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Abstract

Python for Population Genomics (PyPop) is a software package that processes genotype and allele 
data and performs large-scale population genetic analyses on highly polymorphic multi-locus 
genotype data. In particular, PyPop tests data conformity to Hardy-Weinberg equilibrium 
expectations, performs Ewens-Watterson tests for selection, estimates haplotype frequencies, 
measures linkage disequilibrium, and tests significance. Standardized means of performing these tests 
is key for contemporary studies of evolutionary biology and population genetics, and these tests are 
central to genetic studies of disease association as well. Here, we present PyPop 1.0.0, a new major 
release of the package, which implements new features using the more robust infrastructure of 
GitHub, and is distributed via the industry-standard Python Package Index. New features include 
implementation of the asymmetric linkage disequilibrium measures and, of particular interest to the 
immunogenetics research communities, support for modern nomenclature, including colon-delimited 
allele names, and improvements to meta-analysis features for aggregating outputs for multiple 
populations.

Code available at: https://zenodo.org/records/10080668 and https://github.com/alexlancaster/pypop 

1 Introduction

Since its principles were established a century ago (1–5), population genetics has been a 
computational science. The advent of electronic computing, and its widespread adoption for 
academic research in the 1980s and 1990s, fostered the development of computational genetics 
software (e.g., 6,7) that could perform multiple analyses and return results in standardized, human 



and machine-readable formats. PyPop (Python for Population Genomics) was initially developed 
between 2002 and 2007 (8,9) as a Python 2-based framework that performed multiple population 
genetic analyses on highly-polymorphic, multilocus genotype data, and generated both standardized, 
“publication ready” text-formatted outputs and machine-readable XML outputs, allowing for further 
downstream analyses and meta-analyses. 

A standard PyPop analysis is initiated by running the “pypop” command-line program that is 
supplied with one or more plaintext input “population” or “dataset” files (with the suffix “.pop”), 
along with a plaintext input configuration file (with the suffix “.ini”).  The input configuration file 
defines both the expected input format, as well as the specific analyses that will be run, including 
tests of Hardy-Weinberg equilibrium expectations, Ewens-Watterson tests of selection,and  
estimation of haplotype frequencies and linkage disequilibrium (a full list of the configuration 
options is available in the PyPop User Guide (10)). Each input file results in a corresponding set of 
output files: a machine-readable XML file, and a human readable plain-text file. These primary 
analyses can be aggregated to generate cross-dataset meta analyses using “popmeta”, another tool in 
the PyPop suite . Here, we describe PyPop version 1.0.0, which is built using Python 3 and includes 
new features and improvements as well as a new development platform.

We first document the ongoing use of PyPop in the immunogenetics and other research communities 
in the years since the last release of PyPop (version 0.7.0). Next we describe new features and 
analytical methods, including measure of asymmetric linkage disequilibrium (ALD), and updates to 
support the current nomenclatures for major histocompatibility complex (MHC) and human 
leukocyte antigen (HLA) genes. We also note the streamlining and improvement of existing features 
such as the custom grouping of alleles and output of tab-separated value (TSV) files. We close by 
describing features in development, as well the porting of the project to GitHub to support future 
Python versions and new machine architectures, providing a stable home for PyPop to evolve as a 
community resource.

2 Methods and Results

2.1 PyPop in the human immunogenetics community and beyond

Since the first public release of the software in 2003 and the subsequent publication of descriptions in 
2003 (8) and 2007 (9), PyPop has been in regular and continuous use within the HLA and the larger 
genomics communities, as shown in an analysis of Google Scholar citations (Figure 1). This analysis 
estimates that there have been 433 unique citations of PyPop since its inception (134 for the 2003 
paper alone, 220 for the 2007 paper, and 79 for both). Of those unique citations, 367 are from 2007 or 
later. PyPop has been applied extensively within the immunogenetics community since its first 
release, as expected given its origins as part of the 13th International Histocompatibility Workshop 
(IHWS) in 2002 (11). A notable early meta-analysis of the action of natural selection on HLA 
polymorphism across 497 populations (12), relied heavily on PyPop 0.7.0 analyses and has 360 
citations in Google Scholar at the time of writing. 

Many of these citations are from researchers studying human immune system genes. However, 
PyPop has been used in many studies, far from its home research community. These include studies 
that are both taxonomically distinct (genetic heterogeneity of urban foxes (13)) and genetically 
distinct (population genetics of cytochrome enzyme proteins (14)) from human immunogenetics. 
These two examples illustrate the wide utility of PyPop as a computational population genomics 
resource.
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2.2 New features and improvements

2.2.1 Asymmetric linkage disequilibrium measures

The conditional asymmetric linkage disequilibrium (ALD) measures, first described by Thomson and 
Single (15), are the major new analytic feature of PyPop 1.0.0. Previous PyPop versions computed 
two measures of overall linkage disequilibrium: D’ (16), which uses the product of pairwise allele 
frequencies to weight the individual haplotype-level coefficients of LD, and Wn  (17), which is a 
multi-allelic extension of the “r” correlation measure commonly used for LD with bi-allelic SNPs. 
ALD, further extends the Wn measure, accounting for asymmetries that arise from different numbers 
of alleles at different loci. The two measures, W12 and W21, assess LD conditional on the second and 
first locus, respectively, and are both equal to the usual r statistic for SNPs  (Table 1).

ALD is particularly useful when investigating LD in highly polymorphic gene-systems, where each 
locus displays large and very different numbers of alleles in a population. These ALD measures, 
computed using PyPop, have been used in anthropological studies dissecting LD in human 
populations (18,19); studies of permissible mismatches in HLA donor registries (20); and studies of 
HLA haplotypes and amino acid motifs that predispose for disease (21). Additional publications, 
using different implementations of the ALD, include studies of the impact of anti-malarial drugs on 
parasite populations among individuals with complex infection status (22,23). ALD measures allow 
one to condition on known disease genes in association studies when searching for additional genetic 
effects in a region. Similarly, by conditioning on putative targets of selection ALD measures can help 
characterize other potentially selected variants.

2.2.2 Support for modern HLA/MHC nomenclature

Since the major release of PyPop 0.7.0 in 2008, the allele-name nomenclatures for MHC and HLA 
genes have changed significantly. In 2010 (24) the format of HLA and MHC allele names was 
changed to include colon-delimited fields, where previous formats had relied on ‘digit-based’ fields. 
An allele denoted as 0101 before 2010 is now denoted as 01:01. This nomenclature change also 
means that much longer HLA allele names (eg., A*02:01:01:134Q or DPB1*1372:01:01:02) are now 
valid, and PyPop can continue to process such data. In addition, the ~ operator, defined in the text-
based Genotype List (GL) String syntax for describing HLA and Killer-cell Immunoglobulin-like 
receptor (KIR) genotyping results (25,26), has been the standard for delimiting alleles in multi-locus 
haplotypes with the immunogenetics community. In PyPop 1.0.0, a two locus haplotype of alleles at 
two loci, A and B respectively, is represented as A~B, where this haplotype had been represented as 
A:B in earlier PyPop releases.

Although previously there was nothing actively preventing a user of PyPop from using the 2010 
HLA/MHC nomenclature for PyPop input data, PyPop 0.7.0’s separation of haplotype elements with 
colons, meant that a “:” within an allele name could lead to ambiguous output. We introduced 
changes in version 1.0.0 to seamlessly handle the 2010 nomenclature, and now PyPop output 
includes the GL String ‘~’ separator by default, facilitating use of the output in publications or further 
downstream analyses (Table 2). We have updated all documentation, examples and unit tests to 
reflect these changes.

2.2.3 Cross-platform support for custom grouping (“binning”) filters

PyPop’s capacity for “custom binning”, which combines allele-names into specific categories for 
analysis, is now available on all platforms. This capacity extends to commonly used allele groupings 
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(e.g., G- and P-groups (24), supertype groups (27), HLA T-cell epitope (TCE) groups (28,29), and 
National Marrow Donor Program [NMDP] allele codes (30,31)) that group distinct variants by 
common aspects. For example, as of January 2024, the A*01:01:01G G-group designation represents 
240 HLA-A alleles that share identical exon 2 and exon 3 nucleotide sequences. Supertypes are 
groups of alleles with similar peptide-binding features; for example DPB1 alleles with identical 
peptide sequences for amino-acid positions 11, 69 and 84 are sorted into eight supertypes groups 
(27). 

TCE groups identify sets of DPB1 alleles with shared amino acid motifs that result in permissive 
mismatches in the context of hematopoietic stem cell transplantation (29). NMDP allele codes 
identify groups of alleles that cannot be distinguished by genotyping methods that do not sequence 
the entire HLA gene. For example, the DRB1*11AD allele code is used to represent a genotyping 
result that could be either DRB1*1101 or DRB1*1104 (31).

PyPop custom binning is not restricted to these specific, community-defined examples; variant names 
can be combined into any user-defined category for PyPop analysis. An example custom binning 
filter for converting alleles to a G-group designation is presented in Figure 2. Additional examples 
are provided in Supplementary File 1.

2.2.4 Improved support for downstream analyses: enhancements to TSV output

PyPop analyses are always output as machine-readable XML files, with one XML file per population 
or dataset. Previous versions of PyPop included a feature to aggregate these individual dataset or 
population-level XML files into a set of files in tab-separated value (TSV) format, suitable for input 
into spreadsheets or other downstream software (Table 3). However, this feature was originally tuned 
to the needs of the 13th IHWS (11), and required adaptation for use outside this context. In PyPop 
1.0.0, we have overhauled and re-tooled the output mechanism for general use. The changes include:

1. Previously the list of output TSV files was hardcoded, and this set of files was generated 
regardless of whether the analysis created any relevant data. For example, a 3-locus-
haplo.tsv file was generated even if estimation of 3 locus haplotypes was not requested by 
the user - resulting in a file with headers, but no data. The output files are now dynamically 
generated based on the analyses that were requested by the user (ultimately based on 
aggregating the contents of the separate XML outputs generated by each input .pop dataset). 
In addition, we have also enabled generation of TSV output for haplotype estimation 
involving five or more loci, e.g. 5-locus-haplo.tsv, 6-locus-haplo.tsv, etc. (see the 
last two rows of Table 3).

2. Output files now use the standard “.tsv” suffix (rather than “.dat”) so they are more easily 
identified as tab separated value files that are parsable by other software. We have also 
renamed the command-line options accordingly (e.g. --generate-dat to --enable-tsv).

3. Previous versions included fixed metadata columns that were only relevant for the analyses 
performed for the 13th IHWS.  These additional columns are now disabled by default (we 
have added a new “--enable-ihwg” option which will re-enable them).

4. We have added new options to enable TSV files to be saved in a separate directory (--
outputdir) and include a prefix (--prefix-tsv).

This is a provisional file, not the final typeset article 4



These changes should increase the utility of PyPop for meta-analyses in a wider range of research 
use-cases, particularly for studies that need to aggregate analyses where haplotypes were estimated at 
more than four loci.

2.3 Development updates

When PyPop development started in late 2001, Python was at version 2. Soon after the last release of 
PyPop (0.7.0) in 2008, Python 3 was released. Python 3 unfortunately introduced breaking changes 
(breaking the existing PyPop code). With the end-of-life of Python 2 in 2020, migration from PyPop 
to Python 3 became an imperative. In addition to the new scientific features described above, and the 
desired transition to Python 3, other major goals of the PyPop 1.0.0 release were (a) to improve ease 
of installation and the overall experience for end-users, (b) to make it easier to contribute to PyPop, 
and (c) reduce “technical debt” (32) and thus improve overall project longevity. In this section, we 
discuss these changes to the development process, the Python 3 migration, improvements in 
packaging, deployment, provenance, and documentation to further these end-goals.

Development moved to the GitHub platform
In 2013 we migrated the source code version control system of PyPop from an internal Concurrent 
Versions System (CVS) repository to Git, and subsequently imported it as a public project on the 
GitHub platform. GitHub supports advanced features for developers including issue and milestone 
tracking, discussions, collaborative code review (pull requests), security scanning, and automation of 
testing via continuous integration (CI). With this change, the development process became more open 
to the community. Updates that added support for codon-delimited alleles and increased capacity for 
multi-locus analyses were made as part of the 17th International HLA & Immunogenetics Workshop, 
which was held in 2017 (33) and made available via GitHub, although no formal release was made at 
this time.

Migration to Python 3
Migration commenced in 2017, by an author of this paper (34) - outside the original development 
team - via a “pull-request”, illustrating the benefits of moving to the GitHub platform. Initially the 
process was largely manual, including fixing of print statements, addition of modules, and 
rearranging of module imports. We included Singularity (35), an upcoming container technology for 
high performance computing, and a pull request to update from the deprecated "Numeric" to the 
"numpy" library was merged later in 2017 (36). In early 2023, we merged a modified version of the 
pull request, including additional changes, back into the main branch, which finalized the conversion 
to Python 3.

New test suite and continuous integration
During the port, we created a test suite that included both unit tests, and end-to-end “pipeline” tests, 
emulating end-user runs. As a result of this process, we refactored code, and removed obsolete or 
out-dated code, helping to reduce technical debt. Apart from its direct utility in detecting regressions 
introduced during development, this test suite has resulted in a wider set of configuration (“.ini”) and 
data (“.pop”) files that provide examples for end-users of PyPop to emulate. We also leveraged 
GitHub’s CI feature, known as GitHub Actions, so that these tests are automatically run upon a 
commit to the repository.

Generating source distributions and binary wheels for Windows, MacOS X and Linux 
The cibuildwheel system (37) generates “wheels” (architecture-specific installable versions of a 
Python package containing pre-compiled extensions), installs each wheel in a virtual environment, 
and then runs unit tests within the virtual environment with that installed wheel. Key to this process 
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is that cibuildwheel automates the process of compiling and testing wheels across multiple 
operating systems and Python versions, ensuring that they will work on each of those end-user 
systems. We deployed cibuildwheel as part of our GitHub Action workflow, resulting in over 40 
different tested wheels on a wider range of architectures and Python versions (Supplementary Table 
1) - compared with only two binary packages available previously (one for Linux, and one for 
Windows). These wheels include, for the first time, an official pre-compiled MacOS X version of 
PyPop, on both Intel (x86) and Apple Silicon (arm64) architectures. In addition to the automated CI 
testing, we did manual testing on several Windows, Linux and Android platforms (Supplementary 
Table 2).

Deploying releases via the Python Package Index (PyPI) 
When a release is made via GitHub’s “tag-and-release” interface, our workflow triggers a build of all 
binary wheels and source distribution via GitHub’s CI system, as described above, but includes an 
additional step in the workflow of uploading a versioned release to the PyPI repository. This vastly 
simplifies installation for end users who can install PyPop directly from PyPI via a single “pip 
install pypop-genomics” command.  

Provenance via Zenodo DOI  
We configured the workflow so that, upon a production release via GitHub, it will deposit the source 
and metadata about the release to the Zenodo repository (38). This generates version-specific 
archives of the source code, together with a unique Digital Object Identifier [DOI].  Users can then 
cite the specific version used for their analyses as a DOI in their paper to enable more effective 
reproducibility (39).  For example, the DOI for the 1.0.0 release being described in this paper is 
10.5281/zenodo.1008066 (40).

Maintainable documentation 
The previous version of the PyPop User Guide (10) was written using DocBook XML (41), which, 
while powerful, has a steep learning curve. For this new release, we converted all documentation to 
reStructuredText (42) which, as a simple plaintext-like language, is more intuitive for contributors. 
We created another GitHub Action workflow that runs the sphinx documentation generator (43) to 
generate both HTML and PDF versions of the User Guide  and the website from the reStructuredText 
documents. This GitHub workflow ensures that all changes are automatically deployed to the 
pypop.org website with each commit to the repository. In addition, some of the documentation (e.g. 
command-line options) is either generated directly from the code, or pulled in from configuration and 
data files in the unit tests, further ensuring that documentation is always kept in sync with the current 
codebase.

3 Discussion

PyPop development continues beyond this 1.0.0 release. A set of features in development related to 
the estimation of haplotype frequencies and LD include a reworking of the existing implementation 
of the Expectation-Maximization algorithm; computing LD between loci when allelic phase is 
known; and moving less computationally-intensive aspects of code currently implemented in C 
extensions into Python. This will allow for an increase in the number of loci for which haplotypes 
can be estimated, relative to the existing implementation, because the new implementation doesn't 
require retention of all possible haplotype combinations. A preliminary, but incomplete 
implementation is already contained within PyPop 1.0.0 for alpha testing, but should not be used for 
production analyses.

This is a provisional file, not the final typeset article 6



Since the last release 16 years ago, PyPop has been in active and continuous use across a range of 
research communities. Despite a relative stasis in development during that period, PyPop has 
illustrated its durability as a framework for producing standardized reports for population genomics 
analyses. With the updated development platform, unit testing, packaging and deployment system in 
place, we have set a foundation to allow for more frequent, and well-tested releases, in addition to 
improving maintainability and encouraging contributions.

4 Software information

 Project links: http://pypop.org (home page), https://github.com/alexlancaster/pypop/  
(development page)

 Operating systems: Linux, MacOS X, Android, Windows

 Programming languages: Python and C

 License: GNU GPLv2: https://www.gnu.org/licenses/gpl 

 Any restrictions for non-academic use? None

 Zenodo record: https://zenodo.org/records/10080668 
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Figures and Tables

Figure 1: Number of unique citations over time to the two previous PyPop publications: Pacific 
Symposium in Biocomputing (PSB) (8) and Tissue Antigens (9). Some publications cited both PyPop 
papers. Google Scholar was used for the counts.
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Figure 2: Extract of an example PyPop “CustomBinning” filter that could be included within the 
configuration “.ini” file for a PyPop run. The three elements of a custom binning filter for five HLA 
loci are shown. (A): Header block. Every custom binning filter begins with the [CustomBinning] 
keyword. (B): Comment block (optional). Comments are indicated with double semicolons. This 
comment block identifies the type of filter (here, “GCode”) and includes specific details about the 
source of the data used to inform the filter. (C): Filters block. Filters for DQA1, DQB1, DRB3, 
DRB4 and DRB5 are shown. Each filter starts with an exclamation point, which is followed by the 
group identifier (shown in bold). The group identifier and its constituent alleles are delimited by 
forward slashes. Multiple groups for a locus are defined on separate lines, and all groups after the 
first start with a whitespace. When the filter is applied, any alleles in the dataset that are in a group 
will be converted to the group identifier for PyPop analysis. (A full plain-text version with the 
complete set of rules for more loci - including the five shown - is contained in the file "G-
Filter_config.ini" within Supplementary File 1).
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Table 1. Comparison of the default text-based output for a single two-locus pairwise LD measures 
for a pre-1.0.0 version (a) and 1.0.0 version (b) of PyPop, which include the new ALD measures, W12 
and W21, denoted by ALD_1_2 and ALD_2_1 in the output, respectively. Note that the # permu and 
p-value columns are now only displayed if a permutation test is run. 

II. Multi-locus Analyses
========================

Haplotype/ linkage disequlibrium (LD) statistics
________________________________________________

Pairwise LD estimates
---------------------
Locus pair        D          D'        Wn   ln(L_1) ln(L_0)       S  # permu  p-value
A:C         0.01465     0.49229   0.39472   -289.09 -326.81   75.44  --       --

(a) 0.7.0 output

II. Multi-locus Analyses
========================

Haplotype/ linkage disequlibrium (LD) statistics
________________________________________________

Pairwise LD estimates
---------------------
Locus pair        D          D'       Wn    ln(L_1) ln(L_0)       S   ALD_1_2  ALD_2_1
A:C         0.01465    0.49229   0.39472    -289.09 -326.81   75.44   0.41435  0.37525

(b) 1.0.0 and later output including new ALD measure

Table 2. Comparison of haplotype estimation output indicating use of both the new nomenclature 
and the GL String haplotype separator.

Haplotypes sorted by name              | Haplotypes sorted by frequency
haplotype       frequency   # copies   | haplotype          frequency # copies
0101:1301:0402:   0.02222        2.0   | 0201:1401:0402:      0.03335      3.0
0101:1301:1101:   0.01111        1.0   | 3204:1401:0802:      0.03333      3.0

(b) 0.7.0 output with old nomenclature and separator

Haplotypes sorted by name               | Haplotypes sorted by frequency
haplotype         frequency  # copies   | haplotype         frequency # copies
01:01~13:01~04:02   0.02222       2.0   | 02:01~14:01~04:02   0.03335      3.0
01:01~13:01~11:01   0.01111       1.0   | 32:04~14:01~08:02   0.03333      3.0

(b) 1.0.0 and later output using new nomenclature and GL String ‘~’ operator

This is a provisional file, not the final typeset article 10



Table 3. List of possible types of TSV files, their row data type and a brief description, including the 
generation of files containing multi-locus analyses with an arbitrary number of n loci.

Default file name suffix Row data Description

1-locus-summary.tsv locus Consists of a line for population and locus, with fields for 
number of gametes, number of distinct alleles, HWP p-
value for the Chi-square test and all other single locus 
statistics.

1-locus-allele.tsv allele Consists of a line for each combination of population, 
locus and allele. The line of data contains the allele 
frequency (allele.freq) and count (allele.count)

1-locus-genotype.tsv genotype Consists of a line for each combination of population, 
locus and genotype, with individual genotypes statistics 
(only output if individual statistics are selected by the user)

1-locus-hardyweinberg.tsv locus Consists of a line for each population and locus, with 
fields for number of distinct alleles and several versions of 
computing p-values for HWP (Guo and Thompson original 
and monte-carlo method, full enumeration when possible, 
heterozygotes, homozygotes)

2-locus-summary.tsv locus Consists of a line for each combination of population, and 
locus group. Columns representing locus-level statistics. If 
a pairwise analysis has been requested, it will also include 
the  pairwise LD statistics discussed above, D’, Wn and 
ALD12, ALD21.

2-locus-haplo.tsv haplotype This is analogous to the 1-locus-allele.tsv, except with 
information for each population’s haplotype, such as the 
estimated haplotype count and frequency. If pairwise 
analysis has been selected, it will also include individual 
haplotype D’ and Wn measures.

n-locus-summary.tsv locus Analogous to the 2-locus-summary.tsv output, but no 
pairwise statistics

n-locus-haplo.tsv haplotype Analogous to the 2-locus-haplo.tsv output, but omits the 
individual pairwise LD measurements
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