2007.02.059 Workshop on Bytecode Semantics,

Verification, Analysis and Transformation (Bytecode 2007).

K. Rustan M. Leino. 2008. This is Boogie 2. (2008). Available from http://research.microsoft.com/en-us/um/people/leino/

papers/krml178.pdf.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), Edmund M. Clarke and Andrei Voronkov (Eds.). https://doi.org/10.1007/978-

3-642-17511-4_20

K. Rustan M. Leino and Philipp Rümmer. 2010. A Polymorphic Intermediate Verification Language: Design and Logical

Encoding. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Javier Esparza and Rupak

Majumdar (Eds.). https://doi.org/10.1007/978-3-642-12002-2_26

Zhengyao Lin, Xiaohong Chen, Minh-Thai Trinh, John Wang, and Grigore Rosu. 2023. Generating Proof Certificates

for a Language-Agnostic Deductive Program Verifier. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 56–84. https:

//doi.org/10.1145/3586029

Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward Simulations: I. Untimed Systems. Inf. Comput. 121, 2
(1995), 214–233. https://doi.org/10.1006/inco.1995.1134

Claude Marché and Yannick Moy. 2018. The Jessie plugin for Deductive Verification in Frama-C. http://krakatoa.lri.fr/

jessie.pdf

P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based Reasoning. In

Verification, Model Checking, and Abstract Interpretation (VMCAI), Barbara Jobstmann and K. Rustan M. Leino (Eds.).

https://doi.org/10.1007/978-3-662-49122-5_2

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Matthew J. Parkinson and Alexander J. Summers. 2012. The Relationship Between Separation Logic and Implicit Dynamic

Frames. Logical Methods in Computer Science 8, 3:01 (2012), 1–54. https://doi.org/10.2168/LMCS-8(3:1)2012

G. Parthasarathy, P. Müller, and A. J. Summers. 2021. Formally Validating a Practical Verification Condition Generator.

In Computer Aided Verification (CAV) (LNCS), Alexandra Silva and K. Rustan M. Leino (Eds.), Vol. 12760. 704–727.

https://doi.org/10.1007/978-3-030-81688-9_33

Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen, Liam O’Connor, Toby C. Murray, Gabriele

Keller, and Gerwin Klein. 2016. A Framework for the Automatic Formal Verification of Refinement from Cogent to C.. In

Interactive Theorem Proving (ITP), Jasmin Christian Blanchette and Stephan Merz (Eds.). https://doi.org/10.1007/978-3-

319-43144-4_20

Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit Dynamic Frames. Transactions on Programming Languages and
Systems (TOPLAS) 34, 1, Article 2 (May 2012), 58 pages. https://doi.org/10.1145/2160910.2160911

Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal verification of translation validators: a case study on instruction

scheduling optimizations. In Principles of Programming Languages (POPL), George C. Necula and Philip Wadler (Eds.).

https://doi.org/10.1145/1328438.1328444

Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified validation of lazy code motion. In Programming Language Design and
Implementation (PLDI), Michael Hind and Amer Diwan (Eds.). https://doi.org/10.1145/1542476.1542512

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2009. A Machine Checked Soundness Proof for an Intermediate Verification

Language. In Theory and Practice of Computer Science, Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM) (Lecture Notes in Computer Science), Mogens Nielsen, Antonín Kucera, Peter Bro Miltersen, Catuscia

Palamidessi, Petr Tuma, and Frank D. Valencia (Eds.), Vol. 5404. Springer, 570–581. https://doi.org/10.1007/978-3-540-

95891-8_51

StefanWils and Bart Jacobs. 2023. Certifying C program correctness with respect to CH2Owith VeriFast. CoRR abs/2308.15567

(2023). https://doi.org/10.48550/ARXIV.2308.15567 arXiv:2308.15567

Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David A. Cock, and Michael Norrish. 2009. Mind the Gap.

In Theorem Proving in Higher Order Logics (TPHOLS), Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius

Wenzel (Eds.). https://doi.org/10.1007/978-3-642-03359-9_34

https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1016/j.entcs.2007.02.059
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1145/3586029
https://doi.org/10.1145/3586029
https://doi.org/10.1006/inco.1995.1134
http://krakatoa.lri.fr/jessie.pdf
http://krakatoa.lri.fr/jessie.pdf
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1542476.1542512
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.48550/ARXIV.2308.15567
https://doi.org/10.1007/978-3-642-03359-9_34

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Formally Validating Translations into an Intermediate Verification Language 111:23

Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos Pereira, and Peter Müller. 2021. Gobra: Modular

Specification and Verification of Go Programs. In Computer Aided Verification (CAV), Alexandra Silva and K. Rustan M.

Leino (Eds.). https://doi.org/10.1007/978-3-030-81685-8_17

Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2023. Sound Gradual Verification with Symbolic Execution.

CoRR abs/2311.07559 (2023). https://doi.org/10.48550/ARXIV.2311.07559 arXiv:2311.07559

https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.48550/ARXIV.2311.07559

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

111:24 Anon.

⟨𝐴, 𝜎𝑣⟩ →inh 𝑟𝑣
(inh)

Γ𝑣 ⊢ ⟨inhale 𝐴, 𝜎𝑣⟩ →v 𝑟𝑣

⟨𝑒, 𝜎𝑣⟩ ⇓ V(𝑟) ⟨𝑒𝑝 , 𝜎𝑣⟩ ⇓ V(𝑝)
𝑝 < 0 ⇒ 𝑟𝑣 = F

𝑝 ≥ 0 ⇒ 𝑟𝑣 = if inhSucc(r, p) then N(𝜎 ′
𝑣) else M

𝜎 ′
𝑣 = addperm(𝜎𝑣, 𝑟 , 𝑓 , 𝑝) (inh-acc)

⟨acc(𝑒.𝑓 , 𝑒𝑝), 𝜎𝑣⟩ →inh 𝑟𝑣

⟨𝐴, 𝜎𝑣⟩ →inh N(𝜎 ′
𝑣)

⟨𝐵, 𝜎 ′
𝑣⟩ →inh 𝑟𝑣 (inh-sep-s)

⟨𝐴 ∗ 𝐵, 𝜎𝑣⟩ →inh 𝑟𝑣

⟨𝐴, 𝜎𝑣⟩ →inh F

(inh-sep-f)
⟨𝐴 ∗ 𝐵, 𝜎𝑣⟩ →inh F

inhSucc(𝑟, 𝑝) ≜ (𝑝 > 0 ⇒ 𝑟 ≠ null) ∧ (𝑟 ≠ null ⇒ 𝑝 + 𝜋 (𝜎𝑣) (𝑟, 𝑓) ≤ 1)

Fig. 10. A subset of the rules for the formal semantics of inhale. addperm(𝜎𝑣, 𝑟 , 𝑓 , 𝑝) denotes the state 𝜎𝑣
where permission 𝑝 has been added to (𝑟, 𝑓).

∀𝜎𝑣 . wfSimΓ𝑏 (𝑅(𝜎𝑣), 𝑅𝐴 (𝜎𝑣), [𝑒, 𝑒𝑝], 𝛾, 𝛾1) (subexpression well-definedness)

∀𝑟, 𝑝. simΓ𝑏 (𝑅𝐴, 𝑅𝐵 (𝑟, 𝑝), Succ𝐴 (𝑟, 𝑝), Fail𝐴 (𝑟, 𝑝), 𝛾1, 𝛾2) (non-failure check)

∀𝑟, 𝑝. simΓ𝑏 (𝑅𝐵 (𝑟, 𝑝), 𝑅′, Succ𝐵 (𝑟, 𝑝), (𝜆_. ⊥), 𝛾2, 𝛾 ′) (state update)

(racc-sim)
rcSimΓ𝑏 (𝑅, 𝑅′, acc(𝑒.𝑓 , 𝑒𝑝), 𝛾, 𝛾 ′)

𝑅(𝜎𝑣) ≜ 𝜆𝜎0

𝑣 𝜎𝑏 . 𝑅((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) 𝑅𝐴 (𝜎𝑣) ≜ 𝜆𝜎0

𝑣 𝜎𝑏 . 𝑅𝐴 ((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏)

Succ𝐴 (𝑟, 𝑝) ≜
(
𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣).

exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ∧ (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧

wfAccSucc(𝑒, 𝑒𝑝 , 𝑟 , 𝑝, 𝜎0

𝑣)

)
Fail𝐴 (𝑟, 𝑝) ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣). ¬exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ∧ wfAccSucc(𝑒, 𝑒𝑝 , 𝑟 , 𝑝, 𝜎0

𝑣)

Succ𝐵 (𝑟, 𝑝) ≜
(
𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣).

𝜎 ′
𝑣 = rem(𝜎𝑣, 𝑟 , 𝑓 , 𝑝) ∧ 𝜎0

𝑣 = 𝜎1

𝑣 ∧
exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ∧ wfAccSucc(𝑒, 𝑒𝑝 , 𝑟 , 𝑝, 𝜎0

𝑣)

)
wfAccSucc(𝑒, 𝑒𝑝 , 𝑟 , 𝑝, 𝜎0

𝑣) ≜ ⟨𝑒, 𝜎0

𝑣 ⟩ ⇓ V(𝑟) ∧ ⟨𝑒𝑝 , 𝜎0

𝑣 ⟩ ⇓ V(𝑝)

Fig. 11. Rule for the simulation of remcheck acc(𝑒.𝑓 , 𝑒𝑝). The definition of exhAccSucc is given in Fig. 2.

A INHALE SEMANTICS
The reduction of inhale 𝐴 for an assertion 𝐴 from 𝜎𝑣 to 𝜎 ′

𝑣 is expressed via the judgement

⟨𝐴, 𝜎𝑣⟩ →inh 𝜎
′
𝑣 . The rules for the separating conjunction and the accessibility predicate (when the

receiver and permission are well-defined) are shown in 10. In the case of the accessibility predicate,

there is an additional rule where the inhale fails if 𝑒 or 𝑒𝑝 are not well-defined.

The accessibility rule shown in 10 expresses that if the added the permission is negative then the

operation fails. If the permission is nonnegative, then the operation succeeds if (1) the receiver is

non-null if 𝑝 > 0, (2) the added permission does not yield an inconsistent state (i.e. does not result

in more than 1 permission for (𝑟, 𝑓)). Otherwise, the operation stops (denoted by outcomeM). If

the operation succeeds, then the new state additionally contains the added permission 𝑝 at location

(𝑟, 𝑓).

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Formally Validating Translations into an Intermediate Verification Language 111:25

File #M Viper Boogie Isabelle. Mean [s]

examples/tutorial-examples/concurrency.gobra.vpr 2 24 164 1191 26.6

features/defer/defer-simple-01.gobra.vpr 6 142 639 3382 55.6

features/defer/defer-simple-02.gobra.vpr 9 211 853 4755 69.4

features/fractional_permissions/perm-fail1.gobra.vpr 15 165 661 6430 82.3

features/fractional_permissions/perm-simple1.gobra.vpr 9 131 622 4259 64.1

...s/fractional_permissions/predicates/fail1.gobra.vpr 3 44 283 1612 37.7

...s/fractional_permissions/predicates/fail3.gobra.vpr 2 19 116 1082 26.5

...fractional_permissions/predicates/simple1.gobra.vpr 2 30 237 1248 30.6

...fractional_permissions/predicates/simple2.gobra.vpr 1 10 90 710 23.0

...fractional_permissions/predicates/simple3.gobra.vpr 1 17 186 839 27.9

features/global_consts/global-const-8.gobra.vpr 6 49 206 2548 42.1

features/no_semicolons/pointer-identity.gobra.vpr 1 30 158 775 28.9

features/pointer-identity.gobra.vpr 1 30 158 775 28.6

issues/000008.gobra.vpr 1 10 85 710 28.2

issues/000009.gobra.vpr 1 16 98 717 24.9

issues/000039.gobra.vpr 3 49 178 1448 30.1

issues/000155.gobra.vpr 2 39 152 1113 32.3

Table 3. Detailed results of our evaluation for the files from the test suite of Gobra.

B ANOTHER SIMULATION RULE EXAMPLE
Consider the rule racc-sim in Fig. 11 decomposes the simulation of remcheck acc(𝑒.𝑓 , 𝑒𝑝) (ignore
the universal quantifiers for now) into the simulation of three separate Viper effects: (1) the check of

well-definedness of the receiver 𝑒 and permission expression 𝑒𝑝 (viawfSim instantiation from Fig. 4),

(2) a check exhAccSucc ensuring that the operation will not fail (from the semantics; see Fig. 2),

and (3) the actual update of the Viper state, which removes the permission.

The second premise includes contextual information, namely the conjunct wfAccSucc expressing

that 𝑒 and 𝑒𝑝 are well-defined (which is ensured by the first premise) and evaluate to the reference

value 𝑟 and permission value 𝑝 . The third premise modelling the removal of the permission includes

the same conjunct and that the operation will succeed (exhAccSucc). Without the latter, we could in

general not prove that the resulting Boogie state satisfies crucial invariants, for instance, that none

of the permissions stored in the Boogie state are negative. Again, we are agnostic as to syntactically

how this is achieved by this check: our rule does not require the Boogie program to emit an explicit

Boogie assert command checking that the permission is nonnegative. This is important, since

the implementation omits such a command, for example, if the permission is the literal 1.

The first universal quantifier is technically motivated: it expresses that the simulation must hold

for any reduction state. The other quantifiers over reference values 𝑟 and permission values 𝑝 make

the rule more powerful and reusable. They permit the relation 𝑅2 to directly talk about the values

that 𝑒 and 𝑒𝑝 evaluate to as specified by the success and failure predicates. This is particularly

useful for justifying cases where the simulation of the non-failure check establishes a property on

𝑟 or 𝑝 , which is then used in the simulation of the state update. For example, the Viper-to-Boogie

translation stores 𝑝 into an auxiliary variable that is used for both the non-failure check and the

state update.

C DETAILED RESULTS OF THE EVALUATION

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

111:26 Anon.

File #M Viper Boogie Isabelle. Mean [s]

/concepts/basic/BasicAssert-e1.java.vpr-0.vpr 6 41 197 2627 32.9

/concepts/basic/BasicAssert.java.vpr-0.vpr 6 41 193 2627 34.6

/concepts/basic/DafnyIncr.java.vpr-0.vpr 8 60 265 3457 48.3

/concepts/basic/DafnyIncrE1.java.vpr-0.vpr 8 57 220 3378 47.6

/concepts/permissions/frame_error_1.pvl.vpr-0.vpr 5 35 173 2229 33.5

/concepts/permissions/SwapIntegerFail.java.vpr-0.vpr 8 79 429 3689 58.1

/concepts/permissions/SwapIntegerPass.java.vpr-0.vpr 8 81 469 3732 63.7

/concepts/permissions/SwapLong.java.vpr-0.vpr 6 57 277 2769 41.9

/concepts/permissions/SwapLongTwice.java.vpr-0.vpr 8 81 469 3732 64.0

/concepts/permissions/SwapLongWrong.java.vpr-0.vpr 8 79 429 3689 64.2

/concepts/refute/refute3.java.vpr-0.vpr 6 49 246 2700 59.3

/concepts/refute/refute4.java.vpr-0.vpr 6 54 258 2714 49.4

/concepts/refute/refute5.java.vpr-0.vpr 6 50 253 2700 49.3

/demo/demo1.pvl.vpr-0.vpr 7 60 347 3223 60.4

Table 4. Detailed results of our evaluation for the files from the test suite of VerCors.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Formally Validating Translations into an Intermediate Verification Language 111:27

File #M Viper Boogie Isabelle. Mean [s]

0004.vpr 1 6 100 767 24.3

0004_CPG1.vpr 1 6 95 742 23.7

0005.vpr 1 4 78 703 23.0

0008.vpr 2 12 241 1434 31.8

0011.vpr 5 64 902 3340 64.4

0015.vpr 1 6 92 753 26.6

0052.vpr 1 7 100 757 23.5

0063.vpr 6 36 180 2633 42.3

0072.vpr 1 8 112 814 32.1

0073.vpr 1 10 132 781 24.6

0088-1.vpr 1 9 115 789 23.9

0094.vpr 1 7 91 717 23.0

0152.vpr 2 14 139 1175 27.3

0157.vpr 8 48 354 3564 52.2

0159.vpr 2 13 120 1121 27.0

0170.vpr 1 8 84 703 22.6

0177-1.vpr 1 10 102 703 23.4

0222.vpr 2 13 118 1092 26.1

0227.vpr 1 5 85 721 23.2

0324.vpr 1 7 104 742 23.9

0345.vpr 3 21 165 1501 30.3

0384.vpr 1 11 127 747 23.8

assert.vpr 1 7 92 731 23.6

negative_amounts.vpr 3 21 155 1561 31.4

old.vpr 6 38 318 2843 43.1

swap.vpr 2 16 177 1283 28.8

test.vpr 1 6 81 701 22.9

testHistoryProcesses.vpr 13 204 1709 7085 156.3

testHistoryProcessesPVL.vpr 13 204 1711 7085 176.5

testHistoryProcessesPVL_CPG1.vpr 4 56 490 2342 62.9

testHistoryThreadsProcessesPVL.vpr 4 56 490 2342 52.1

test_example1.vpr 4 57 374 2190 41.7

test_example3.vpr 5 74 430 2672 86.4

test_example4.vpr 5 71 451 2683 68.9

Table 5. Detailed results of our evaluation for the files from the test suite of Viper.

File #M Viper Boogie Isabelle. Mean [s]

banerjee.vpr 8 414 2014 9601 266.8

darvas.vpr 2 91 582 2856 46.9

kusters.vpr 3 112 583 3202 54.3

Table 6. Detailed results of our evaluation for the files from the test suite of MPP.

	Abstract
	1 Introduction
	2 Viper and Boogie: Background and Semantics
	2.1 The Viper and Boogie languages
	2.2 Boogie Semantics
	2.3 Viper Semantics
	2.4 Example Viper-to-Boogie Translation

	3 A Forward Simulation Methodology for Front-End Translations
	3.1 Focusing Forward Simulation Proofs by Decomposition
	3.2 One Simulation Judgement to Rule Them All
	3.3 Instantiation-Independent Rules
	3.4 Examples: Generic Decomposition in Action
	3.5 Injecting Non-Local Hypotheses into Simulation Proofs

	4 Putting The Methodology to Work
	4.1 State Relation
	4.2 Non-Locality
	4.3 Proof Automation
	4.4 Background Theory and Polymorphic Maps
	4.5 Generating A Proof of the Final Theorem

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References
	A Inhale Semantics
	B Another Simulation Rule Example
	C Detailed Results of the Evaluation

