
131

Functional Ownership through Fractional Uniqueness
(Appendix)
DANIEL MARSHALL, University of Kent, United Kingdom
DOMINICORCHARD,University of Kent, United Kingdom andUniversity of Cambridge, United Kingdom

Contents

Contents 1
A Collected rules 2
A.1 Typing 2
A.2 Reduction rules for heap semantics 5
A.3 Equational theory 8
A.4 Parallel sum example in Granule 8
B Substitution proofs 10
C Type safety 14
C.1 Progress proof 14
C.2 Type preservation proof 30
D Uniqueness and borrow safety proofs 46
E Soundness of heap model wrt. equational theory 63
References 67

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0002-4284-3757
HTTPS://ORCID.ORG/0000-0002-7058-7842

131:2 Daniel Marshall and Dominic Orchard

A COLLECTED RULES
A.1 Typing

0 · Γ, x : A ⊢ x : A
var

Γ, x : A ⊢ t : B
Γ ⊢ 𝜆x .t : A ⊸ B

abs
Γ1 ⊢ t1 : A ⊸ B Γ2 ⊢ t2 : A

Γ1 + Γ2 ⊢ t1 t2 : B
app

Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ (t1, t2) : A ⊗ B

⊗𝐼

Γ1 ⊢ t1 : A ⊗ B Γ2, x : A, y : B ⊢ t2 : C
Γ1 + Γ2 ⊢ let (𝑥,𝑦) = t1 in t2 : C

⊗𝐸

0 · Γ ⊢ () : unit 1𝐼
Γ1 ⊢ t1 : unit Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ let () = t1 in t2 : B

1𝐸

Γ ⊢ t : A ¬resourceAllocator(t)
𝑟 · Γ ⊢ [t] : □𝑟A

pr
Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
der

Γ1 ⊢ t1 : □𝑟A Γ2, x : [A]𝑟 ⊢ t2 : B
Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B

elim
Γ, x : [A]𝑟 , Γ′ ⊢ t : B 𝑟 ⊑ 𝑠

Γ, x : [A]𝑠 , Γ′ ⊢ t : B
approx

Γ ⊢ t : ∗A
Γ ⊢ share t : □𝑟A

share

1 ⊑ 𝑟 cloneable(A)
Γ1, id ⊢ t1 : □𝑟A Γ2, x : ∃id′ .∗(A[id′/id]) ⊢ t2 : B

(Γ1 + Γ2), id ⊢ clone t1 as x in t2 : B
clone

Γ1 ⊢ t1 : ∗A Γ2 ⊢ t2 : &1A ⊸ &1B

Γ1 + Γ2 ⊢ withBorrow t1 t2 : ∗B
with&

Γ ⊢ t : &𝑝A

Γ ⊢ split t : & 𝑝

2
A ⊗ & 𝑝

2
A

split
Γ1 ⊢ t1 : &𝑝A Γ2 ⊢ t2 : &𝑞A 𝑝 + 𝑞 ≤ 1

Γ1 + Γ2 ⊢ join t1 t2 : &𝑝+𝑞A
join

Γ ⊢ t : &𝑝 (A ⊗ B)
Γ ⊢ push t : (&𝑝A) ⊗ (&𝑝B)

push
Γ ⊢ t : (&𝑝A) ⊗ (&𝑝B)
Γ ⊢ pull t : &𝑝 (A ⊗ B) pull

Γ ⊢ t : A id ∉ dom(Γ)
Γ ⊢ pack ⟨id′, t⟩ : ∃id .A[id/id′] pack

Γ1 ⊢ t1 : ∃id .A
Γ2, id, x : A ⊢ t2 : B id ∉ fv(B)

Γ1 + Γ2 ⊢ unpack ⟨id, x⟩ = t1 in t2 : B
unpack

Runtime typing.

𝛾 ⊢ t : A
0 · Γ, 𝛾 ⊢ ∗t : &𝑝A

nec
0 · Γ, ref : Resid A ⊢ ref : Resid A

ref

Γ ⊢ t : &1A

Γ ⊢ unborrow t : ∗A unborrow

∅ ⊢ init : Array
id
F

arrayInit
∅ ⊢ arr : Array

id
F ∅ ⊢ v : F

∅ ⊢ arr[n] = v : Array
id
F

arrayAt

𝛾 ⊢ v : A
𝛾 ⊢ ref (v) : Refid A

refStore
Γ ⊢ t : A ¬resourceAllocator(t)

𝑟 · Γ ⊢ [t]𝑟 : □𝑟A
pr

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:3

We sometimes use an admissible rule to simplify some parts of the proofs:

0 · Γ, ref : Resid A ⊢ ∗ref : ∗(Resid A)
∗ref*

which has derivation:

ref : Resid A ⊢ ref : Resid A
ref

0 · Γ, ref : Resid A ⊢ ∗ref : ∗(Resid A)
nec

Primitives.

0 · Γ ⊢ newRef : A ⊸ ∃id .∗(Refid A)
newRef

𝑝 ≡ 1 ∨ 𝑝 ≡ ∗
0 · Γ ⊢ swapRef : &𝑝 (Refid A) ⊸ A ⊸ A ⊗ &𝑝 (Refid A)

swapRef

0 · Γ ⊢ freezeRef : ∗(Refid A) ⊸ A

freezeRef

0 · Γ ⊢ readRef : &𝑝 (Refid (□𝑟+1A)) ⊸ A ⊗ &𝑝 (Refid (□𝑟A))
readRef

0 · Γ ⊢ newArray : N ⊸ ∃id .∗(Array
id
F) newArray

0 · Γ ⊢ readArray : &𝑝 (Arrayid F) ⊸ N ⊸ F ⊗ &𝑝 (Arrayid F)
readArray

𝑝 ≡ 1 ∨ 𝑝 ≡ ∗
0 · Γ ⊢ writeArray : &𝑝 (Arrayid F) ⊸ N ⊸ F ⊸ &𝑝 (Arrayid F)

writeArray

0 · Γ ⊢ deleteArray : ∗(Array
id
F) ⊸ unit

delArray

Definition A.1 (Graded contexts). [Γ] classifies those contexts which contain only graded variables:

[∅]
[Γ]

[Γ, x : [A]𝑟]
Definition A.2 (Copyable predicate). Predicate definition:

copyable(unit) copyable(N) copyable(F)
copyable(A) copyable(B)

copyable(A ⊗ B)

Definition A.3 (Cloneable predicate). Predicate definition:

cloneable(Array
id
F)

cloneable(A) ∨ copyable(A)
cloneable(Refid A)

cloneable(A) cloneable(B)
cloneable(A ⊗ B)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:4 Daniel Marshall and Dominic Orchard

Definition A.4 (Resource allocating terms). Predicate definition:

resourceAllocator(newRef) resourceAllocator(newArray)

resourceAllocator(t1)
resourceAllocator(t1 t2)

resourceAllocator(t2)
resourceAllocator(t1 t2)

resourceAllocator(t1)
resourceAllocator((𝜆x .t1) t2)

resourceAllocator(t1)
resourceAllocator(let () = t1 in t2)

resourceAllocator(t2)
resourceAllocator(let () = t1 in t2)

resourceAllocator(t1)
resourceAllocator(let (𝑥,𝑦) = t1 in t2)

resourceAllocator(t2)
resourceAllocator(let (𝑥,𝑦) = t1 in t2)

resourceAllocator(t1)
resourceAllocator((t1, t2))

resourceAllocator(t2)
resourceAllocator((t1, t2))

resourceAllocator(t1)
resourceAllocator(let [x] = t1 in t2)

resourceAllocator(t2)
resourceAllocator(let [x] = t1 in t2)

resourceAllocator(t)
resourceAllocator([t])

resourceAllocator(t1)
resourceAllocator(share t1)

resourceAllocator(t1)
resourceAllocator(clone t1 as x in t2)

resourceAllocator(t2)
resourceAllocator(clone t1 as x in t2)

resourceAllocator(t1)
resourceAllocator(withBorrow t1 t2)

resourceAllocator(t2)
resourceAllocator(withBorrow t1 t2)

resourceAllocator(t1)
resourceAllocator(split t1)

resourceAllocator(t1)
resourceAllocator(join t1 t2)

resourceAllocator(t2)
resourceAllocator(join t1 t2)

resourceAllocator(t1)
resourceAllocator(push t1)

resourceAllocator(t1)
resourceAllocator(pull t1)

resourceAllocator(t1)
resourceAllocator(pack ⟨id′, t1⟩)

resourceAllocator(t1)
resourceAllocator(unpack ⟨id′, x⟩ = t1 in t2)

resourceAllocator(t2)
resourceAllocator(unpack ⟨id′, x⟩ = t1 in t2)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:5

A.2 Reduction rules for heap semantics

∃𝑟 ′ . 𝑠 + 𝑟 ′ ⊑ 𝑟

𝐻, x ↦→𝑟v ⊢ x {𝑠 𝐻, x ↦→𝑟v ⊢ v {var
y#{𝐻, v, t}

𝐻 ⊢ (𝜆x .t) v {𝑠 𝐻, y ↦→𝑠v ⊢ t [y/x] {𝛽

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ t1 t2 {𝑠 𝐻 ′ ⊢ t′1 t2

{appL
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ v t2 {𝑠 𝐻 ′ ⊢ v t′2
{appR

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ (t1, t2) {𝑠 𝐻 ′ ⊢ (t′1, t2)

{⊗L
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ (v, t2) {𝑠 𝐻 ′ ⊢ (v, t′2)
{⊗R

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let (𝑥,𝑦) = t1 in t2 {𝑠 𝐻 ′ ⊢ let (𝑥,𝑦) = t

′
1 in t2

{let⊗

x
′#{𝐻, v1, v2, t} y

′#{𝐻, v1, v2, t}
𝐻 ⊢ let (𝑥,𝑦) = (v1, v2) in t {𝑠 𝐻, x′ ↦→𝑠v1, y′ ↦→𝑠v2 ⊢ t [y′/y] [x′/x]

{⊗𝛽

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let () = t1 in t2 {𝑠 𝐻 ′ ⊢ let () = t

′
1 in t2

{letunit
𝐻 ⊢ let () = () in t {𝑠 𝐻 ⊢ t {𝛽unit

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let [x] = t1 in t2 {𝑠 𝐻 ′ ⊢ let [x] = t

′
1 in t2

{let□

𝐻 ⊢ t {𝑠∗𝑟 𝐻 ′ ⊢ t′

𝐻 ⊢ [t]𝑟 {𝑠 𝐻 ′ ⊢ [t′]𝑟
{□

y#{𝐻, v, t}
𝐻 ⊢ let [x] = [v]𝑟 in t {𝑠 𝐻, y ↦→(𝑠∗𝑟)v ⊢ t [y/x] {□𝛽

y#{𝐻, v, t}
𝐻 ⊢ unpack ⟨id, x⟩ = pack ⟨id′, v⟩ in t {𝑠 𝐻, y ↦→𝑟v ⊢ t [y/x] {∃𝛽

𝐻 ⊢ t {𝑠 𝐻 ⊢ t′

𝐻 ⊢ pack ⟨id, t⟩ {𝑠 𝐻 ⊢ pack ⟨id, t′⟩ {pack

𝐻 ⊢ t1 {𝑠 𝐻 ⊢ t′1
𝐻 ⊢ unpack ⟨id, x⟩ = t1 in t2 {𝑠 𝐻 ⊢ unpack ⟨id, x⟩ = t

′
1 in t2

{unpack

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ share t {𝑠 𝐻 ′ ⊢ share t′ {share
dom(𝐻) ≡ refs(v)

𝐻,𝐻 ′ ⊢ share (∗v) {𝑠 ([𝐻]0), 𝐻 ′ ⊢ [v] {share𝛽

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ ∗t {𝑠 𝐻 ′ ⊢ ∗t′ {∗
𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1

𝐻 ⊢ clone t1 as x in t2 {𝑠 𝐻 ′ ⊢ clone t′1 as x in t2
{clone

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:6 Daniel Marshall and Dominic Orchard

dom(𝐻 ′) ≡ refs(v) (𝐻 ′′, 𝜃, id) = copy(𝐻 ′) y#{𝐻, v, t}

𝐻,𝐻 ′ ⊢ clone [v]𝑟 as x in t {𝑠 𝐻,𝐻 ′, 𝐻 ′′, y ↦→𝑠pack ⟨id, ∗(𝜃 (v))⟩ ⊢ t [y/x]
{clone𝛽

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ withBorrow t1 t2 {𝑠 𝐻 ′ ⊢ withBorrow t

′
1 t2
{with&L

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ withBorrow (𝜆x .t1) t2 {𝑠 𝐻 ′ ⊢ withBorrow (𝜆x .t1) t′2

{with&R

y#{𝐻, v, t}
𝐻 ⊢ withBorrow (𝜆x .t) (∗v) {𝑠 𝐻, y ↦→𝑠 (∗v) ⊢ unborrow t [y/x] {with&

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ unborrow t {𝑠 𝐻 ′ ⊢ unborrow t
′ {unborrow

𝐻 ⊢ unborrow (∗v) {𝑠 𝐻 ⊢ ∗v {un&

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ split t {𝑠 𝐻 ′ ⊢ split t′ {split

ref1#𝐻 ref2#𝐻
𝐻, ref ↦→𝑝 id, id ↦→ v ⊢ split (∗ref) {𝑠 𝐻, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id, id ↦→ v ⊢ (∗ref1, ∗ref2)

{splitRef

𝐻 ⊢ split (∗v) {𝑠 𝐻 ′ ⊢ (∗v1, ∗v2)
𝐻 ′ ⊢ split (∗w) {𝑠 𝐻 ′′ ⊢ (∗w1, ∗w2)

𝐻 ⊢ split (∗(v,w)) {𝑠 𝐻 ′′ ⊢ (∗(v1,w1), ∗(v2,w2))
{split⊗

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ join t1 t2 {𝑠 𝐻 ′ ⊢ join t

′
1 t2
{joinL

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ join v t2 {𝑠 𝐻 ′ ⊢ join v t

′
2
{joinR

ref #𝐻
𝐻, ref1 ↦→𝑝 id, ref2 ↦→𝑞id, id ↦→ v ⊢ join (∗ref1) (∗ref2) {𝑠 𝐻, ref ↦→(𝑝+𝑞) id, id ↦→ v ⊢ ∗ref {joinRef

𝐻 ⊢ join (∗v1) (∗v2) {𝑠 𝐻 ′ ⊢ ∗v
𝐻 ′ ⊢ join (∗w1) (∗w2) {𝑠 𝐻 ′′ ⊢ ∗w

𝐻 ⊢ join (∗(v1,w1)) (∗(v2,w2)) {𝑠 𝐻 ′′ ⊢ ∗(v,w) {join⊗

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ push t {𝑠 𝐻 ′ ⊢ push t′ {push
𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ pull t {𝑠 𝐻 ′ ⊢ pull t′ {pull

𝐻 ⊢ push (∗(v1, v2)) {𝑠 𝐻 ⊢ (∗v1, ∗v2)
{push∗

𝐻 ⊢ pull (∗v1, ∗v2) {𝑠 𝐻 ⊢ ∗(v1, v2)
{pull∗

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:7

Primitive reduction rules.

ref #𝐻 id#𝐻
𝐻 ⊢ newArray n {𝑠 𝐻, ref ↦→1id, id ↦→ init ⊢ pack ⟨id, ∗ref ⟩ {newArray

𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ readArray (∗ref) i {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ (v, ∗ref) {readArray

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ writeArray (∗ref) i v {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ ∗ref {writeArray

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ deleteArray (∗ref) {𝑠 𝐻 ⊢ () {deleteArray

ref #𝐻 id#𝐻
𝐻 ⊢ newRef v {𝑠 𝐻, ref ↦→1id, id ↦→ ref (v) ⊢ pack ⟨id, ∗ref ⟩ {newRef

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ swapRef (∗ref) v′ {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref (v′) ⊢ v {swapRef

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ freezeRef (∗ref) {𝑠 𝐻 ⊢ v {freezeRef

𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟+1) ⊢ readRef (∗ref) {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟) ⊢ (v, ∗ref) {readRef

Multi-reduction rules.

𝐻 ⊢ t ⇒𝑠 𝐻 ⊢ t refl
𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t2 𝐻 ′ ⊢ t2 ⇒𝑠 𝐻 ′′ ⊢ t3

𝐻 ⊢ t1 ⇒𝑠 𝐻 ′′ ⊢ t3
ext

Heap-context compatibility.

∅ ⊲⊳ ∅ empty
𝐻 ⊲⊳ ∅

𝐻, ref ↦→𝑝 id ⊲⊳ ∅ GCArr
𝐻, id ↦→ 𝑣𝑟 ⊲⊳ Γ + 𝛾 𝛾 ⊢ 𝑣𝑟 : Resid A
𝐻, ref ↦→𝑝 id, id ↦→ 𝑣𝑟 ⊲⊳ (Γ, ref : Resid A)

extRes

𝐻 ⊲⊳ Γ + 𝑠 · Γ′ x ∉ dom(𝐻) Γ′ ⊢ v : A ∃𝑟 ′ . 𝑠 + 𝑟 ′ ≡ 𝑟

(𝐻, x ↦→𝑟v) ⊲⊳ (Γ, x : [A]𝑠)
ext

𝐻 ⊲⊳ Γ + Γ′ x ∉ dom(𝐻) Γ′ ⊢ v : A ∃𝑟 ′ . 1 + 𝑟 ′ ≡ 𝑟

(𝐻, x ↦→𝑟v) ⊲⊳ (Γ, x : A) extLin

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:8 Daniel Marshall and Dominic Orchard

A.3 Equational theory

(𝜆x .t2) t1 ≡ t2 [t1/x] (𝛽)
𝜆x .(t x) ≡ t (𝜂)

let [x] = [t1] in t2 ≡ t2 [t1/x] (𝛽□)
let [x] = t1 in [x] ≡ t1 (𝜂□)
[let [x] = t1 in t2] ≡ let [x] = t1 in [t2] (□distrib)

let () = () in t ≡ t (𝛽unit)
let () = t in () ≡ t (𝜂unit)

let (𝑥,𝑦) = (t1, t2) in t3 ≡ t3 [t2/y] [t1/x] (𝛽⊗)
let (𝑥,𝑦) = t1 in (x, y) ≡ t1 (𝜂⊗)
(let (𝑥,𝑦) = t1 in t2, t3) ≡ let (𝑥,𝑦) = t1 in (t2, t3) (⊗distribL)
(t1, let (𝑥,𝑦) = t2 in t3) ≡ let (𝑥,𝑦) = t2 in (t1, t3) (⊗distribR)

unpack ⟨id, x⟩ = pack ⟨id′, t1⟩ in t2 ≡ t2 [t1/x] (𝛽∃)
unpack ⟨id, x⟩ = t1 in pack ⟨id, x⟩ ≡ t1 (𝜂∃)

pack ⟨id, (unpack ⟨id′, x⟩ = t1 in t2)⟩ ≡ unpack ⟨id′, x⟩ = t1 in pack ⟨id, t2⟩ (∃distrib)

clone (share v) as x in t ≡ t [pack ⟨id, v⟩/x] (𝛽∗)
clone t1 as x in (clone t2 as y in t3) ≡ clone (clone t1 as x in t2) as y in t3 (𝑥 ∉ FV(𝑡3))

(∗assoc)

withBorrow (𝜆x .x) t ≡ t (&unit)
withBorrow (𝜆x .𝑓 (g x)) t ≡ withBorrow 𝑓 (withBorrow g t) (&assoc)

(let (𝑥,𝑦) = (split t) in (join x y)) ≡ t (&rejoin)
split (join t1 t2) ≡ (t1, t2) (&resplit)

A.4 Parallel sum example in Granule

1 -- A more involved example summing two borrowed halves of a unique array in parallel.

2 -- Run `main` to see the result.

3

4 --- Sized vectors

5 data Vec (n : Nat) t where

6 Nil : Vec 0 t;

7 Cons : t → Vec n t → Vec (n+1) t

8

9 -- Length of a `Vec` into an indexed `N`, preserving the elements

10 length' : ∀ {a : Type, n : Nat} . Vec n a → (Int, Vec n a)

11 length' Nil = (0, Nil);

12 length' (Cons x xs) = let (n, xs) = length' xs in (n + 1, Cons x xs)

13

14 -- Converts a vector of floats to a unique array of floats

15 toFloatArray : ∀ {n : Nat} . Vec n Float → ∃ {id : Name} . *(FloatArray id)

16 toFloatArray v =

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:9

17 let (n', v) = length' v

18 in unpack <id, arr> = newFloatArray n'

19 in pack <id, (toFloatArrayAux arr [0] v)> as ∃ {id : Name} . *(FloatArray id)

20

21 -- Auxiliary function for `toFloatArray`
22 toFloatArrayAux : ∀ {n : Nat, id : Name} . *(FloatArray id) → Int [n] → Vec n Float

23 → *(FloatArray id)

24 toFloatArrayAux a [n] Nil = a;

25 toFloatArrayAux a [n] (Cons x xs) =

26 toFloatArrayAux (writeFloatArray a n x) [n + 1] xs

27

28 -- `sumFromTo a i n` sums the elements of a unique array `a` from index `i` to index `n`
29 sumFromTo : ∀ {id : Name, p : Fraction} . & p (FloatArray id) → !Int → !Int

30 → (Float, & p (FloatArray id))

31 sumFromTo array [i] [n] =

32 if i == n then (0.0, array)

33 else

34 let (x, a) = readFloatArray array i;

35 (y, arr) = sumFromTo a [i+1] [n]

36 in (x + y, arr)

37

38 -- Helper function `writeRef` for updating a reference where the old value is dropped

39 -- (A reference to a "Droppable" value can be written to without violating linearity)

40 writeRef : ∀ {id : Name, a : Type} . {Droppable a} ⇒ a → & 1 (Ref id a)

41 → & 1 (Ref id a)

42 writeRef x r = let

43 (y, r') = swapRef r x;

44 () = drop@a y in r'

45

46 -- Parallel sum of two halves of a unique array, storing the result in a mutable

47 -- reference after the parallel computation is done.

48 parSum : ∀ {id id' : Name} . *(FloatArray id) → *(Ref id’ Float)

49 → *(Ref id’ Float, FloatArray id)

50 parSum array ref = let

51 ([n], array) : (!Int, *(FloatArray id)) = lengthFloatArray array;

52 compIn = pull (ref, array)

53 in withBorrow (𝜆compIn →
54 let (ref, array) = push compIn;

55 (array1, array2) = split array;

56

57 -- Compute in parallel

58 ((x, array1), (y, array2)) =

59 par (𝜆() → sumFromTo array1 [0] [div n 2])

60 (𝜆() → sumFromTo array2 [div n 2] [n]);

61

62 -- Update the reference

63 ref' = writeRef ((x : Float) + y) ref;

64 compOut = pull (ref', join (array1, array2))

65

66 in compOut) compIn

67

68 -- Main function to sum the elements of a unique array in parallel

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:10 Daniel Marshall and Dominic Orchard

69 main : Float

70 main =

71 -- Some example data

72 unpack <id , arr> = toFloatArray (Cons 10.0 (Cons 20.0 (Cons 30.0 (Cons 40.0 Nil)))) in

73 unpack <id', ref> = newRef 0.0 in

74 let

75 (result, array) = push (parSum arr ref);

76 () = deleteFloatArray array

77 in freezeRef result

B SUBSTITUTION PROOFS
Lemma B.1 (Linear substitution is admissible, extending [Orchard et al. 2019]). If Γ1 ⊢

t1 : A and Γ2, x : A ⊢ t2 : B then Γ2 + Γ1 ⊢ t2 [t1/x] : B.

Proof. By induction on the typing derivation of t2.
• (pr)

Γ ⊢ t : A ¬resourceAllocator(t)
𝑟 · Γ ⊢ [t] : □𝑟A

pr

where t2 = [t]. Trivial since the form of the typing does not match here: no linear variable
possible.

• (share)

Γ2, x : A ⊢ t : ∗A
Γ2, x : A ⊢ share t : □𝑟A

share

where B = □𝑟A.
By induction on the premise then Γ1 + Γ2 ⊢ t [t1/x] : ∗A, from which we build the conclusion:

Γ2 ⊢ t [t1/x] : ∗A
Γ2 ⊢ share (t [t1/x]) : □𝑟A

share

• (bind) Two possibilities:
(1) Linear variable 𝑥 in the left premise:

Γ′1 , x : A ⊢ t′1 : □𝑟A′ Γ′2 , y : ∗(#A′) ⊢ t′2 : □𝑟B 𝑟 ⊑ 1
Γ′1 , x : A + Γ′2 ⊢ clone t′1 as y in t

′
2 : □𝑟B

clone’

By induction on the first premise: Γ′1 + Γ1 ⊢ t′1 [t/x] : □𝑟A′

Then we reconstruct the typing as:

Γ1 + Γ1 ⊢ t′1 [t/x] : □𝑟A′ Γ′2 , y : ∗(#A′) ⊢ t′2 : □𝑟B′ 𝑟 ⊑ 1
Γ′1 + Γ1 + Γ′2 ⊢ clone t′1 [t/x] as y in t

′
2 : □𝑟B

′ clone’

satisfying the goal (by commutativity of +).
(2) Linear variable 𝑥 in the right premise:

Γ′1 ⊢ t′1 : □𝑟A′ Γ′2 , x : A, y : ∗(#A′) ⊢ t′2 : □𝑟B′ 𝑟 ⊑ 1
Γ′1 + Γ′2 , x : A ⊢ clone t′1 as y in t

′
2 : □𝑟B

′ clone’

By induction on the second premise: (Γ′2 + Γ1), y : ∗A′ ⊢ t′2 [t/x] : □𝑟B′

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:11

Then we reconstruct the typing as:

Γ′1 ⊢ t′1 : □𝑟A′ (Γ′2 + Γ1), y : ∗(#A′) ⊢ t′2 [t/x] : □𝑟B′

Γ′1 + Γ′2 + Γ1 ⊢ clone t′1 as y in t
′
2 [t/x] : □𝑟B′

clone

satisfying the goal.
• (withBorrow) Two possibilities:
(1) Linear variable in the first premise:

Γ′1 , x : A ⊢ t : ∗A′ Γ′2 ⊢ 𝑓 : &1A
′ ⊸ &1B

′

Γ′1 , x : A + Γ′2 ⊢ withBorrow 𝑓 t : ∗B′
with&

By induction on the first premise then Γ′1 + Γ1 ⊢ t [t1/x] : ∗A′.
From this we construct the goal:

Γ′1 + Γ1 ⊢ t [t1/x] : ∗A′ Γ′2 ⊢ 𝑓 : &1A
′ ⊸ &1B

′

Γ′1 + Γ1 + Γ′2 ⊢ withBorrow 𝑓 t [t1/x] : ∗B′
with&

satisfying the goal by commutativity of +.
(2) Linear variable in the second premise:

Γ′1 ⊢ t : ∗A′ Γ′2 , x : A ⊢ 𝑓 : &1A
′ ⊸ &1B

′

Γ′1 + Γ′2 , x : A ⊢ withBorrow 𝑓 t : ∗B′
with&

By induction on the second premise then Γ′2 + Γ1 ⊢ 𝑓 [t1/x] : &1A
′ ⊸ &1B

′.
From this we construct the goal:

Γ′1 ⊢ t : ∗A′ Γ′2 + Γ1 ⊢ 𝑓 [t1/x] : &1A
′ ⊸ &1B

′

Γ′1 + Γ′2 + Γ1 ⊢ withBorrow 𝑓 [t1/x] t : ∗B′
with&

satisfying the goal.
• (split)

Γ, x : A ⊢ t : &𝑝+𝑞A

Γ, x : A ⊢ split t : &𝑝A ⊗ &𝑞A
with&

Then by induction on the premise we have: Γ1 + Γ ⊢ t [t1/x] : B from which we construct the
goal:

Γ1 + Γ ⊢ t [t1/x] : &𝑝+𝑞A

Γ1 + Γ ⊢ split (t [t1/x]) : &𝑝A ⊗ &𝑞A
with&

• (join)

Γ1 ⊢ t′1 : &𝑝A Γ2 ⊢ t′2 : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ1 + Γ2 ⊢ join t

′
1 t

′
2 : &𝑝+𝑞A

with&

Then there are two possibilities depending on the location of the linear typing variable:
(1) (on the left):

Γ′1 , x : A ⊢ t′1 : &𝑝A Γ′2 ⊢ t′2 : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ′1 , x : A + Γ′2 ⊢ join t

′
1 t

′
2 : &𝑝+𝑞A

with&

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:12 Daniel Marshall and Dominic Orchard

Then by induction on the premise we have: Γ′1 + Γ1 ⊢ t
′
1 [t1/x] : &𝑝A from which we

construct the goal:

Γ′1 , x : A ⊢ t′1 [t/x] : &𝑝A Γ′2 ⊢ t′2 : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ′1 + Γ1 + Γ′2 ⊢ join (t′1 [t1/x]) t′2 : &𝑝+𝑞A

with&

(2) (on the right):

Γ′1 ⊢ t′1 : &𝑝A Γ′2 , x : A ⊢ t′2 : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ′1 + Γ′2 , x : A ⊢ join t

′
1 t

′
2 : &𝑝+𝑞A

with&

Then by induction on the premise we have: Γ′2 + Γ1 ⊢ t
′
2 [t1/x] : &𝑞A from which we

construct the goal:

Γ′1 ⊢ t′1 : &𝑝A Γ′2 + Γ1 ⊢ t′2 [t1/x] : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ′1 + Γ′2 + Γ1 ⊢ join t

′
1 (t′2 [t1/x]) : &𝑝+𝑞A

with&

• (push)

Γ, x : A ⊢ t : &𝑝 (A ⊗ B)
Γ, x : A ⊢ push t : (&𝑝A) ⊗ (&𝑝B)

push

Then by induction on the premise we have: Γ + Γ1 ⊢ t [t1/x] : &𝑝 (A ⊗ B) from which we
construct the goal:

Γ + Γ1 ⊢ t [t1/x] : &𝑝 (A ⊗ B)
Γ + Γ1 ⊢ push t [t1/x] : &𝑝A ⊗ &𝑞A

push

• (pull)

Γ, x : A ⊢ t : (&𝑝A) ⊗ (&𝑝B)
Γ, x : A ⊢ pull t : &𝑝 (A ⊗ B)

pull

Then by induction on the premise we have: Γ + Γ1 ⊢ t [t1/x] : (&𝑝A) ⊗ (&𝑝B) from which we
construct the goal:

Γ + Γ1 ⊢ t [t1/x] : (&𝑝A) ⊗ (&𝑝B)
Γ + Γ1 ⊢ pull t [t1/x] : &𝑝 (A ⊗ B)

pull

• (newRef), (swapRef), (freezeRef), (readRef), (newArray), (readArray), (writeArray), (deleteAr-
ray) all trivial as they are atomic with substitution having no effect.

□

Lemma B.2 (Graded substitution is admissible, extending [Orchard et al. 2019]). If
[Γ1] ⊢ t1 : A and Γ2, x : [A]𝑟 ⊢ t2 : B (where [Γ1] represents a context Γ1 containing only graded

assumptions) and ¬resourceAllocator(t1) then Γ2 + 𝑟 · Γ1 ⊢ t2 [t1/x] : B.

Proof. By induction on the typing derivation of t2.
• (pr)

Γ′2 , x : [A]𝑟2 ⊢ t : A ¬resourceAllocator(t)
𝑟1 · (Γ′2 , x : [A]𝑟2) ⊢ [t] : □𝑟1A

pr

where 𝑟 = 𝑟1 ∗ 𝑟2 and t2 = [t].
By induction on the premise then we have Γ′2 , 𝑟2 · Γ1 ⊢ t [t1/x] : A.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:13

Then we construct the goal:
Γ′2 , 𝑟2 · Γ1 ⊢ t [t1/x] : A ¬resourceAllocator(t [t1/x])

𝑟1 · (Γ′2 , 𝑟2 · Γ1) ⊢ [t [t1/x]] : □𝑟1A
pr

where¬resourceAllocator(t [t1/x]) follows from¬resourceAllocator(t) and¬resourceAllocator(t1)
and which equals 𝑟1 · Γ′2 + 𝑟1 · 𝑟2 · Γ1 ⊢ [t [t1/x]] : □𝑟1A satisfying the goal here.

• (share)
Γ2, x : [A]𝑟 ⊢ t : ∗A

Γ2, x : [A]𝑟 ⊢ share t : □𝑠A
share

where B = □𝑠A.
By induction on the premise then Γ2+𝑟 ·Γ1 ⊢ t [t1/x] : ∗A, from which we build the conclusion:

Γ2 + 𝑟 · Γ1 ⊢ t [t1/x] : ∗A
Γ2 + 𝑟 · Γ1 ⊢ share (t [t1/x]) : □𝑠A

share

• (bind)
Γ′1 , x : [A]𝑟1 ⊢ t′1 : □𝑠A′ Γ′2 , y : ∗(#A′), x : [A]𝑟2 ⊢ t′2 : □𝑠B 𝑟 ⊑ 1

Γ′1 + Γ′2 , x : [A]𝑟1+𝑟2 ⊢ clone t′1 as y in t
′
2 : □𝑠B

clone’

with 𝑟 = 𝑟1 + 𝑟2 without loss of generality (since any context not including 𝑥 can instead have
weakening applied to have either 𝑟1 = 0 and/or 𝑟2 = 0).
By induction on the premises, we have: (1) Γ′1 + 𝑟1 · Γ1 ⊢ t

′
1 [t/x] : □𝑠A′ (2) (Γ′2 + 𝑟2 · Γ1), y :

∗A′ ⊢ t′2 [t/x] : □𝑠B′
Then we reconstruct the typing as:

Γ′1 + 𝑟1 · Γ1 ⊢ t′1 [t/x] : □𝑠A′ (Γ′2 + 𝑟2 · Γ1), y : ∗(#A′) ⊢ t′2 [t/x] : □𝑠B′

Γ′1 + Γ′2 + (𝑟1 + 𝑟2) · Γ1 ⊢ clone t′1 [t/x] as y in t
′
2 [t/x] : □𝑠B′

clone

satisfying the goal.
• (withBorrow)

Γ′1 , x : [A]𝑟1 ⊢ t : ∗A′ Γ′2 , x : [A]𝑟2 ⊢ 𝑓 : &1A
′ ⊸ &1B

′

(Γ′1 + Γ′2), x : [A]𝑟1+𝑟2 ⊢ withBorrow 𝑓 t : ∗B′
with&

By induction on the premises, we have: (1) Γ′1 + 𝑟1 · Γ1 ⊢ t [t1/x] : ∗A′. (2) Γ′2 + 𝑟2 · Γ1 ⊢ 𝑓 [t1/x] :
&1A

′ ⊸ &1B
′.

From this we construct the goal:
Γ′1 + 𝑟1 · Γ1 ⊢ t [t1/x] : ∗A′ Γ′2 + 𝑟2 · Γ1 ⊢ 𝑓 [t1/x] : &1A

′ ⊸ &1B
′

Γ′1 + Γ′2 + (𝑟1 + 𝑟2) · Γ1 ⊢ withBorrow 𝑓 [t1/x] t : ∗B′
with&

satisfying the goal.
• (split)

Γ, x : [A]𝑟 ⊢ t : &𝑝+𝑞A

Γ, x : [A]𝑟 ⊢ split t : &𝑝A ⊗ &𝑞A
with&

Then by induction on the premise we have: Γ1 + 𝑟 · Γ ⊢ t [t1/x] : B from which we construct
the goal:

Γ1 + 𝑟 · Γ ⊢ t [t1/x] : &𝑝+𝑞A

Γ1 + 𝑟 · Γ ⊢ split (t [t1/x]) : &𝑝A ⊗ &𝑞A
with&

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:14 Daniel Marshall and Dominic Orchard

• (join)
Γ′1 , x : [A]𝑟1 ⊢ t′1 : &𝑝A Γ′2 , x : [A]𝑟2 ⊢ t′2 : &𝑞A 𝑝 + 𝑞 ≤ 1

(Γ′1 + Γ′2), x : [A] (𝑟1+𝑟2) ⊢ join t
′
1 t

′
2 : &𝑝+𝑞A

with&

Then by induction on the premises we have: (1) Γ′1 + 𝑟1 · Γ1 ⊢ t′1 [t1/x] : &𝑝A (2) Γ′2 + 𝑟2 · Γ1 ⊢
t
′
2 [t1/x] : &𝑞A from which we construct the goal:

Γ′1 + 𝑟1 · Γ1 ⊢ t′1 [t1/x] : &𝑝A Γ′2 + 𝑟2 · Γ1 ⊢ t′2 [t1/x] : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ′1 + Γ′2 + (𝑟1 + 𝑟2) · Γ1 ⊢ join t

′
1 (t′2 [t1/x]) : &𝑝+𝑞A

with&

satisfying the goal.
• (push)

Γ, x : [A]𝑟 ⊢ t : &𝑝 (A ⊗ B)
Γ, x : [A]𝑟 ⊢ push t : (&𝑝A) ⊗ (&𝑝B)

push

Then by induction on the premise we have: Γ + 𝑟 · Γ1 ⊢ t [t1/x] : &𝑝 (A ⊗ B) from which we
construct the goal:

Γ + 𝑟 · Γ1 ⊢ t [t1/x] : &𝑝 (A ⊗ B)
Γ + 𝑟 · Γ1 ⊢ push t [t1/x] : &𝑝A ⊗ &𝑞A

push

• (pull)
Γ, x : [A]𝑟 ⊢ t : (&𝑝A) ⊗ (&𝑝B)
Γ, x : [A]𝑟 ⊢ pull t : &𝑝 (A ⊗ B)

pull

Then by induction on the premise we have: Γ + 𝑟 · Γ1 ⊢ t [t1/x] : (&𝑝A) ⊗ (&𝑝B) from which
we construct the goal:

Γ + 𝑟 · Γ1 ⊢ t [t1/x] : (&𝑝A) ⊗ (&𝑝B)
Γ + 𝑟 · Γ1 ⊢ pull t [t1/x] : &𝑝 (A ⊗ B)

pull

• (newRef), (swapRef), (freezeRef), (readRef), (newArray), (readArray), (writeArray), (deleteAr-
ray) all trivial as they are atomic with substitution having no effect.

□

C TYPE SAFETY
C.1 Progress proof

Lemma C.1. Value lemma

Given Γ ⊢ v : A then, depending on the type, the shape of v can be inferred:

• 𝐴 = A
′ → B then 𝑣 = 𝜆𝑥 .𝑡 or a partially applied primitive term 𝑝 .

• 𝐴 = □𝑟A
′
then 𝑣 = [𝑣 ′].

• 𝐴 = A
′ ⊗ B then 𝑣 = (v1, v2).

• 𝐴 = 1 then 𝑣 = ().
• 𝐴 = ∗A′

then 𝑣 = ∗v′.
• 𝐴 = &𝑝A

′
then 𝑣 = ∗v′.

• 𝐴 = N then 𝑣 = 𝑛.

• 𝐴 = F then 𝑣 = 𝑓 .

• 𝐴 = Refid A′
then 𝑣 = ref .

• 𝐴 = Array
id
F then 𝑣 = 𝑎.

• 𝐴 = ∃id .A′
then 𝑣 = pack ⟨id′, v′⟩.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:15

Proof. Recall that the value terms sub-grammar is:

𝑣 ::= (v1, v2) | () | ∗v | [v] | 𝜆x .t | i | ref | a | 𝑝 | pack ⟨id′, v′⟩ (value terms sub-grammar)

where 𝑝 are partially-applied primitives:

𝑝 ::= newRef | swapRef | swapRef (∗ref)
| freezeRef | readRef
| newArray | readArray | readArray (∗a)
| writeArray | writeArray (∗a) | writeArray (∗a) n | deleteArray

We then proceed by case analysis on the type 𝐴 to match the structure of the lemma. In each
case we must consider what possible values can be assigned the type 𝐴 and by which rules.

In all cases, there exists additional derivations based on dereliction and approximation, e.g., for
the case where 𝐴 = A

′ → B:
Γ, x : A′′ ⊢ t : A′ → B

Γ, x : [A′′]1 ⊢ t : A′ → B

der

Γ, y : [A′′]𝑟 , Γ′ ⊢ t : A′ → B 𝑟 ⊑ 𝑠

Γ, y : [A′′]𝑠 , Γ′ ⊢ t : A′ → B

approx

In all of these cases we can apply induction on the premise to get the result since the term is
preserved between the premise and the conclusion.
We elide handling this separately each time in the cases that follow as the reasoning through

dereliction is the same each time.
• 𝐴 = A

′ → B then there are two classes of possible typing:
– Abstract term:

Γ, x : A′ ⊢ t : B
Γ ⊢ 𝜆x .t : A′ → B

abs

thus 𝑣 = 𝜆x .t as in the lemma statement.
– Primitive term 𝑝 formed by an application of zero or more values to a primitive operation,
of which there are then twelve possibilities:

(1)

0 · Γ ⊢ newRef : A ⊸ ∃id .∗(Refid A)
newRef

thus 𝑣 = newRef
(2)

𝑝 ≡ 1 ∨ 𝑝 ≡ ∗
0 · Γ ⊢ swapRef : &𝑝 (Refid A) ⊸ A ⊸ A ⊗ &𝑝 (Refid A)

swapRef

thus 𝑣 = swapRef
(3)

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

0 · Γ, ref : Refid A ⊢ ∗ref : &1Refid A
nec

0 · Γ, ref : Refid A ⊢ swapRef (∗ref) : A ⊗ &1 (Refid A)
app

thus 𝑣 = swapRef (∗ref)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:16 Daniel Marshall and Dominic Orchard

(4)

0 · Γ ⊢ freezeRef : ∗(Refid A) ⊸ A

freezeRef

thus 𝑣 = freezeRef
(5)

0 · Γ ⊢ readRef : &𝑝 (Refid (□𝑟+1A)) ⊸ A ⊗ &𝑝 (Refid (□𝑟A))
readRef

thus 𝑣 = readRef
(6)

0 · Γ ⊢ newArray : N ⊸ ∃id .∗(Array
id
F) newArray

thus 𝑣 = newArray
(7)

0 · Γ ⊢ readArray : &𝑝 (Arrayid F) ⊸ N ⊸ F ⊗ &𝑝 (Arrayid F)
readArray

thus 𝑣 = readArray
(8)

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

0 · Γ, a : Array
id
A ⊢ ∗a : &1Arrayid F

nec

0 · Γ, a : Array
id
A ⊢ readArray (∗a) : N ⊸ F ⊗ &1 (Arrayid F)

app

thus 𝑣 = readArray (∗a)
(9)

𝑝 ≡ 1 ∨ 𝑝 ≡ ∗
0 · Γ ⊢ writeArray : &𝑝 (Arrayid F) ⊸ N ⊸ F ⊸ &𝑝 (Arrayid F)

writeArray

thus 𝑣 = writeArray
(10)

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

0 · Γ, a : Array
id
A ⊢ ∗a : &1Arrayid F

nec

0 · Γ, a : Array
id
A ⊢ writeArray (∗a) : N ⊸ F ⊸ F ⊗ &1 (Arrayid F)

app

thus 𝑣 = writeArray (∗a)

(11)
0 · Γ, ref : Resid A ⊢ ref : Resid A

ref

0 · Γ, a : Array
id
A ⊢ ∗a : &1Arrayid F

nec

0 · Γ, a : Array
id
A ⊢ writeArray (∗a) : F ⊗ &1 (Arrayid F)

app
∅ ⊢ n : N

0 · Γ, a : Array
id
A ⊢ writeArray (∗a) n : F ⊸ F ⊗ &1 (Arrayid F)

app

thus 𝑣 = writeArray (∗a) n
(12)

0 · Γ ⊢ deleteArray : ∗(Array
id
F) ⊸ unit

delArray

thus 𝑣 = deleteArray

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:17

• 𝐴 = □𝑟A
′ then there is only one possible non-dereliction/non-approximation typing of a

value at that type:

Γ ⊢ v′ : A′

𝑟 · Γ ⊢ [v′] : □𝑟A′ pr

thus 𝑣 = [v′] as in the lemma statement.
• 𝐴 = A

′ ⊗ B then there is only one possible non-dereliction/non-approximation typing of a
value at that type:

Γ1 ⊢ v1 : A′ Γ2 ⊢ v2 : B
Γ1 + Γ2 ⊢ (v1, v2) : A′ ⊗ B

⊗𝐼

thus 𝑣 = (v1, v2) as in the lemma statement.
• 𝐴 = 1 then there is only one possible non-dereliction/non-approximation typing of a value at
that type:

0 · Γ ⊢ () : unit 1𝐼

thus 𝑣 = () as in the lemma statement.
• 𝐴 = ∗A′ then there is only one possible non-dereliction/non-approximation typing of a value
at that type:

∅ ⊢ v′ : A′

0 · Γ ⊢ ∗v′ : ∗A′ nec

thus 𝑣 = ∗t as in the lemma statement.
• 𝐴 = &𝑝A

′ then there is only one possible non-dereliction/non-approximation typing of a
value at that type:

∅ ⊢ v′ : A′

0 · Γ ⊢ ∗v′ : &1A
′ nec

thus 𝑣 = ∗v′ as in the lemma statement.
• 𝐴 = N then 𝑣 = 𝑛 Trivial case on typing of constants which is elided in this paper for brevity
(but covered by the core type theory of Granule for example).

• 𝐴 = F then 𝑣 = 𝑓 Trivial case on typing of constants which is elided in this paper for brevity
(but covered by the core type theory of Granule for example).

• 𝐴 = Refid A then 𝑣 = ref then the only possible typing that is a value is given by:

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

• 𝐴 = Array
id
F then 𝑣 = 𝑎 then the only possible typing that is a value is given by:

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

(and since the only type of arrays is F currently).
• 𝐴 = ∃id .A′ then there is only one possible non-dereliction/non-approximation typing of a
value at that type:

Γ ⊢ v′ : A id ∉ dom(Γ)
Γ ⊢ pack ⟨id′, t⟩ : ∃id .A[id/id′]

pack

thus 𝑣 = pack ⟨id′, v′⟩ as in the lemma statement.
□

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:18 Daniel Marshall and Dominic Orchard

Lemma C.2 (Closed value lemma). Given Γ ⊢ v : A where A does not comprise a function type,

then there exists a runtime only context 𝛾 such that 𝛾 ⊢ v : A, i.e., 𝑣 is closed with respect to normal

variables.

Proof. Similar to the value lemma proof structure, and where:
• 𝐴 = A

′ → B
′ is excluded by the lemma statement.

• 𝐴 = □𝑟A
′ then 𝑣 = [𝑣 ′] by induction.

• 𝐴 = A
′ ⊗ B then 𝑣 = (v1, v2) by induction.

• 𝐴 = 1 then 𝑣 = () is closed.
• 𝐴 = ∗A′ then 𝑣 = ∗v′ by induction.
• 𝐴 = &𝑝A

′ then 𝑣 = ∗v′ by induction.
• 𝐴 = N then 𝑣 = 𝑛 is closed.
• 𝐴 = F then 𝑣 = 𝑓 is closed.
• 𝐴 = Refid A′ then 𝑣 = ref has only a runtime context.
• 𝐴 = Array

id
F then 𝑣 = 𝑎 has only a runtime context.

• 𝐴 = ∃id .A′ then 𝑣 = pack ⟨id′, v′⟩ by induction.
□

Lemma C.3 (Uniqe value lemma). Given Γ ⊢ ∗v : ∗A then, depending on the type A, the shape of

v can be inferred:

• 𝐴 = A
′ ⊗ B

′
then 𝑣 = (v1, v2).

• 𝐴 = Refid A then 𝑣 = ref .

• 𝐴 = Array
id
F then 𝑣 = 𝑎.

and there are no other possible typings for ∗v. Furthermore, ∃Γ′, 𝛾 such that 0 · Γ′, 𝛾 ⊢ ∗v : ∗A, i.e., it
can be type in a runtime context only.

Proof. There are only three possible typings for ∗v.
• 𝐴 = A

′ ⊗ B
′ where there is only one possible non-dereliction/non-approximation typing of a

value at the type ∗(A′ ⊗ B
′):

0 · Γ1, 𝛾1 ⊢ ∗v1 : ∗A′ induction.
0 · Γ2, 𝛾2 ⊢ ∗v2 : ∗B′

induction.

0 · Γ1 + 0 · Γ2 + 𝛾1 + 𝛾2 ⊢ (∗v1, ∗v2) : ∗A′ ⊗ ∗B′
⊗𝐼

0 · (Γ1 + Γ2) + 𝛾1 + 𝛾2 ⊢ ∗(v1, v2) : ∗(A′ ⊗ B
′)

pull

thus 𝑣 = (v1, v2) as in the lemma statement and Γ′ = Γ1 + Γ2 and 𝛾 = 𝛾1 + 𝛾2.
• 𝐴 = Refid A where there is only one possible non-dereliction/non-approximation typing of a
value at the type ∗(Refid A):

0 · Γ, ref : Resid A ⊢ ∗ref : ∗(Resid A)
∗ref*

thus 𝑣 = ref as in the lemma statement and Γ′ = Γ and 𝛾 = ref : Refid A.
• 𝐴 = Array

id
F where there is only one possible non-dereliction/non-approximation typing of

a value at the type ∗(Array
id
F):

0 · Γ, ref : Resid A ⊢ ∗ref : ∗(Resid A)
∗ref*

thus 𝑣 = a as in the lemma statement (and since the only type of arrays is F currently) and
Γ′ = Γ and 𝛾 = a : Array

id
A.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:19

□

Theorem C.4 (Progress). Given Γ ⊢ t : A, then t is either a value, or for all grades 𝑠 and contexts

Γ0 then if 𝐻 ⊲⊳ Γ0 + 𝑠 · Γ there exists a heap 𝐻 ′
and term t

′
such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′.

Proof. By induction on typing.
• (var)

0 · Γ, x : A ⊢ x : A
var

Here, 𝐻 ⊲⊳ 𝑠 · [Γ], x : [A]𝑠 , which by inversion of heap compatibility implies that 𝐻 =

𝐻 ′, x ↦→𝑟v and ∃𝑟 ′ . 𝑠 + 𝑟 ′ ≡ 𝑟 . Hence, we can reduce by the following rule:

∃𝑟 ′ . 𝑠 + 𝑟 ′ ⊑ 𝑟

𝐻, x ↦→𝑟v ⊢ x {𝑠 𝐻, x ↦→𝑟v ⊢ v {var

where ∃𝑟 ′ . 𝑠 + 𝑟 ′ ≡ 𝑟 implies ∃𝑟 ′ . 𝑠 + 𝑟 ′ ⊑ 𝑟 by reflexivity, satisfying the premise.
• (abs)

Γ, x : A ⊢ t : B
Γ ⊢ 𝜆x .t : A ⊸ B

abs

A value.
• (app)

Γ1 ⊢ t1 : A ⊸ B Γ2 ⊢ t2 : A
Γ1 + Γ2 ⊢ t1 t2 : B

app

By induction on the first premise, there are two possibilities.
(1) t1 is a value and therefore by the value lemma there are a number of choices:

– t1 = 𝜆x .t′1. Therefore we induct on the second premise providing two possibilities:
∗ If t2 = v for some value v, then we can reduce by the following rule:

y#{𝐻, v, t}
𝐻 ⊢ (𝜆x .t) v {𝑠 𝐻, y ↦→𝑠v ⊢ t [y/x] {𝛽

∗ If t2 is not a value, then there exists heap 𝐻 ′, term t
′
1 and context Γ′ such that 𝐻 ⊢

t2 {𝑠 𝐻 ′ ⊢ t′2. Therefore we can reduce by the following rule:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ v t2 {𝑠 𝐻 ′ ⊢ v t′2

{appR

– t1 = newRef
Therefore we induct on the second argument:
∗ t2 is a value v and thus we can reduce:

ref #𝐻 id#𝐻
𝐻 ⊢ newRef v {𝑠 𝐻, ref ↦→1id, id ↦→ ref (v) ⊢ pack ⟨id, ∗ref ⟩ {newRef

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ newRef t2 {𝑠 𝐻 ′ ⊢ newRef t′2

{prim

– t1 = swapRef
∗ t2 is a value and therefore by the value lemma on &𝑝 (Refid A) (Lemma C.1) t2 = ∗ref
and thus t1 t2 = swapRef (∗ref) which is also a value.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:20 Daniel Marshall and Dominic Orchard

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ swapRef t2 {𝑠 𝐻 ′ ⊢ swapRef t′2

{prim

– t1 = swapRef (∗ref)
Therefore we induct on the second argument:
∗ t2 is a value v and thus we can reduce:

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ swapRef (∗ref) v′ {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref (v′) ⊢ v {swapRef

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ swapRef (∗ref) t2 {𝑠 𝐻 ′ ⊢ swapRef (∗ref) t′2

{prim

– t1 = freezeRef
Therefore we induct on the second argument:
∗ t2 is a value which by the value and unique value lemmas has the form ∗ref , and thus
we can reduce:

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ freezeRef (∗ref) {𝑠 𝐻 ⊢ v {freezeRef

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ freezeRef t2 {𝑠 𝐻 ′ ⊢ freezeRef t′2

{prim

– t1 = readRef
Therefore we induct on the second argument:
∗ t2 is a value which by the value and unique value lemmas has the form ∗ref , and thus
we can reduce:

𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟+1) ⊢ readRef (∗ref) {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟) ⊢ (v, ∗ref) {readRef

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ readRef t2 {𝑠 𝐻 ′ ⊢ readRef t′2

{prim

– t1 = newArray therefore A = N
Therefore we induct on the second argument:
∗ t2 is a value and therefore by the value lemma (Lemma C.1) t2 = n and thus the typing
is:

Γ ⊢ n : N
Γ ⊢ newArray n : ∗(Array

id
F)TyDerivednewArray

with 𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ).
Thus there is a reduction as follows:

ref #𝐻 id#𝐻
𝐻 ⊢ newArray n {𝑠 𝐻, ref ↦→1id, id ↦→ init ⊢ pack ⟨id, ∗ref ⟩ {newArray

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:21

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ newArray t2 {𝑠 𝐻 ′ ⊢ newArray t′2

{prim

– t1 = readArray therefore A = &𝑝 (Arrayid F) ⊸ N ⊸ F ⊗ &𝑝 (Arrayid F)
∗ t2 is a value and therefore by the value lemma on &𝑝 (Arrayid F) (Lemma C.1) t2 = ∗a
and thus t1 t2 = readArray (∗a) which is also a value.

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ readArray t2 {𝑠 𝐻 ′ ⊢ readArray t′2

{prim

– t1 = readArray (∗a) therefore A = N ⊸ F ⊗ &𝑝 (Arrayid F)
∗ t2 is a value and therefore by the value lemma on Γ2 ⊢ t2 : N (Lemma C.1) implies t2 = n

and thus the typing is refined at runtime as follows:

[Γ1], a : Array
id
F ⊢ (∗a) : &𝑝 (Arrayid F)

nec
Γ2 ⊢ n : N

[Γ1] + Γ2, a : Array
id
F ⊢ readArray (∗a) n : F ⊗ &𝑝 (Arrayid F)

TyDerivedreadArray

with 𝐻 ′ ⊲⊳ Γ0 + 𝑠 · ([Γ1] + Γ2), a : Array
id
F, and by the heap compatibility rule for array

references there exists some 𝐻 such that 𝐻 ′ = 𝐻, a ↦→𝑝 id, id ↦→ arr.
Then there is a reduction as follows:

𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ readArray (∗ref) i {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ (v, ∗ref) {readArray

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ readArray (∗a) t2 {𝑠 𝐻 ′ ⊢ readArray (∗a) t′2

{prim

– t1 = writeArray therefore A = &1 (Arrayid F) ⊸ N ⊸ F ⊸ &1 (Arrayid F)
∗ t2 is a value therefore by the value lemma (Lemma C.1) t2 = (∗a) and thus t1 t2 =

writeArray (∗a) which is also a value.
∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ writeArray t2 {𝑠 𝐻 ′ ⊢ writeArray t′2

{prim

– t1 = writeArray (∗a) therefore A = N ⊸ F ⊸ &1 (Arrayid F)
∗ t2 is a value therefore by the value lemma (Lemma C.1) t2 = n and thus t1 t2 =

writeArray (∗a) n which is also a value.
∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ writeArray (∗a) t2 {𝑠 𝐻 ′ ⊢ writeArray (∗a) t′2

{prim

– t1 = writeArray (∗a) n therefore A = F ⊗ &1 (Arrayid F)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:22 Daniel Marshall and Dominic Orchard

∗ t2 is a value and therefore the value lemma on Γ2 ⊢ t2 : F (Lemma C.1) implies t2 = 𝑓

and thus the typing is refined at runtime as follows:

[Γ1], a : Array
id
F ⊢ a : (Array

id
F) ref

[Γ1], a : Array
id
F ⊢ ∗a : &1 (Arrayid F)

nec
Γ2 ⊢ n : N Γ3 ⊢ 𝑓 : F

[Γ1] + Γ2 + Γ3, a : Array
id
F ⊢ writeArray (∗a) n 𝑓 : &1 (Arrayid F)

TyDerivedwriteArray

with 𝐻 ′ ⊲⊳ (Γ0 + [Γ1] + Γ2 + Γ3, a : Array
id
F), and by the heap compatibility rule for

array references there exists some 𝐻 such that 𝐻 ′ = 𝐻, a ↦→𝑝 id, id ↦→ arr.
Then there is a reduction as follows:

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ writeArray (∗ref) i v {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ ∗ref {writeArray

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ writeArray (∗a) n t2 {𝑠 𝐻 ′ ⊢ writeArray (∗a) n t′2

{prim

– t1 = deleteArray therefore A = ∗(Array
id
F) ⊸ unit

∗ t2 is a value and therefore by the value lemma (Lemma C.1) t2 = ∗a thus the typing is
refined at runtime as follows:

[Γ], a : Array
id
F ⊢ a : (Array

id
F) ref

[Γ], a : Array
id
F ⊢ ∗a : ∗(Array

id
F)

nec

[Γ], a : Array
id
F ⊢ deleteArray ∗ a : unit

TyDeriveddeleteArray

with 𝐻 ′ ⊲⊳ (Γ0 + [Γ], a : Array
id
F), and by the heap compatibility rule for array

references there exists some 𝐻 such that 𝐻 ′ = 𝐻, a ↦→𝑝 id, id ↦→ arr.
There there is a reduction as follows:

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ deleteArray (∗ref) {𝑠 𝐻 ⊢ () {deleteArray

∗ t2 is not a value and thus has a reduction, therefore we can build the compound
reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ deleteArray t2 {𝑠 𝐻 ′ ⊢ deleteArray t′2

{prim

(2) Otherwise, by induction on the premise we then have that there exists heap 𝐻 ′, term t
′
1,

and context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t
′
1. Therefore we can reduce by the following

rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ t1 t2 {𝑠 𝐻 ′ ⊢ t′1 t2

{appL

• (pr)
Γ ⊢ t : A ¬resourceAllocator(t)

𝑟 · Γ ⊢ [t]𝑟 : □𝑟A
pr

with heap compatibility𝐻 ⊲⊳ Γ0+𝑠 ·(𝑟 ·Γ), which by associativity of ∗ is equal to𝐻 ⊲⊳ Γ0+(𝑠∗𝑟)·Γ.
Then, by induction on the premise (with 𝑠′ = 𝑠 ∗ 𝑟), there are two possibilities:

(1) If t is a value, say 𝑣 , then [t] is also a value, [v].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:23

(2) Otherwise, there exists 𝐻 ′ and t
′ such that 𝐻 ⊢ t {𝑠∗𝑟 𝐻 ′ ⊢ t′, from which we can then

reduce by the following rule:

𝐻 ⊢ t {𝑠∗𝑟 𝐻 ′ ⊢ t′

𝐻 ⊢ [t]𝑟 {𝑠 𝐻 ′ ⊢ [t′]𝑟
{□

• (elim)
Γ1 ⊢ t1 : □𝑟A Γ2, x : [A]𝑟 ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
elim

By induction on the first premise, there are two possibilities.
(1) t1 is a value and therefore by the value lemma t1 = [v]. This refines the typing as follows:

Γ1 ⊢ v : A
𝑟 · Γ1 ⊢ [v]𝑟 : □𝑟A

pr
Γ2, x : □𝑟A ⊢ t2 : B

𝑟 · Γ1 + Γ2 ⊢ let [x] = [v]𝑟 in t2 : B
elim

Therefore we can reduce by the following rule:

y#{𝐻, v, t}
𝐻 ⊢ let [x] = [v]𝑟 in t {𝑠 𝐻, y ↦→𝑠∗𝑟v ⊢ t [y/x]

{□𝛽

(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t
′
1 and

context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the following rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let [x] = t1 in t2 {𝑠 𝐻 ′ ⊢ let [x] = t

′
1 in t2

{let□

• (der)
Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
der

Goal achieved immediately by induction on the premise.
• (approx)

Γ, x : [A]𝑟 , Γ′ ⊢ t : B 𝑟 ⊑ 𝑠

Γ, x : [A]𝑠 , Γ′ ⊢ t : B
approx

Goal achieved immediately by induction on the premise.
• (pairIntro)

Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ (t1, t2) : A ⊗ B

⊗𝐼

By induction on the premises there are three possible cases.
(1) If both t1 and t2 are values then (t1, t2) is also a value.
(2) If only t1 is a value then by induction on the second premise we then have that there exists

heap 𝐻 ′, term t
′
2 and context Γ′ such that 𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2. Therefore we can reduce by

the following rule:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ (v, t2) {𝑠 𝐻 ′ ⊢ (v, t′2)

{⊗R

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:24 Daniel Marshall and Dominic Orchard

(3) If neither t1 nor t2 are values then by induction on the first premise we then have that
there exists heap 𝐻 ′, term t

′
1 and context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t

′
1. Therefore we

can reduce by the following rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ (t1, t2) {𝑠 𝐻 ′ ⊢ (t′1, t2)

{⊗L

• (pairElim)
Γ1 ⊢ t1 : A ⊗ B Γ2, x : A, y : B ⊢ t2 : C

Γ1 + Γ2 ⊢ let (𝑥,𝑦) = t1 in t2 : C
⊗𝐸

By induction on the first premise, there are two possibilities.
(1) t1 is a value and therefore by the value lemma t1 = (v1, v2). This refines the typing as

follows:

Γ1 ⊢ v1 : A Γ2 ⊢ v2 : B
Γ1 + Γ2 ⊢ (v1, v2) : A ⊗ B

⊗𝐼
Γ3, x : A, y : B ⊢ t2 : C

Γ1 + Γ2 + Γ3 ⊢ let (𝑥,𝑦) = (v1, v2) in t2 : C
⊗𝐸

Therefore, we can reduce by the following rule:

x
′#{𝐻, v1, v2, t} y

′#{𝐻, v1, v2, t}
𝐻 ⊢ let (𝑥,𝑦) = (v1, v2) in t {𝑠 𝐻, x′ ↦→𝑠v1, y′ ↦→𝑠v2 ⊢ t [y′/y] [x′/x]

{⊗𝛽

(2) Otherwise, by induction on the premise we then have that there exists heap 𝐻 ′, term t
′
1

and context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the following rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let (𝑥,𝑦) = t1 in t2 {𝑠 𝐻 ′ ⊢ let (𝑥,𝑦) = t

′
1 in t2

{let⊗

• (unitIntro)

0 · Γ ⊢ () : unit 1𝐼

A value.
• (unitElim)

Γ1 ⊢ t1 : unit Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ let () = t1 in t2 : B

1𝐸

By induction on the first premise, there are two possibilities.
(1) t is a value and therefore by the value lemma t = (). Therefore we can reduce by the

following rule:

𝐻 ⊢ let () = () in t {𝑠 𝐻 ⊢ t {𝛽unit

(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t
′
1 and

context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the following rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let () = t1 in t2 {𝑠 𝐻 ′ ⊢ let () = t

′
1 in t2

{letunit

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:25

• (returnGen)
Γ ⊢ t : ∗A

Γ ⊢ share t : □𝑟A
share

By induction on the premise, there are two possibilities.
(1) t is a value and therefore by the value lemma t = ∗v. Therefore we can reduce by the

following rule:

dom(𝐻) ≡ refs(v)
𝐻,𝐻 ′ ⊢ share (∗v) {𝑠 ([𝐻]0), 𝐻 ′ ⊢ [v] {share𝛽

(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t
′ and

context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following rule:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ share t {𝑠 𝐻 ′ ⊢ share t′ {share

• (bindGen)
Γ1 ⊢ t1 : □𝑟A Γ2, x : ∗A ⊢ t2 : □𝑟B 1 ⊑ 𝑟

Γ1 + Γ2 ⊢ clone’ t1 as x in t2 : □𝑟B
clone’

By induction on the first premise, there are two possibilities.
(1) t1 is a value and therefore by the value lemma t1 = [v]. This refines the typing as follows:

Γ1 ⊢ v : A
𝑟 · Γ1 ⊢ [v] : □𝑟A

pr
Γ2, x : ∗A ⊢ t2 : □𝑟B

𝑟 · Γ1 + Γ2 ⊢ clone [v] as x in t2 : □𝑟B
clone’

Therefore we can reduce using the following rule (with 𝑡 = t2):

dom(𝐻 ′) ≡ refs(v) (𝐻 ′′, 𝜃, id) = copy(𝐻 ′) y#{𝐻, v, t}

𝐻,𝐻 ′ ⊢ clone [v]𝑟 as x in t {𝑠 𝐻,𝐻 ′, 𝐻 ′′, y ↦→𝑠pack ⟨id, ∗(𝜃 (v))⟩ ⊢ t [y/x]
{clone𝛽

(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t
′
1 and

context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the following rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ clone t1 as x in t2 {𝑠 𝐻 ′ ⊢ clone t′1 as x in t2

{clone

• (withBorrow)
Γ1 ⊢ t1 : ∗A Γ2 ⊢ t2 : &1A ⊸ &1B

Γ1 + Γ2 ⊢ withBorrow t1 t2 : ∗B
with&

By induction on the first premise, there are two possibilities.
(1) t1 is a value and therefore by the value lemma t1 = (𝜆x .t). Then, again, we have two

possibilities:
– t2 is also a value, and therefore by the value lemma t2 = (∗v) for some 𝑣 . Then we can
reduce by the following rule:

y#{𝐻, v, t}
𝐻 ⊢ withBorrow (𝜆x .t) (∗v) {𝑠 𝐻, y ↦→𝑠 (∗v) ⊢ unborrow t [y/x] {with&

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:26 Daniel Marshall and Dominic Orchard

– t2 is not a value. Then, by induction on the premise we have that there exists heap 𝐻 ′,
term t

′
2 and context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t

′
2. Therefore we can reduce by the

following rule:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ withBorrow (𝜆x .t1) t2 {𝑠 𝐻 ′ ⊢ withBorrow (𝜆x .t1) t′2

{with&R

(2) t1 is not a value. Then, by induction on the premise we have that there exists heap 𝐻 ′, term
t
′
1 and context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the following
rule:

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ withBorrow t1 t2 {𝑠 𝐻 ′ ⊢ withBorrow t

′
1 t2
{with&L

• (split)
Γ ⊢ t : &𝑝A

Γ ⊢ split t : & 𝑝

2
A ⊗ & 𝑝

2
A

split

By induction on the premise, there are two cases.
(1) If t is a value, then by the value lemma and the unique value lemma there are three

possibilities for the form of t.
– t could have the form (∗ref). This refines the typing as follows:

[Γ], ref : Refid A ⊢ (∗ref) : &𝑝 (Refid A) ref + nec

[Γ], ref : Refid A ⊢ split (∗ref) : & 𝑝

2
(Refid A) ⊗ & 𝑝

2
(Refid A)

split

Then we can reduce by the following rule:

ref1#𝐻 ref2#𝐻
𝐻, ref ↦→𝑝 id, id ↦→ v ⊢ split (∗ref) {𝑠 𝐻, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id, id ↦→ v ⊢ (∗ref1, ∗ref2)

{splitRef

– t could have the form (∗a). This refines the typing as follows:

[Γ], a : Array
id
F ⊢ (∗a) : &𝑝 (Arrayid F) ref + nec

[Γ], a : Array
id
F ⊢ split (∗a) : & 𝑝

2
(Array

id
F) ⊗ & 𝑝

2
(Array

id
F)

split

Then we can reduce by the following rule:

a1#𝐻 a2#𝐻
𝐻, a ↦→𝑝 id, id ↦→ arr ⊢ split (∗a) {𝑠 𝐻, a1 ↦→ 𝑝

2
id, a2 ↦→ 𝑝

2
id, id ↦→ arr ⊢ (∗a1, ∗a2)

{splitArr

– t could have the form (∗(v,w)). There are two possible typings in this case:

𝛾1 ⊢ v1 : A′ 𝛾2 ⊢ v2 : B
𝛾1 + 𝛾2 ⊢ (v1, v2) : A′ ⊗ B

⊗𝐼

𝛾1 + 𝛾2 ⊢ ∗(v1, v2) : ∗(A′ ⊗ B)
nec

𝛾1 + 𝛾2 ⊢ split (∗(v1, v2)) : (& 1
2
(A′ ⊗ B) ⊗ & 1

2
(A′ ⊗ B))

split

In either instance, we can reduce by the following rule:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:27

𝐻 ⊢ split (∗v) {𝑠 𝐻 ′ ⊢ (∗v1, ∗v2)
𝐻 ′ ⊢ split (∗w) {𝑠 𝐻 ′′ ⊢ (∗w1, ∗w2)

𝐻 ⊢ split (∗(v,w)) {𝑠 𝐻 ′′ ⊢ (∗(v1,w1), ∗(v2,w2))
{split⊗

(2) If t is not a value, then by induction on the premise we have that there exists heap 𝐻 ′, term
t
′ and context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following
rule:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ split t {𝑠 𝐻 ′ ⊢ split t′ {split

• (join)
Γ1 ⊢ t1 : &𝑝A Γ2 ⊢ t2 : &𝑞A 𝑝 + 𝑞 ≤ 1

Γ1 + Γ2 ⊢ join t1 t2 : &𝑝+𝑞A
join

By induction on the first premise, there are two cases.
(1) If t1 is a value, then first we should consider whether t2 is also a value.

– If t2 is also a value, then by the value lemma and the unique value lemma there are three
possibilities for the form of t1.

(a) t1 could have the form (∗ref1). This refines the typing as follows:

[Γ], ref1 : Refid A ⊢ (∗ref1) : &𝑝 (Refid A) ref+nec [Γ], ref2 : Refid A ⊢ (∗ref2) : &𝑞 (Refid A) ref+nec
[Γ], ref1 : Refid A, ref2 : Refid A ⊢ join (∗ref1) (∗ref2) : &𝑝+𝑞 (Refid A)

join

Note that the typing in this case restricts t2 to also have the form ∗ref2. Then we can
reduce by the following rule:

ref #𝐻
𝐻, ref1 ↦→𝑝 id, ref2 ↦→𝑞id, id ↦→ v ⊢ join (∗ref1) (∗ref2) {𝑠 𝐻, ref ↦→(𝑝+𝑞) id, id ↦→ v ⊢ ∗ref {joinRef

(b) t1 could have the form (∗a1). This refines the typing as follows:

[Γ], a1 : Arrayid F ⊢ (∗a1) : &𝑝 (Arrayid F) ref+nec [Γ], a2 : Arrayid F ⊢ (∗a2) : &𝑞 (Arrayid F) ref+nec
[Γ], a1 : Arrayid F, a2 : Arrayid F ⊢ join (∗a1) (∗a2) : &𝑝+𝑞 (Arrayid F)

join

Note that the typing in this case restricts t2 to also have the form ∗a2. Then we can
reduce by the following rule:

a#𝐻
𝐻, a1 ↦→𝑝 id, a2 ↦→𝑞id, id ↦→ arr ⊢ join ∗ a1 ∗ a2 {𝑠 𝐻, a ↦→(𝑝+𝑞) id, id ↦→ arr ⊢ ∗a {joinArr

(c) t1 could have the form (∗(v1,w1)). There are two possible typings in this case:

𝛾1 ⊢ v1 : A′ 𝛾2 ⊢ w1 : B
𝛾1 + 𝛾2 ⊢ (v1,w1) : A′ ⊗ B

⊗𝐼

𝛾1 + 𝛾2 ⊢ ∗(v1,w1) : ∗(A′ ⊗ B)
nec

join

𝛾3 ⊢ v2 : A′ 𝛾4 ⊢ w2 : B
𝛾3 + 𝛾4 ⊢ (v2,w2) : A′ ⊗ B

⊗𝐼

𝛾3 + 𝛾4 ⊢ ∗(v2,w2) : ∗(A′ ⊗ B)
nec

𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 ⊢ join (∗(v1,w1)) (∗(v2,w2)) : &𝑝+𝑞 (A′ ⊗ B)
Note that the typing in both situations restricts t2 to also have the form (∗(v2,w2)). In
either instance we can reduce by the following rule:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:28 Daniel Marshall and Dominic Orchard

𝐻 ⊢ join (∗v1) (∗v2) {𝑠 𝐻 ′ ⊢ ∗v
𝐻 ′ ⊢ join (∗w1) (∗w2) {𝑠 𝐻 ′′ ⊢ ∗w

𝐻 ⊢ join (∗(v1,w1)) (∗(v2,w2)) {𝑠 𝐻 ′′ ⊢ ∗(v,w) {join⊗

– If t2 is not a value, then by induction on the second premise we have that there exists
heap 𝐻 ′, term t

′
2 and context Γ′ such that 𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2. Therefore we can reduce

by the following rule:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ join v t2 {𝑠 𝐻 ′ ⊢ join v t

′
2
{joinR

(2) If t1 is not a value, then by induction on the second premise we have that there exists heap
𝐻 ′, term t

′
1 and context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the

following rule:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ join v t2 {𝑠 𝐻 ′ ⊢ join v t

′
2
{joinR

• (nec)
𝛾 ⊢ t : A ¬resourceAllocator(t)

0 · Γ, 𝛾 ⊢ ∗t : ∗A nec

By induction on the premise, there are two possibilities.
(1) If t is a value, then ∗t is also a value.
(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t

′ and
context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following rule:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ ∗t {𝑠 𝐻 ′ ⊢ ∗t′ {∗

• (push)
Γ ⊢ t : &𝑝 (A ⊗ B)

Γ ⊢ push t : (&𝑝A) ⊗ (&𝑝B)
push

By induction on the premise, there are two possibilities.
(1) If t is a value, then by the value lemma and the unique value lemma there are two possibilities

for the form of 𝑡 .
– t could have the form ∗(v1, v2). Then we can reduce by the following rule:

𝐻 ⊢ push (∗(v1, v2)) {𝑠 𝐻 ⊢ (∗v1, ∗v2)
{push∗

(2) If t is not a value, by induction on the premise we then have that there exists heap 𝐻 ′, term
t
′ and context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following
rule:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ push t {𝑠 𝐻 ′ ⊢ push t′ {push

• (pull)
Γ ⊢ t : (&𝑝A) ⊗ (&𝑝B)
Γ ⊢ pull t : &𝑝 (A ⊗ B) pull

By induction on the premise, there are two possibilities.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:29

(1) If t is a value, then by the value lemma and the unique value lemma there are two possibilities
for the form of 𝑡 .
– t could have the form (∗v1, ∗v2). Then we can reduce by the following rule:

𝐻 ⊢ pull (∗v1, ∗v2) {𝑠 𝐻 ⊢ ∗(v1, v2)
{pull∗

(2) If t is not a value, by induction on the premise we then have that there exists heap 𝐻 ′, term
t
′ and context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following
rule:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ pull t {𝑠 𝐻 ′ ⊢ pull t′ {pull

• (ref)

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

A value.
• (array)

0 · Γ, ref : Resid A ⊢ ref : Resid A
ref

A value.
• (unborrow)

Γ ⊢ t : &1A

Γ ⊢ unborrow t : ∗A unborrow

By induction on the premise, there are two possibilities.
(1) t is a value, and therefore by the value lemma t = (∗v) for some value 𝑣 . Then we can

reduce by the following rule:

𝐻 ⊢ unborrow (∗v) {𝑠 𝐻 ⊢ ∗v {un&

(2) t is not a value. By induction on the premise we then have that there exists heap 𝐻 ′, term
t
′ and context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following
rule:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ unborrow t {𝑠 𝐻 ′ ⊢ unborrow t
′ {unborrow

• (pack)
Γ ⊢ t : A id ∉ dom(Γ)

Γ ⊢ pack ⟨id′, t⟩ : ∃id .A[id/id′] pack

By induction on the premise, there are two possibilities.
(1) If t is a value, then pack ⟨id′, t⟩ is also a value.
(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t

′ and
context Γ′ such that 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′. Therefore we can reduce by the following rule:

𝐻 ⊢ t {𝑠 𝐻 ⊢ t′

𝐻 ⊢ pack ⟨id, t⟩ {𝑠 𝐻 ⊢ pack ⟨id, t′⟩ {pack

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:30 Daniel Marshall and Dominic Orchard

• (unpack)
Γ1 ⊢ t1 : ∃id .A
Γ2, id, x : A ⊢ t2 : B id ∉ fv(B)

Γ1 + Γ2 ⊢ unpack ⟨id, x⟩ = t1 in t2 : B
unpack

By induction on the premise, there are two possibilities.
(1) If t1 is a value, then by the value lemma it has the form pack ⟨id′, v⟩ for some value 𝑣 .

Then we can reduce by the following rule:

y#{𝐻, v, t}
𝐻 ⊢ unpack ⟨id, x⟩ = pack ⟨id′, v⟩ in t {𝑠 𝐻, y ↦→𝑟v ⊢ t [y/x] {∃𝛽

(2) Otherwise by induction on the premise we then have that there exists heap 𝐻 ′, term t
′
1 and

context Γ′ such that 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1. Therefore we can reduce by the following rule:

𝐻 ⊢ t1 {𝑠 𝐻 ⊢ t′1
𝐻 ⊢ unpack ⟨id, x⟩ = t1 in t2 {𝑠 𝐻 ⊢ unpack ⟨id, x⟩ = t

′
1 in t2

{unpack

□

C.2 Type preservation proof
Lemma C.5 (Admissibility of weakening).

Γ ⊢ t : A =⇒ (0 · Γ′), Γ ⊢ t : A

Proof. By induction on the structure of typing and since all ‘leaf’ nodes of a typing derivation
permit weakening (e.g., var rule, primitive rules). □

Lemma C.6 (Renaming array refs). Given an array reference renaming 𝜃 (generated from a clone)

then Γ ⊢ t : A =⇒ 𝜃 (Γ) ⊢ 𝜃 (t) : A.

Proof. By trivial induction, with the only action happening in the use of the ref runtime typing
rule for array references, in which case this acts just like alpha renaming via 𝜃 . □

Theorem C.7 (Type Preservation). For a well-typed term Γ ⊢ t : A, under a restriction that

polymorphic reference resources are restricted to non-function types, and for all 𝑠 , Γ0, and 𝐻 such that

𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ) and a reduction 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′, then we have:

∃Γ′, 𝐻 ′ . Γ′ ⊢ t′ : A ∧ 𝐻 ′ ⊲⊳ (Γ0 + 𝑠 · Γ′)

Note the caveat to preservation: references Refid A are restricted such thatA cannot be of function
type, or some other composite type involving functions. The restriction is needed for preservation
since it works at the granularity of a single reduction, and so cannot rule out the possibility that a
reference is storing a 𝜆 term with free variables. This considerably complicates reasoning about
resources and heaps, so we rule it out for this theorem. Importantly, this is not a restriction that
needs to be made on the calculus and its implementation as a whole: for deterministic CBV reduction
starting from a closed term (i.e., a complete program) then all 𝛽-redexes are on closed values and
hence this problem does not exist in the context of an overall reduction sequence. However, to
make preservation work for a single reduction, on potentially open terms, this minor restriction is
needed locally. This does not affect any of the examples discussed in the paper.

Proof. By induction on the structure of typing and reductions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:31

• (var)

0 · Γ, x : A ⊢ x : A
var

and one possible reduction:

∃𝑟 ′ . 𝑠 + 𝑟 ′ ⊑ 𝑟

𝐻, x ↦→𝑟v ⊢ x {𝑠 𝐻, x ↦→𝑟v ⊢ v {var

with incoming heap compatibility:

(𝐻, x ↦→𝑟v) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ, x : A))

with derivation:

𝐻 ⊲⊳ (Γ0 + 𝑠 ∗ 0 · Γ + 𝑠 · Γ′) x ∉ dom(𝐻) Γ′ ⊢ v : A ∃𝑟 ′′ . 𝑠 + 𝑟 ′′ ≡ 𝑟

(𝐻, x ↦→𝑟v) ⊲⊳ (Γ0 + 𝑠 ∗ 0 · Γ, x : [A]𝑠)
ext

Goal 1:

∃Γ′′ . Γ′′ ⊢ v : A

Which is provided by the third premise of the head compatibility derivation here, but with
weakening (Lemma C.5) such that we have:

Γ′ ⊢ v : A
0 · Γ, Γ′, x : [A]0 ⊢ v : A

Lemma C.5

Goal 2

(𝐻, x ↦→𝑟v) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ, Γ′, x : [A]0))

given by the following derivation from the premise of the incoming heap compatibility:

𝐻 ⊲⊳ (Γ0 + 𝑠 ∗ 0 · Γ + 𝑠 · Γ′)
𝐻 ⊲⊳ ((Γ0 + 𝑠 ∗ 0 · Γ + 𝑠 · Γ′) + 0 · Γ′) 0 unitality x ∉ dom(𝐻) Γ′ ⊢ v : A ∃𝑟 ′′′ . 0 + 𝑟 ′′′ ≡ 𝑟

𝐻, x ↦→𝑟v ⊲⊳ ((Γ0 + 𝑠 ∗ 0 · Γ + 𝑠 · Γ′), x : [A]0)
ext

where the premise ∃𝑟 ′′′′ . 0 + 𝑟 ′′′ ≡ 𝑟 is fulfilled by 𝑟 ′′′ = 𝑟 by unitality and since 0 ∗ 𝑠 = 0.

• (abs)

Γ, x : A ⊢ t : B
Γ ⊢ 𝜆x .t : A ⊸ B

abs

Has no reduction so the case is trivial here.
• (app)

Γ1 ⊢ t1 : A ⊸ B Γ2 ⊢ t2 : A
Γ1 + Γ2 ⊢ t1 t2 : B

app

with incoming heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2).
There are four possible general reductions (and then further reductions for the operation of
primitives, separated our below).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:32 Daniel Marshall and Dominic Orchard

General reductions (app).

(1) (beta)
y#{𝐻, v, t}

𝐻 ⊢ (𝜆x .t) v {𝑠 𝐻, y ↦→𝑠v ⊢ t [y/x] {𝛽

i.e. t1 = (𝜆x .t) v with the refined typing (where Γ = Γ2):

Γ1, x : A ⊢ t : B
Γ1 ⊢ 𝜆x .t : A ⊸ B

abs
Γ2 ⊢ v : A

Γ1 + Γ2 ⊢ (𝜆x .t) v : B
app

Therefore the resulting typing judgment is (goal) Γ1, x : A ⊢ t : B given by the first premise
here.
The goal heap compatibility is: (goal 2) (𝐻, x ↦→1v) ⊲⊳ (Γ0 + 𝑠 · (Γ1, x : A))
We construct the goal compatibility judgment as follows, using the incoming compatibility
assumption:

𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ1 + 𝑠 · Γ2) x ∉ dom(𝐻) Γ2 ⊢ v : A ∃𝑟 ′ . 𝑠 + 𝑟 ′ ≡ 1
𝐻, x ↦→1v ⊲⊳ (Γ0 + 𝑠 · Γ1), x : [A]𝑠

ext

where 𝑟 ′ = 0 here.
(2) (appL)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ t1 t2 {𝑠 𝐻 ′ ⊢ t′1 t2

{appL

with incoming heap compatibility 𝐻 ⊲⊳ (Γ′0 + 𝑠 · (Γ1 + Γ2)).
Applying induction on the premise reductionwith heap compatibility given by the incoming
heap compatibility but with Γ0 = Γ′0 + 𝑠 · Γ2 then yields:

(a) ∃Γ′1 . Γ′1 ⊢ t′1 : A ⊸ B

(b) 𝐻 ′ ⊲⊳ (Γ′0 + 𝑠 · Γ2 + 𝑠 · Γ′1)
(Goal 1) is then given by the reconstructed application type Γ′1 + Γ2 ⊢ t′1 t2 : B
(Goal 2) is 𝐻 ′ ⊲⊳ (Γ′0 + 𝑠 · (Γ′1 + Γ2)) which is given by the second conjunct above by
commutativity of + and distributivity of ∗ over +.

(3) (appR)
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ v t2 {𝑠 𝐻 ′ ⊢ v t′2
{appR

Same as (appL) but by induction on the premise with t2.
(4) (prim)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ pr t {𝑠 𝐻 ′ ⊢ pr t′ {prim

Same as (appL) but by induction on the premise with t.

Primitives (app).

(1) (newRef)
ref #𝐻 id#𝐻

𝐻 ⊢ newRef v {𝑠 𝐻, ref ↦→1id, id ↦→ ref (v) ⊢ pack ⟨id, ∗ref ⟩ {newRef

Thus typing refines to:

0 · Γ1 ⊢ newRef : A ⊸ ∃id .∗(Refid A) Γ2 ⊢ v : A
0 · Γ1 + Γ2 ⊢ newRef v : ∃id .∗(Refid A)

app

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:33

with incoming heap compatibility𝐻 ⊲⊳ Γ0+𝑠 · (0·Γ1+Γ2) which is equal to𝐻 ⊲⊳ Γ0+0·Γ1+𝑠 ·Γ2
by distributivity of ∗ over + and absorption.
By the closed value lemma (Lemma C.2) then Γ2 = 𝛾 and thus 𝑠 · 𝛾 = 𝛾 since multiplication
has no effect on runtime reference type assumptions, therefore incoming heap compatibility
is 𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 𝛾 .
Goal 1 (typing) is thus given by:

0 · Γ1, ref : Refid A ⊢ ∗ref : ∗(Refid A)
∗ref*

0 · Γ1, ref : Refid A ⊢ pack ⟨id, ∗ref ⟩ : ∃id .Refid A
pack

i.e., we set Γ′ = 0 · Γ1, ref : Refid A (which notably has runtime typing of ref).
Goal 2 (compatibility) is (𝐻, ref ↦→1id, id ↦→ v) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ1, ref : Refid A)) which is
equal to: (𝐻, ref ↦→1id, id ↦→ v) ⊲⊳ (Γ0 + 0 · Γ1, ref : Refid A)
We construct this goal as follows (leveraging distributivity of · over +):

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 𝛾
𝛾 ⊢ v : A

𝛾 ⊢ ref (v) : Refid A
refStore

𝐻, ref ↦→1id, id ↦→ ref (v) ⊲⊳ (Γ0 + 0 · Γ1, ref : Refid A)
extRes

(2) (swapRef)

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ swapRef (∗ref) v′ {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref (v′) ⊢ v {swapRef

Thus typing refines to

0 · Γ1 ⊢ swapRef : &𝑝 (Refid A) ⊸ A ⊸ A ⊗ &𝑝 (Refid A)
0 · Γ2, ref : Refid A ⊢ ∗ref : ∗(Refid A) Γ3 ⊢ v′ : A

0 · Γ1 + 0 · Γ2 + Γ3, ref : Refid A ⊢ swapRef (∗ref) v′ : A ⊗ &𝑝 (Refid A)
app×2

i.e. where 𝑝 = ∗.
By the closed value lemma (Lemma C.2) then Γ3 = 𝛾 ′ and thus 𝑠 ·𝛾 ′ = 𝛾 ′ since multiplication
has no effect on runtime reference type assumptions, therefore incoming heap compatibility
is:

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 𝛾 + 𝛾 ′
𝛾 ⊢ v : A

𝛾 ⊢ ref (v) : Refid A
refStore

(𝐻, ref ↦→𝑝 id, id ↦→ ref (v)) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2 + 𝛾 ′, ref : Refid A))
extRes

Goal 1 (typing) is thus given directly by the heap compatibility’s second premise: 𝛾 ⊢ v : A
Goal 2 (heap compatibility) is

(𝐻, ref ↦→𝑝 id, id ↦→ ref (v′)) ⊲⊳ (Γ0 + 𝑠 · 𝛾, ref : Refid A)

By absorption then the premise of incoming heap compatibility𝐻 ⊲⊳ Γ0 +0 · Γ1 +0 · Γ2 +𝛾 +𝛾 ′
is equal to: 𝐻 ⊲⊳ Γ0 + 𝛾 + 𝛾 ′, and since 𝑠 · 𝛾 = 𝛾 then we can provide this goal by:

𝐻 ⊲⊳ Γ0 + 𝑠 · 𝛾 + 𝛾 ′
𝛾 ′ ⊢ v : A

𝛾 ′ ⊢ ref (v′) : Refid A
refStore

(𝐻, ref ↦→𝑝 id, id ↦→ ref (v′)) ⊲⊳ (Γ0 + 𝑠 · (𝛾, ref : Refid A))
extRes

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:34 Daniel Marshall and Dominic Orchard

(3) (freezeRef)

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ freezeRef (∗ref) {𝑠 𝐻 ⊢ v {freezeRef

Thus typing refines to

0 · Γ1 ⊢ freezeRef : ∀ id .∗(Refid A) ⊸ A 0 · Γ2, ref : Refid A ⊢ ∗ref : ∗(Refid A)
0 · Γ1 + 0 · Γ2, ref : Refid A ⊢ freezeRef (∗ref) : A

app

and we have incoming heap compatibility:

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 𝛾
𝛾 ⊢ v : A

𝛾 ⊢ ref (v) : Refid A
refStore

(𝐻, a ↦→𝑝 id, id ↦→ v) ⊲⊳ (Γ0 + 0 · Γ1 + 0 · Γ2, ref : Refid A)
extRes

Goal 1 (typing) is thus given directly by the second premise of heap compatibility: 𝛾 ⊢ v : A
Goal 2 (heap compatibility) is then 𝐻 ⊲⊳ (Γ0 + 𝑠 · 𝛾) given by the premise of incoming heap
compatibility since Γ0 + 0 · Γ1 + 0 · Γ2 = Γ0 and 𝑠 · 𝛾 = 𝛾 :

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 𝛾
≡ 𝐻 ⊲⊳ Γ0 + 𝑠 · 𝛾

(4) (readRef)

𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟+1) ⊢ readRef (∗ref) {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟) ⊢ (v, ∗ref) {readRef

Thus typing refines to

0 · Γ1 ⊢ readRef : &𝑝 (Refid □𝑟+1A) ⊸ A ⊗ &𝑝 (Refid □𝑟A)
0 · Γ2, ref : Refid □𝑟+1A ⊢ ∗ref : ∗(Refid □𝑟+1A)

0 · Γ1 + 0 · Γ2, ref : Refid A ⊢ readRef (∗ref) : A ⊗ &𝑝 (Refid □𝑟A)
app

i.e. where 𝑝 = ∗ and we have incoming heap compatibility:

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 𝛾

𝛾 ⊢ v : A
𝛾 ⊢ [v]𝑟+1 : □𝑟+1A

pr

𝛾 ⊢ ref ([v]𝑟+1) : Refid (□𝑟+1A)
refStore

(𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟+1)) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2, ref : Refid A))
extRes

where recall 𝑟 + 1 · 𝛾 = 𝛾 and thus compatibility is which is equal to (𝐻, ref ↦→𝑝 id, id ↦→
ref ([v]𝑟+1)) ⊲⊳ (Γ0 + 0 · Γ1 + 0 · Γ2, ref : Refid A) by absorption.
Goal 1 (typing) is thus given by:

𝛾 ⊢ v : A 0 · Γ2, ref : Refid □𝑟A ⊢ ∗ref : ∗(Refid □𝑟A)
𝛾 + 0 · Γ2, ref : Refid A ⊢ (v, ∗ref) : A ⊗ &𝑝 (Refid □𝑟A)

⊗𝐼

Goal 2 (heap compatibility) is

(𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟)) ⊲⊳ (Γ0 + 0 · (Γ1 + Γ2), ref : Refid A)

which is provided exactly by the incoming heap compatibility but re-deriving promotion
at the grade 𝑟 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:35

(5) (newArray)

ref #𝐻 id#𝐻
𝐻 ⊢ newArray n {𝑠 𝐻, ref ↦→1id, id ↦→ init ⊢ pack ⟨id, ∗ref ⟩ {newArray

Thus typing refines to:

0 · Γ1 ⊢ newArray : N ⊸ ∃id .∗(Array
id
F) 0 · Γ2 ⊢ n : N

0 · Γ1 + 0 · Γ2 ⊢ newArray n : ∃id .∗(Array
id
F)

app

with incoming heap compatibility𝐻 ⊲⊳ Γ0+𝑠 ·(0·Γ1+0·Γ2) which is equal to𝐻 ⊲⊳ Γ0+0·Γ1+0·Γ2
by distributivity of ∗ over + and absorption.
Goal 1 (typing) is thus given by:

0 · (Γ1 + Γ2), a : Array
id
F ⊢ ∗a : ∗(Array

id
F)

∗ref*

0 · (Γ1 + Γ2), a : Array
id
A ⊢ pack ⟨id, ∗a⟩ : ∃id .Array

id
F

pack

i.e., we set Γ′ = 0 · (Γ1 + Γ2), a : Array
id
A (which notably has runtime typing of a).

Goal 2 (compatibility) is (𝐻, a ↦→1id, id ↦→ init) ⊲⊳ (Γ0 + 𝑠 · (0 · (Γ1 + Γ2), a : Array
id
A))

We construct this goal as follows (leveraging distributivity of · over + and absorption and
since 𝑠 · 𝛾 = 𝛾):

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 ∅ ⊢ init : Array
id
F

arrayInit

𝐻, a ↦→1id, id ↦→ init ⊲⊳ (Γ0 + 0 · (Γ1 + Γ2), a : Array
id
A)

extRes

(6) (readArray)

𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ readArray (∗ref) i {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ (v, ∗ref) {readArray

Thus typing refines to

0 · Γ1 ⊢ readArray : &𝑝 (Arrayid F) ⊸ N ⊸ F ⊗ &𝑝 (Arrayid F)
0 · Γ2, a : Array

id
F ⊢ ∗a : ∗(Array

id
A) 0 · Γ3 ⊢ i : N

0 · Γ1 + 0 · Γ2 + 0 · Γ3, a : Array
id
F ⊢ readArray (∗a) i : F ⊗ &𝑝 (Arrayid F)

app×2

i.e. where 𝑝 = ∗ and we have incoming heap compatibility (simplified below by absorption
since (Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2 + 0 · Γ3, a : Array

id
F)) = (Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3, a : Array

id
F)):

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3
∅ ⊢ arr : Array

id
F ∅ ⊢ v : F

∅ ⊢ arr[i] = v : Array
id
F

arrayAt

(𝐻, a ↦→𝑝 id, id ↦→ arr[i] = v) ⊲⊳ (Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3, a : Array
id
F)

extRes

Goal 1 (typing) is thus given by:

∅ ⊢ v : F 0 · (Γ1 + Γ2 + Γ3), a : Array
id
F ⊢ ∗a : &𝑝 (Arrayid F)

0 · (Γ1 + Γ2 + Γ3), a : Array
id
F ⊢ (v, ∗a) : F ⊗ &𝑝 (Arrayid F)

⊗𝐼

i.e. Γ′ = 0 · (Γ1 + Γ2 + Γ3), a : Array
id
F.

Goal 2 (heap compatibility) is

(𝐻, a ↦→𝑝 id, id ↦→ arr[i] = v) ⊲⊳ (Γ0 + 𝑠 · 0 · (Γ1 + Γ2 + Γ3), a : Array
id
F)

which is provided exactly by the incoming heap compatibility.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:36 Daniel Marshall and Dominic Orchard

(7) (writeArray)

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ writeArray (∗ref) i v {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ ∗ref {writeArray

Thus typing refines to
0 · Γ1 ⊢ writeArray : &𝑝 (Arrayid F) ⊸ N ⊸ F ⊗ &𝑝 (Arrayid F)

0 · Γ2, a : Array
id
F ⊢ ∗a : &𝑝 (Arrayid A) 0 · Γ3 ⊢ n : N 0 · Γ4 ⊢ v : F

0 · Γ1 + 0 · Γ2 + 0 · Γ3 + 0 · Γ4, a : Array
id
F ⊢ writeArray (∗a) n v : &𝑝 (Arrayid F)

app×3

and we have incoming heap compatibility (simplified by absorption as : (Γ0 + 0 · Γ1 + 0 ·
Γ2 + 0 · Γ3 + 0 · Γ4, a : Array

id
F) = (Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2 + 0 · Γ3 + 0 · Γ4, a : Array

id
F))):

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3 + 0 · Γ4 ∅ ⊢ arr : Array
id
F

(𝐻, a ↦→𝑝 id, id ↦→ arr) ⊲⊳ (Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3 + 0 · Γ4, a : Array
id
F)

extRes

Goal 1 (typing) is thus given by:
0 · Γ2, a : Array

id
F ⊢ (∗a) : &𝑝 (Arrayid A)

0 · (Γ1 + Γ2 + Γ3), a : Array
id
F ⊢ (∗a) : &𝑝 (Arrayid F)

Lemma C.5

i.e. Γ′ = 0 · (Γ1 + Γ2 + Γ3), a : Array
id
F and where we can strengthen 0 · Γ4 ⊢ v : F to ∅ ⊢ v : F

by inversion on float values.
Goal 2 (heap compatibility) is

(𝐻, a ↦→𝑝 id, id ↦→ arr[i] = v) ⊲⊳ (Γ0 + 𝑠 · 0 · (Γ1 + Γ2 + Γ3), a : Array
id
F)

which is provided exactly by the incoming heap compatibility:

𝐻 ⊲⊳ Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3 + 0 · Γ4
∅ ⊢ arr : Array

id
F ∅ ⊢ v : F

∅ ⊢ arr[i] = v : Array
id
F

arrayAt

(𝐻, a ↦→𝑝 id, id ↦→ arr) ⊲⊳ (Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3, a : Array
id
F)

extRes

where (Γ0 + 𝑠 · 0 · (Γ1 + Γ2 + Γ3), a : Array
id
F) = (Γ0 + 0 · Γ1 + 0 · Γ2 + 0 · Γ3, a : Array

id
F).

(8) (deleteArray)

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ deleteArray (∗ref) {𝑠 𝐻 ⊢ () {deleteArray

Thus typing refines to
0 · Γ1 ⊢ deleteArray : ∀ id .∗(Array

id
F) ⊸ unit

0 · Γ2, a : Array
id
F ⊢ ∗a : ∗(Array

id
A)

0 · Γ1 + 0 · Γ2, a : Array
id
F ⊢ deleteArray (∗a) : unit

app

and we have incoming heap compatibility:
𝐻 ⊲⊳ Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2) ∅ ⊢ arr : Array

id
F

(𝐻, a ↦→𝑝 id, id ↦→ arr) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2), a : Array
id
F)

extRes

Goal 1 (typing) is thus given by:

0 · (Γ1 + Γ2) ⊢ () : unit
1𝐼

with Γ′ = 0 · (Γ1 + Γ2)
Goal 2 (heap compatibility) is 𝐻 ⊲⊳ (Γ0 + 𝑠 ∗ 0 · (Γ1 + Γ2)) given by the premise of incoming
heap compatibility.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:37

• (boxElim)

Γ1 ⊢ t1 : □𝑟A Γ2, x : [A]𝑟 ⊢ t2 : B
Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B

elim

And two possible reductions:
(1) (betaBoxElim)

y#{𝐻, v, t}
𝐻 ⊢ let [x] = [v]𝑟 in t {𝑠 𝐻, y ↦→(𝑠∗𝑟)v ⊢ t [y/x] {□𝛽

refining the typing to:

[Γ′1] ⊢ v : A
𝑟 · Γ′1 ⊢ [v]𝑟 : □𝑟A

pr
Γ2, x : [A]𝑟 ⊢ t : B

𝑟 · Γ′1 + Γ2 ⊢ let [x] = [v]𝑟 in t : B
elim

with incoming heap compatibility:

𝐻 ⊲⊳ Γ0 + 𝑠 · (𝑟 · Γ′1 + Γ2)
Goal 1: typing Provided by the premise here as:

Γ2, x : [A]𝑟 ⊢ t : A
under renaming to:

Γ2, y : [A]𝑟 ⊢ t [y/x] : A
i.e., we set the goal Γ′ = Γ2, y : [A]𝑟 .
Goal 2: heap compatibility is (𝐻, y ↦→𝑠∗𝑟v) ⊲⊳ (Γ0 + 𝑠 · (Γ2, y : [A]𝑟)) which refines to:
(𝐻, y ↦→𝑠∗𝑟v) ⊲⊳ (Γ0 + 𝑠 · Γ2), y : [A]𝑠∗𝑟 by the disjointness of 𝑥
We construct this goal via the premise heap compatibility by

𝐻 ⊲⊳ Γ0 + 𝑠 ∗ 𝑟 · Γ′1 + 𝑠 · Γ2
(𝐻, y ↦→𝑠∗𝑟v) ⊲⊳ (Γ0 + 𝑠 · Γ2), y : [A]𝑠∗𝑟

ext

(2) (congBoxElim)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let [x] = t1 in t2 {𝑠 𝐻 ′ ⊢ let [x] = t

′
1 in t2

{let□

with incoming heap compatibility:

𝐻 ⊲⊳ Γ′0 + Γ1 + Γ2

Applying induction on the premise reductionwith heap compatibility given by the incoming
heap compatibility but with Γ0 = Γ′0 + Γ2 then yields:

(a) ∃Γ′1 . Γ′1 ⊢ t′1 : □𝑟A
(b) 𝐻 ′ ⊲⊳ (Γ′0 + 𝑠 · Γ2 + 𝑠 · Γ′1)
(Goal 1) is then given by the reconstructed application type Γ′1 + Γ2 ⊢ let [x] = t

′
1 in t2 : B

(Goal 2) is 𝐻 ′ ⊲⊳ (Γ′0 + 𝑠 · (Γ′1 + Γ2)) which is given by the second conjunct above by
commutativity of + and distributivity of ∗ over +.

• (boxIntro)

Γ ⊢ t : A ¬resourceAllocator(t)
𝑟 · Γ ⊢ [t]𝑟 : □𝑟A

pr

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:38 Daniel Marshall and Dominic Orchard

and one possible reduction

𝐻 ⊢ t {𝑠∗𝑟 𝐻 ′ ⊢ t′

𝐻 ⊢ [t]𝑟 {𝑠 𝐻 ′ ⊢ [t′]𝑟
{□

Aside: Here we see the need for the Church-style graded annotation here in the term as
otherwise we could have a reduction derivation that uses a different grade in its premise:

𝐻 ⊢ t {𝑠∗𝑟 ′ 𝐻 ′ ⊢ t′

𝐻 ⊢ [t] {𝑠 𝐻 ′ ⊢ [t′]
{□-alternate-nonChurch

In which case we could not induct on the first premise as we would not have the required
heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠′ ∗ 𝑟 ′ · Γ. Thus this motivates the need for the Church style
typing here.
Thus, instead we have the incoming heap compatibility:

𝐻 ⊲⊳ Γ′0 + 𝑠′ ∗ 𝑟 · Γ
Applying induction on the premise reduction with Γ0 = Γ′0 and 𝑠 = 𝑠′ ∗ 𝑟 then yields:

(1) ∃Γ′1 . Γ′1 ⊢ t′1 : A
(2) 𝐻 ′ ⊲⊳ (Γ′0 + (𝑠′ ∗ 𝑟) · Γ′1)
(Goal 1) is then given by the reconstructed application type 𝑟 · Γ′1 ⊢ [t′1] : □𝑟A

Γ′1 ⊢ t′1 : A
𝑟 · Γ′1 ⊢ [t′1] : □𝑟A

{□

(Goal 2) is𝐻 ′ ⊲⊳ (Γ′0 +𝑠′ ∗𝑟 ·Γ′1) which is given by the second conjunct above by commutativity
of + and associativity of ∗.

• (der)
Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
der

with incoming heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ, x : [A]1) which refines to 𝐻 ⊲⊳ Γ0 + 𝑠 ·
Γ, x : [A]𝑠 and a reduction:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

Induction requires 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ, x : A) which by the definition of scalar multiplication is
just 𝐻 ⊲⊳ Γ0 + 𝑠 · Γ, x : [A]𝑠 , thus we can apply induction and get the result of Γ′ ⊢ t′ : B and
𝐻 ′ ⊲⊳ Γ0 + 𝑠 · Γ′1 satisfying the goal here.

• (tensorIntro)
Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ (t1, t2) : A ⊗ B

⊗𝐼

with incoming heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2).
And two possible reductions:

(1) (congPairL)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ (t1, t2) {𝑠 𝐻 ′ ⊢ (t′1, t2)

{⊗L

By induction on the premise with Γ′0 = Γ0 + 𝑠 · Γ2 then we have: (i) Γ′1 ⊢ t
′
1 : A and (ii)

𝐻 ′ ⊲⊳ Γ0 + 𝑠 · Γ2 + 𝑠 · Γ′1 . From which we construct the resulting typing, via applying ⊗𝐼 again
to get Γ′1 + Γ2 ⊢ (t′1, t2) : A ⊗ B and with (ii) providing the required heap compatibility (by
commutativity of +).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:39

(2) (congPairR)

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ (v, t2) {𝑠 𝐻 ′ ⊢ (v, t′2)

{⊗R

Essentially the same as the preceding case (congPairL) but by induction on the second
premise.

• (tensorElim)

Γ1 ⊢ t1 : A ⊗ B Γ2, x : A, y : B ⊢ t2 : C
Γ1 + Γ2 ⊢ let (𝑥,𝑦) = t1 in t2 : C

⊗𝐸

with incoming heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2).
And two possible reductions:

(1) (pairBeta)

x
′#{𝐻, v1, v2, t} y

′#{𝐻, v1, v2, t}
𝐻 ⊢ let (𝑥,𝑦) = (v1, v2) in t {𝑠 𝐻, x′ ↦→𝑠v1, y′ ↦→𝑠v2 ⊢ t [y′/y] [x′/x]

{⊗𝛽

with typing Γ2, x : A, y : B ⊢ t2 : C as the result i.e., with Γ′ = Γ2, x : A, y : B and outgoing
heap compatibility

(2) (pairElim)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let (𝑥,𝑦) = t1 in t2 {𝑠 𝐻 ′ ⊢ let (𝑥,𝑦) = t

′
1 in t2

{let⊗

By induction on the premise with Γ′0 = Γ0 + 𝑠 · Γ2 then we have: (i) Γ′1 ⊢ t
′
1 : A ⊗ B and

(ii) 𝐻 ′ ⊲⊳ Γ0 + 𝑠 · Γ2 + 𝑠 · Γ′1 . From which we construct the resulting typing, via applying
⊗𝐸 again to get Γ′1 + Γ2 ⊢ let (𝑥,𝑦) = t

′
1 in t2 : C and with (ii) providing the required heap

compatibility (by commutativity of +).
• (unitIntro)

0 · Γ ⊢ () : unit 1𝐼

Trivial case since there is no heap semantics rule as this is already a normal form value.
• (unitElim)

Γ1 ⊢ t1 : unit Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ let () = t1 in t2 : B

1𝐸

And two possible reductions:
(1) (betaUnit)

𝐻 ⊢ let () = () in t {𝑠 𝐻 ⊢ t {𝛽unit

which refines the typing to:

0 · Γ1 ⊢ () : unit Γ2 ⊢ t2 : B
0 · Γ1 + Γ2 ⊢ let () = () in t2 : B

1𝐸

with incoming heap compatibility𝐻 ⊲⊳ Γ0+𝑠 · (0 ·Γ1+Γ2) which refines to𝐻 ⊲⊳ Γ0+0 ·Γ1+𝑠 ·Γ2.
The resulting typing is thus given by:

Γ2 ⊢ t2 : B
0 · Γ1 + Γ2 ⊢ t2 : B

Lemma C.5

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:40 Daniel Marshall and Dominic Orchard

i.e., Γ′ = 0 · Γ1 + Γ2 and outgoing heap compatibility is provided exactly by the incoming
heap compatibility.

(2) (congUnitElim)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let () = t1 in t2 {𝑠 𝐻 ′ ⊢ let () = t

′
1 in t2

{letunit

By induction on the premise with Γ′0 = Γ0 + 𝑠 · Γ2 then we have: (i) Γ′1 ⊢ t
′
1 : unit and (ii)

𝐻 ′ ⊲⊳ Γ0 + 𝑠 · Γ2 + 𝑠 · Γ′1 . From which we construct the resulting typing, via applying 1𝐸 again
to get Γ′1 + Γ2 ⊢ let () = t

′
1 in t2 : B and with (ii) providing the required heap compatibility

(by commutativity of +).
• (share)

Γ ⊢ t : ∗A
Γ ⊢ share t : □𝑟A

share

And two possible reductions:
(1) (share)

dom(𝐻) ≡ refs(v)
𝐻,𝐻 ′ ⊢ share (∗v) {𝑠 ([𝐻]0), 𝐻 ′ ⊢ [v] {share𝛽

with refined (runtime) typing, and by Lemma C.1,

0 · Γ′1 , 𝛾 ⊢ v : A
0 · (Γ′1 , Γ′′1), 𝛾 ⊢ ∗v : ∗A

nec

0 · (Γ′1 , Γ′′1), 𝛾 ⊢ share (∗v) : □𝑟A
share

and thus incoming heap compatibility 𝐻,𝐻 ′ ⊲⊳ Γ0 + 𝑠 · (0 · (Γ′1 , Γ′′1), 𝛾) which refines to:
𝐻,𝐻 ′ ⊲⊳ Γ0 + 0 · (Γ′1 , Γ′′1), 𝛾 .
The resulting type is given by:

0 · Γ′1 , 𝛾 ⊢ v : A
0 · (Γ′1 , Γ′′1), 𝛾 ⊢ v : A

Lemma C.5

𝑟 · (0 · (Γ′1 , Γ′′1), 𝛾) ⊢ [v] : □𝑟A
pr

where 𝑟 · (0 · (Γ′1 , Γ′′1), 𝛾) = 0 · (Γ′1 , Γ′′1), 𝛾 and thus Γ′ = 0 · (Γ′1 , Γ′′1), 𝛾 and the outgoing
heap compatibility is provided by the incoming heap compatibility but where the heap
has zeroed out 𝐻 (which does not affect the heap compatibility; it can be re-derived with
different fractions).

(2) (congShare)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ share t {𝑠 𝐻 ′ ⊢ share t′ {share

By induction on the premise with Γ′0 = Γ0 then we have: (i) Γ′ ⊢ t
′ : ∗A and (ii) 𝐻 ′ ⊲⊳

Γ0 + 𝑠 · Γ′. From which we construct the resulting typing, via applying share again to get
Γ′ ⊢ share t′ : □𝑟A and with (ii) providing the required heap compatibility.

• (clone)

Γ1 ⊢ t1 : □𝑟A Γ2, x : ∗A ⊢ t2 : □𝑟B 1 ⊑ 𝑟

Γ1 + Γ2 ⊢ clone’ t1 as x in t2 : □𝑟B
clone’

And two possible reductions:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:41

(1) (cloneCongr)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ clone t1 as x in t2 {𝑠 𝐻 ′ ⊢ clone t′1 as x in t2

{clone

Follows by induction similar to other congruences.
(2) (cloneBeta)

dom(𝐻 ′) ≡ refs(v) (𝐻 ′′, 𝜃, id) = copy(𝐻 ′) y#{𝐻, v, t}

𝐻,𝐻 ′ ⊢ clone [v]𝑟 as x in t {𝑠 𝐻,𝐻 ′, 𝐻 ′′, y ↦→𝑠pack ⟨id, ∗(𝜃 (v))⟩ ⊢ t [y/x]
{clone𝛽

refining the typing to:

Γ1, id1 ⊢ v : A

𝑟 · Γ1, id1 ⊢ [v]𝑟 : □𝑟A
pr

Γ2, x : ∃id′ .∗(A[id′/id1]) ⊢ t : □𝑟B 1 ⊑ 𝑟

(𝑟 · Γ1 + Γ2), id ⊢ clone [v]𝑟 as x in t : □𝑟B
clone’

with incoming heap compatibility 𝐻,𝐻 ′ ⊲⊳ Γ0 + 𝑠 · (𝑟 · Γ1 + Γ2).
Goal typing is then given by:

Γ2, x : ∃id′ .∗(A[id′/id1]) ⊢ t : □𝑟B

thus with Γ′ = Γ2, x : ∃id′ .∗(A[id′/id1]).
The typing of the extended heap is given by the value:

Γ1, id1 ⊢ v : A

𝜃 (Γ1, id1) ⊢ 𝜃 (v) : 𝜃 (A)
Lemma C.6

𝜃 (Γ1, id1) ⊢ ∗(𝜃 (v)) : ∗𝜃 (A)
nec

𝜃 (Γ1), id ⊢ pack ⟨id, ∗(𝜃 (v))⟩ : ∃id′ .∗𝜃 (A) [id′/id]
pack

(1)

since 𝜃 maps each id1 to id then ∃id′ .∗𝜃 (A) [id′/id] = ∃id′ .∗A[id′/id1].
Goal heap compatibility: (𝐻,𝐻 ′, 𝐻 ′′, x ↦→𝑠 ∗ (𝜃 (v))) ⊲⊳ (Γ0 + 𝑠 · (Γ2, x : ∗(#A))) given by:

𝐻,𝐻 ′ ⊲⊳ (Γ0 + 𝑠 · Γ2 + 𝑟 ∗ 𝑠 · Γ1)
𝐻,𝐻 ′, 𝐻 ′′ ⊲⊳ (Γ0 + 𝑠 · Γ2 + 𝑟 ∗ 𝑠 · 𝜃 (Γ1))
𝐻,𝐻 ′, 𝐻 ′′ ⊲⊳ (Γ0 + 𝑠 · Γ2 + 𝑠 · 𝜃 (Γ1))

1 ⊑ 𝑟
x ∉ dom(𝐻) (1) ∃𝑟 ′ . 𝑟 + 𝑟 ′ ≡ 𝑠

(𝐻,𝐻 ′, 𝐻 ′′, x ↦→𝑠pack ⟨id, ∗(𝜃 (v))⟩) ⊲⊳ (Γ0 + 𝑠 · Γ2, x : [∃id′ .∗(A[id′/id1])]𝑠)
ext

• (withBorrow)

Γ1 ⊢ t1 : ∗A Γ2 ⊢ t2 : &1A ⊸ &1B

Γ1 + Γ2 ⊢ withBorrow t1 t2 : ∗B
with&

And three possible reductions:
(1) (congWithBorrowL)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ withBorrow t1 t2 {𝑠 𝐻 ′ ⊢ withBorrow t

′
1 t2
{with&L

Which follows by induction similar to other inductive cases.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:42 Daniel Marshall and Dominic Orchard

(2) (congWithBorrowR)

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ withBorrow (𝜆x .t1) t2 {𝑠 𝐻 ′ ⊢ withBorrow (𝜆x .t1) t′2

{with&R

Which follows by induction similar to other inductive cases.
(3) (withBorrow)

y#{𝐻, v, t}
𝐻 ⊢ withBorrow (𝜆x .t) (∗v) {𝑠 𝐻, y ↦→𝑠 (∗v) ⊢ unborrow t [y/x] {with&

which refines the typing to:

Γ2, x : &1A ⊢ t : &1B

Γ2 ⊢ 𝜆x .t : &1A ⊸ &1B
with&

Γ1 ⊢ v : A
Γ1 ⊢ ∗v : ∗A

nec

Γ1 + Γ2 ⊢ withBorrow (𝜆x .t) (∗v) : ∗B
with&

with incoming heap compatibility 𝐻 ⊲⊳ (Γ0 + 𝑠 · (Γ1 + Γ2)).
We then get the resulting typing as:

Γ2, y : &1A ⊢ t [y/x] : &1B

Γ2, y : &1A ⊢ unborrow (t [y/x]) : ∗A
unborrow

thus: Γ′ = Γ2, y : &1A and construct the goal heap compatibility as:

𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) Γ1 ⊢ ∗v : &1A

(𝐻, y ↦→𝑠 (∗v)) ⊲⊳ (Γ0 + 𝑠 · Γ2), y : [&1A]𝑠
extLin

• (unborrow)
Γ ⊢ t : &1A

Γ ⊢ unborrow t : ∗A unborrow

And two possible reductions:
(1) (congUnborrow)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ unborrow t {𝑠 𝐻 ′ ⊢ unborrow t
′ {unborrow

By induction as in the other inductive cases.
(2) (unborrowBorrw)

𝐻 ⊢ unborrow (∗v) {𝑠 𝐻 ⊢ ∗v {un&

with the refined typing:

Γ ⊢ v : A
Γ ⊢ (∗v) : &1A

nec

Γ ⊢ unborrow (∗v) : ∗A
unborrow

and thus heap compatibility is 𝐻 ⊲⊳ Γ0 + 𝑠 · Γ
The resulting typing matches the goal as:

Γ ⊢ v : A
Γ ⊢ (∗v) : ∗A

nec

thus Γ′ = Γ and outgoing heap compatibility is provided by the incoming compatibility.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:43

• (push)

Γ ⊢ t : &𝑝 (A ⊗ B)
Γ ⊢ push t : (&𝑝A) ⊗ (&𝑝B)

push

And three possible reductions:
(1) (congPush)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ push t {𝑠 𝐻 ′ ⊢ push t′ {push

Inductive case as in other inductive rules.
(2) (pushUnique)

𝐻 ⊢ push (∗(v1, v2)) {𝑠 𝐻 ⊢ (∗v1, ∗v2)
{push∗

with the refined typing:

Γ1 ⊢ v1 : A Γ2 ⊢ v2 : B
Γ1 + Γ2 ⊢ (v1, v2) : (A ⊗ B)

⊗𝐼

Γ1 + Γ2 ⊢ ∗(v1, v2) : ∗(A ⊗ B)
nec

Γ1 + Γ2 ⊢ push (∗(v1, v2)) : (∗A) ⊗ (∗B)
push

i.e., in the original typing 𝑝 = ∗ and thus heap compatibility is 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2)
The goal typing is then provided by:

Γ1 ⊢ v1 : A
Γ1 ⊢ ∗v1 : ∗A

nec
Γ2 ⊢ v2 : B
Γ2 ⊢ ∗v2 : ∗B

nec

Γ1 + Γ2 ⊢ (∗v1, ∗v2) : (∗A ⊗ ∗B)
⊗𝐼

with the goal heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) then provided by the incoming heap
compatibility.

• (pull)

Γ ⊢ t : (&𝑝A) ⊗ (&𝑝B)
Γ ⊢ pull t : &𝑝 (A ⊗ B) pull

And three possible reductions:
(1) (congPull)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ pull t {𝑠 𝐻 ′ ⊢ pull t′ {pull

Inductive case as in other inductive rules.
(2) (pullUnique)

𝐻 ⊢ pull (∗v1, ∗v2) {𝑠 𝐻 ⊢ ∗(v1, v2)
{pull∗

with the refined typing:

Γ1 ⊢ v1 : A
Γ1 ⊢ ∗v1 : ∗A

nec
Γ2 ⊢ v2 : B
Γ2 ⊢ ∗v2 : ∗B

nec

Γ1 + Γ2 ⊢ (∗v1, ∗v2) : (∗A ⊗ ∗B)
⊗𝐼

Γ1 + Γ2 ⊢ pull (∗v1, ∗v2) : ∗(A ⊗ B)
pull

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:44 Daniel Marshall and Dominic Orchard

thus with 𝑝 = ∗ in the original typing and thus heap compatibility is 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2)
The goal typing is then provided by:

Γ1 ⊢ v1 : A Γ2 ⊢ v2 : B
Γ1 + Γ2 ⊢ (v1, v2) : (A ⊗ B)

⊗𝐼

Γ1 + Γ2 ⊢ ∗(v1, v2) : ∗(A ⊗ B)
nec

with the goal heap compatibility 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) then provided by the incoming heap
compatibility.

• (split)

Γ ⊢ t : &𝑝A

Γ ⊢ split t : & 𝑝

2
A ⊗ & 𝑝

2
A

split

And three possible reductions:
(1) (congSplit)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ split t {𝑠 𝐻 ′ ⊢ split t′ {split

Inductive case as in other inductive rules.
(2) (splitArr)

a1#𝐻 a2#𝐻
𝐻, a ↦→𝑝 id, id ↦→ arr ⊢ split (∗a) {𝑠 𝐻, a1 ↦→ 𝑝

2
id, a2 ↦→ 𝑝

2
id, id ↦→ arr ⊢ (∗a1, ∗a2)

{splitArr

with the refined typing:

0 · Γ, a : Array
id
A ⊢ a : Array

id
A

0 · Γ, a : Array
id
A ⊢ ∗a : &𝑝B

nec

0 · Γ, a : Array
id
A ⊢ split (∗a) : & 𝑝

2
A ⊗ & 𝑝

2
A

split

and thus heap compatibility is (𝐻, id ↦→ arr) ⊲⊳ Γ0 + 𝑠 · (0 · Γ, a : Array
id
A)

The resulting typing is then given by:

0 · Γ1, a1 : Arrayid A ⊢ a1 : Arrayid A
0 · Γ1, a1 : Arrayid A ⊢ ∗a1 : &𝑝 (Arrayid A)

nec

0 · Γ2, a2 : Arrayid′ B ⊢ a2 : Arrayid′ B
0 · Γ2, a2 : Arrayid′ B ⊢ ∗a2 : &𝑝 (∗(Arrayid′ B))

nec

0 · Γ1 + 0 · Γ2, a1 : Arrayid A, a2 : Arrayid′ B ⊢ (∗v1, ∗v2) : (&𝑝 (Arrayid A) ⊗ &𝑝 (Arrayid B))
⊗𝐼

Goal compatibility is (𝐻, id ↦→ arr, a1 ↦→ 𝑝

2
id, a2 ↦→ 𝑝

2
id) ⊲⊳ (Γ0 + 𝑠 · (0 · Γ1 + 0 · Γ2, a1 :

Array
id
A, a2 : Arrayid′ B)) which refines to

(𝐻, id ↦→ arr, a1 ↦→ 𝑝

2
id, a2 ↦→ 𝑝

2
id) ⊲⊳ (Γ0 + 0 · Γ1 + 0 · Γ2, a1 : Arrayid A, a2 : Arrayid′ B)

which is constructed by:

(𝐻, id ↦→ arr) ⊲⊳ Γ0 + 𝑠 · (0 · Γ, a : Array
id
A)

(𝐻, id ↦→ arr, a1 ↦→ 𝑝

2
id) ⊲⊳ Γ0 + 𝑠 · (0 · Γ, a : Array

id
A), a1 : Arrayid A

extRes

((𝐻, id ↦→ arr, a1 ↦→ 𝑝

2
id), a2 ↦→ 𝑝

2
id) ⊲⊳ Γ0 + 𝑠 · (0 · Γ, a : Array

id
A), a1 : Arrayid A, a2 : Arrayid′ B

extRes

satisfying the goal here.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:45

(3) (splitPair)

𝐻 ⊢ split (∗v) {𝑠 𝐻 ′ ⊢ (∗v1, ∗v2)
𝐻 ′ ⊢ split (∗w) {𝑠 𝐻 ′′ ⊢ (∗w1, ∗w2)

𝐻 ⊢ split (∗(v,w)) {𝑠 𝐻 ′′ ⊢ (∗(v1,w1), ∗(v2,w2))
{split⊗

with the refined typing:

Γ1 ⊢ v : A Γ2 ⊢ w : B
Γ1 + Γ2 ⊢ (v,w) : A ⊗ B

⊗𝐼

Γ1 + Γ2 ⊢ ∗(v,w) : &𝑝 (A ⊗ B)
nec

Γ1 + Γ2 ⊢ split (∗(v,w)) : & 𝑝

2
(A ⊗ B) ⊗ & 𝑝

2
(A ⊗ B)

split

and thus heap compatibility is 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) By induction on the first premise with
Γ′0 = Γ0 + 𝑠 · Γ2 and second premise with Γ′′0 = Γ0 + 𝑠 · Γ2 + 𝑠 · Γ′1 + 𝑠 · Γ1, providing:

(a) Γ′1 with Γ′1 ⊢ (∗v1, ∗v2) : & 𝑝

2
A ⊗ & 𝑝

2
A and 𝐻 ′ ⊲⊳ Γ0 + 𝑠 · Γ2 + 𝑠 · Γ′1

(b) Γ′2 with Γ′2 ⊢ (∗w1, ∗w2) : & 𝑝

2
B ⊗ & 𝑝

2
B and 𝐻 ′′ ⊲⊳ Γ0 + 𝑠 · Γ2 + 𝑠 · Γ′1 + 𝑠 · Γ1 + 𝑠 · Γ′2

The resulting goal type derivation is then:

Γ1 ⊢ v1 : A Γ′1 ⊢ w1 : B
Γ1 + Γ′1 ⊢ (v1,w1) : A ⊗ B

⊗𝐼

Γ1 + Γ′1 ⊢ ∗(v1,w1) : & 𝑝

2
(A ⊗ B)

nec

Γ2 ⊢ v2 : A Γ′2 ⊢ w2 : B
Γ2 + Γ′2 ⊢ (v2,w2) : A ⊗ B

⊗𝐼

Γ2 + Γ′2 ⊢ ∗(v2,w2) : & 𝑝

2
(A ⊗ B)

nec

Γ1 + Γ′1 + Γ2 + Γ′2 ⊢ (∗(v1,w1), ∗(v2,w2)) : & 𝑝

2
(A ⊗ B) ⊗ & 𝑝

2
(A ⊗ B)

⊗𝐼

The goal compatibility is then 𝐻 ′′ ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ′1 + Γ2 + Γ′2) which is provided by the
second induction with distributivity and commutativity of +.

• (join)

Γ1 ⊢ t1 : &𝑝A Γ2 ⊢ t2 : &𝑞A 𝑝 + 𝑞 ≤ 1
Γ1 + Γ2 ⊢ join t1 t2 : &𝑝+𝑞A

join

And four possible reductions:
(1) (congJoinL)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ join t1 t2 {𝑠 𝐻 ′ ⊢ join t

′
1 t2
{joinL

Inductive case as in other inductive rules.
(2) (congJoinR)

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ join v t2 {𝑠 𝐻 ′ ⊢ join v t

′
2
{joinR

Inductive case as in other inductive rules.
(3) (joinArr)

a#𝐻
𝐻, a1 ↦→𝑝 id, a2 ↦→𝑞id, id ↦→ arr ⊢ join ∗ a1 ∗ a2 {𝑠 𝐻, a ↦→(𝑝+𝑞) id, id ↦→ arr ⊢ ∗a {joinArr

Dualising the splitArr cases exactly.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:46 Daniel Marshall and Dominic Orchard

(4) (joinPair)

𝐻 ⊢ join (∗v1) (∗v2) {𝑠 𝐻 ′ ⊢ ∗v
𝐻 ′ ⊢ join (∗w1) (∗w2) {𝑠 𝐻 ′′ ⊢ ∗w

𝐻 ⊢ join (∗(v1,w1)) (∗(v2,w2)) {𝑠 𝐻 ′′ ⊢ ∗(v,w) {join⊗

Dualising the joinPair cases exactly.
□

D UNIQUENESS AND BORROW SAFETY PROOFS
Proposition D.1 (Relevant references in a well-typed term are in a compatible heap).

Given Γ ⊢ t : A and 𝐻 ⊲⊳ Γ0 + 𝑠 · Γ then if ref ∈ refs(t) then ref ∈ dom(𝐻).

Proof. Trivial induction on typing and inversion of heap compatibility; ref must receive a
(runtime) type in Γ and thus must feature in 𝐻 for the heap to be compatible. □

Lemma D.2 (Irrelevant references are preserved by reduction). For Γ ⊢ t : A and Γ0 and 𝐻
such that𝐻 ⊲⊳ (Γ0 +𝑠 · Γ) and𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′, then for all references ref ∈ dom(𝐻) ∧ ref ∉ refs(t)
then ∀𝑖𝑑 .(ref ↦→𝑝 id ∈ 𝐻 =⇒ ref ↦→𝑝 id ∈ 𝐻 ′).

Proof. • (var)
∃𝑟 ′ . 𝑠 + 𝑟 ′ ⊑ 𝑟

𝐻, x ↦→𝑟v ⊢ x {𝑠 𝐻, x ↦→𝑟v ⊢ v {var

For all ref ∈ dom(𝐻) ∧ ref ∉ refs(x), then assume ref ↦→𝑝 id ∈ (𝐻, x ↦→𝑟v). Since the output
heap is the same as the input heap, then the assumption provides the goal.

• (app)
– (appR)

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ v t2 {𝑠 𝐻 ′ ⊢ v t′2

{appR

By induction since ref ∉ refs(v t2) implies ref ∉ refs(t2), and the heaps of the premise are
preserved in the conclusion.

– (appL)
𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1

𝐻 ⊢ t1 t2 {𝑠 𝐻 ′ ⊢ t′1 t2
{appL

By induction since ref ∉ refs(t1 t2) implies ref ∉ refs(t2), and the heaps of the premise are
preserved in the conclusion.

– (beta)
y#{𝐻, v, t}

𝐻 ⊢ (𝜆x .t) v {𝑠 𝐻, y ↦→𝑠v ⊢ t [y/x] {𝛽

Trivial since the reduction does not affect any references or identifiers in the heap.
– (congPrim)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ pr t {𝑠 𝐻 ′ ⊢ pr t′ {prim

Trivial since ref ∉ refs(pr t2) implies ref ∉ refs(t2), and the heaps of the premise are
preserved in the conclusion

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:47

• (existsBeta)
y#{𝐻, v, t}

𝐻 ⊢ unpack ⟨id, x⟩ = pack ⟨id′, v⟩ in t {𝑠 𝐻, y ↦→𝑟v ⊢ t [y/x] {∃𝛽

Then for ref ∈ dom(𝐻)∧ref ∉ refs(unpack ⟨id, x⟩ = pack ⟨id′, v⟩ in t) and with antecedent
ref ↦→𝑝 id

′′ ∈ 𝐻 goal is ref ↦→𝑝 id
′′ ∈ 𝐻 ′.

Consider two possibilities:
– id

′′ = id. If this were the case then ref : Resid′′ A in the typing of the term and thus
ref ∈ refs(unpack ⟨id, x⟩ = pack ⟨id′, v⟩ in t), contradicting the premise and so this
trivially holds.

– id
′′ ≠ id, then the renaming here does not change id′′ and thus ref ↦→𝑝 id

′′ ∈ 𝐻 [𝑖𝑑 ′/𝑖𝑑].
• (packCong)

𝐻 ⊢ t {𝑠 𝐻 ⊢ t′

𝐻 ⊢ pack ⟨id, t⟩ {𝑠 𝐻 ⊢ pack ⟨id, t′⟩ {pack

Trivial since ref ∉ refs(pack ⟨id, t⟩) implies ref ∉ refs(t), and the heaps of the premise are
preserved in the conclusion

• (unpackCong),(congBoxElim),(congPromotion),(congPairL),(congPairR),(congPairElim),(congShare),(congSplit),(congJoinL),(congJoinR),(congWithBorrowL),(congWithBorrowR),(congUnborrow),(cloneCong),(congUnique),(congPush),(congPull)
Trivial like the other congruence rules (see above)

• (betaBox)
y#{𝐻, v, t}

𝐻 ⊢ let [x] = [v]𝑟 in t {𝑠 𝐻, y ↦→(𝑠∗𝑟)v ⊢ t [y/x] {□𝛽

Trivially holds since no new references are added to the outgoing heap.
• (pairBeta)

x
′#{𝐻, v1, v2, t} y

′#{𝐻, v1, v2, t}
𝐻 ⊢ let (𝑥,𝑦) = (v1, v2) in t {𝑠 𝐻, x′ ↦→𝑠v1, y′ ↦→𝑠v2 ⊢ t [y′/y] [x′/x]

{⊗𝛽

Trivially holds since no new references are added to the outgoing heap.
• (betaUnit)

𝐻 ⊢ let () = () in t {𝑠 𝐻 ⊢ t {𝛽unit

Trivially holds since the outgoing heap is the same as incoming heap.
• (share)

dom(𝐻) ≡ refs(v)
𝐻,𝐻 ′ ⊢ share (∗v) {𝑠 ([𝐻]0), 𝐻 ′ ⊢ [v] {share𝛽

For ref ∈ dom(𝐻) and ref ∉ refs(share (∗v)) then this implies ref in dom(𝐻 ′) (as otherwise
ref would be in 𝐻 and get zeroed) therefore ∀𝑖𝑑 .(ref ↦→𝑝 id ∈ 𝐻 ′ =⇒ ref ↦→𝑝 id ∈ 𝐻 ′)
providing the goal here.

• (splitRef)
ref1#𝐻 ref2#𝐻

𝐻, ref ↦→𝑝 id, id ↦→ v ⊢ split (∗ref) {𝑠 𝐻, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id, id ↦→ v ⊢ (∗ref1, ∗ref2)

{splitRef

Let the incoming heap be 𝐻0 = 𝐻, id ↦→ v, ref ↦→𝑝 id For ref
′ ∈ dom(𝐻0) and ref

′ ∉

refs(split (∗ref)) then this implies ref ′ ≠ ref and thus ref ′ ∈ dom(𝐻), therefore∀𝑖𝑑 .(ref ′ ↦→𝑝 id ∈
𝐻0 =⇒ ref

′ ↦→𝑝 id ∈ 𝐻0) trivially providing the goal here.
• (joinRef)

ref #𝐻
𝐻, ref1 ↦→𝑝 id, ref2 ↦→𝑞id, id ↦→ v ⊢ join (∗ref1) (∗ref2) {𝑠 𝐻, ref ↦→(𝑝+𝑞) id, id ↦→ v ⊢ ∗ref {joinRef

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:48 Daniel Marshall and Dominic Orchard

Let the incoming heap be 𝐻0 = dom(𝐻, id ↦→ v, ref1 ↦→𝑝 id, ref2 ↦→𝑞id). For ref ′ ∈ 𝐻0 and
ref

′ ∉ refs(join (∗ref1) (∗ref2)) then this implies ref
′ ≠ ref and thus ref

′ ∈ dom(𝐻),
therefore ∀𝑖𝑑 .(ref ′ ↦→𝑝 id ∈ 𝐻0 =⇒ ref

′ ↦→𝑝 id ∈ 𝐻0) trivially providing the goal here.
• (splitPair)

𝐻 ⊢ split (∗v) {𝑠 𝐻 ′ ⊢ (∗v1, ∗v2)
𝐻 ′ ⊢ split (∗w) {𝑠 𝐻 ′′ ⊢ (∗w1, ∗w2)

𝐻 ⊢ split (∗(v,w)) {𝑠 𝐻 ′′ ⊢ (∗(v1,w1), ∗(v2,w2))
{split⊗

By induction over the first premise, and transitivity with induction on the second premise.
• (joinPair) Similarly to (splitPair).
• (withBorrow)

y#{𝐻, v, t}
𝐻 ⊢ withBorrow (𝜆x .t) (∗v) {𝑠 𝐻, y ↦→𝑠 (∗v) ⊢ unborrow t [y/x] {with&

Trivially holds since no new references are added to the outgoing heap.
• (unborrowBorrow)

𝐻 ⊢ unborrow (∗v) {𝑠 𝐻 ⊢ ∗v {un&

Trivial since the input heap and output heap are the same.
• (newRef)

ref #𝐻 id#𝐻
𝐻 ⊢ newRef v {𝑠 𝐻, ref ↦→1id, id ↦→ ref (v) ⊢ pack ⟨id, ∗ref ⟩ {newRef

Trivially holds since heap references not changed.
• (swapRef)

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ swapRef (∗ref) v′ {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref (v′) ⊢ v {swapRef

Trivially holds since heap 𝐻 whose references are not in the term is preserved into the
outgoing heap.

• (freezeRef)

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ freezeRef (∗ref) {𝑠 𝐻 ⊢ v {freezeRef

Trivially holds since heap 𝐻 whose references are not in the term is preserved into the
outgoing heap.

• (readRef)

𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟+1) ⊢ readRef (∗ref) {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟) ⊢ (v, ∗ref) {readRef

Trivially holds since heap 𝐻 whose references are not in the term is preserved into the
outgoing heap.

• (newArray), (readArray), (writeArray), (deleteArray) follow in a similar way to the polymor-
phic reference counterparts above.

• (copyBeta)

dom(𝐻 ′) ≡ refs(v) (𝐻 ′′, 𝜃, id) = copy(𝐻 ′) y#{𝐻, v, t}

𝐻,𝐻 ′ ⊢ clone [v]𝑟 as x in t {𝑠 𝐻,𝐻 ′, 𝐻 ′′, y ↦→𝑠pack ⟨id, ∗(𝜃 (v))⟩ ⊢ t [y/x]
{clone𝛽

then for ref ∈ dom(𝐻, , 𝐻 ′) and ref ∉ refs(clone [v] as x in t) then for id where (ref ↦→𝑝 id ∈
𝐻,𝐻 ′ then we have ref ↦→𝑝 id ∈ (𝐻,𝐻 ′), 𝐻 ′′) since the heap is only extended not changed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:49

• (pushUnique), (pullUnique) Trivial since the incoming and outgoing heaps are the same.
□

Lemma D.3 (Borrow safety). For a well-typed term Γ ⊢ t : A and all Γ0, 𝑠 , and heaps 𝐻 such that

𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ), and given a single-step reduction 𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′ then for all id ∈ dom(𝐻):∑︁
∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 = 1 =⇒
∑︁

∀ref ∈ refs(t′) .
ref ↦→𝑝′ id ∈ 𝐻 ′

𝑝′ ∈ {0, 1}

i.e., for all resources with identifier id in the incoming heap and all references in the term pointing to

this resource, if the sum of all permissions pointing to this resource are 1 in the incoming heap then

either this is preserved in the outgoing heap or the total permissions in the output heap is 0, i.e., this
resource has now been fully shared and has no ownership tracking now.

Furthermore, any resources in the outgoing heap that did not appear in the initial heap with references

in the final term should have permissions summing to 1. That is, for all id′ ∈ dom(𝐻 ′)∧id′ ∉ dom(𝐻):∑︁
∀ref ′ ∈ refs(t′) .
ref

′ ↦→𝑞 id
′ ∈ 𝐻 ′

𝑞 = 1

Proof. By induction on typing Γ ⊢ t : A.
• (var)

0 · Γ, x : A ⊢ x : A
var

Then we also have a heap 𝐻 such that 𝐻 ⊲⊳ (0 · Γ, x : A).
By inversion of heap compatibility, which implies that there exists a subheap 𝐻1 such that
𝐻 = 𝐻1, x ↦→𝑟 (Γ′ ⊢ v : A) (where there exists some 𝑟 ′ such that 𝑟 ′ + 1 ⊑ 𝑟 , and since ↓v = ∅):

𝐻1 ⊲⊳ 0 · Γ + Γ′ + ↓v x ∉ dom(𝐻1) Γ′ ⊢ v : A ∃𝑟 ′ . 𝑟 ′ + 𝑠 ≡ 𝑟

(𝐻1, x ↦→𝑟 (Γ′ ⊢ v : A)) ⊲⊳ (0 · Γ, x : [A]𝑠)
ext

and we have the reduction:

∃𝑟 ′ . 𝑟 ′ + 𝑠 ⊑ 𝑟

𝐻1, x ↦→𝑟v ⊢ x {𝑠 𝐻1, x ↦→𝑟v ⊢ v
{var

For part 1 of the lemma, for all id ∈ dom(𝐻) and for all ref ∈ refs(t) then we assume the
antecedent: ∑︁

ref ↦→𝑝 id∈𝐻
𝑝 = 1

Since the heap is unchanged by the reduction, 𝐻 ′ = 𝐻 and then we trivially conclude with
the antecedent evidence: ∑︁

ref ↦→𝑝 id∈𝐻 ′

𝑝 = 1

For part 2, we have:

∀id′ ∈ dom(𝐻 ′), ref ∈ refs(v). ©«ref ∉ dom(𝐻) =⇒
∑︁

ref ↦→𝑞 id
′∈𝐻 ′

𝑞 = 1ª®¬
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:50 Daniel Marshall and Dominic Orchard

trivially since the premise must always be false by heap compatibility and that the heap is
preserved by the reduction here.

• (abs)
Γ, x : A ⊢ t : B

Γ ⊢ 𝜆x .t : A ⊸ B

abs

Is trivial since there are no possible reductions.
• (app)

Γ1 ⊢ t1 : A ⊸ B Γ2 ⊢ t2 : A
Γ1 + Γ2 ⊢ t1 t2 : B

app

with a heap 𝐻 such that 𝐻 ⊲⊳ (Γ1 + Γ2) and three reductions (beta and application congruence
on the left and right) then several possible reductions following from primitive applications:

(1)
𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1

𝐻 ⊢ t1 t2 {𝑠 𝐻 ′ ⊢ t′1 t2
{appL

For part 1, for id ∈ dom(𝐻) and ref ∈ refs(t1 t2), assuming the antecedent∑︁
ref ↦→𝑝 id∈𝐻

𝑝 = 1

From this, since refs(t1) ⊆ refs(t1 t2), we induct on the premise reduction to attain that:

(1)
∑︁

ref ↦→𝑝 id∈𝐻 ′

𝑝 ∈ {0, 1}

(2)∀id′ ∈ dom(𝐻 ′), ref ∈ refs(t′2).
©«ref ∉ dom(𝐻) =⇒

∑︁
ref ↦→𝑞 id

′∈𝐻 ′

𝑞 = 1ª®¬
To conclude then we use (1) but also need that ∀ref ′ ∈ refs(t2).

∑
ref

′ ↦→𝑝 id∈𝐻 ′ 𝑝 ∈ {0, 1}. We
consider two cases depending on whether ref ′ ∈ refs(t1) or not:
– ref

′ ∈ refs(t1), therefore by (1) we also have that
∑

a
′ ↦→𝑝 id∈𝐻 ′ 𝑝 ∈ {0, 1}, satisfying the

goal.
– ref

′ ∉ refs(t1) therefore
∑

ref
′ ↦→𝑝 id∈𝐻 ′ 𝑝 = 1 satisfying the goal.

Second goal is that:

∀id′ ∈ dom(𝐻 ′), ref ∈ refs(t1 t′2).
©«ref ∉ dom(𝐻) =⇒

∑︁
ref ↦→𝑞 id

′∈𝐻 ′

𝑞 = 1ª®¬
Thus we can conclude with (2) along with the cases for ∀ref ′ ∈ refs(t1), for which we
discriminate based on whether ref ′ is contained also in t

′
2:

(a) ref ′ ∈ refs(t′2) therefore we have from (2) that
(
ref

′ ∉ dom(𝐻) =⇒ ∑
ref

′ ↦→𝑞 id
′∈𝐻 ′ 𝑞 = 1

)
satisfying the goal.

(b) ref ′ ∉ refs(t′2) then by Proposition D.1 with Γ1 + Γ2 ⊢ t1 t
′
2 : B (Type preservation) and

ref
′ ∈ refs(t1 t′2) and 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) then ref

′ ∈ dom(𝐻) and thus the antecedent
of condition (2) is false and so is trivially true.

(2)
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ v t2 {𝑠 𝐻 ′ ⊢ v t′2
{appR

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:51

By the same reasoning as above for the (appL) case mutatis mutandis: with t1 being a value
and induction happening on the right-hand term t2’s reduction.

(3) Alternatively t1 = 𝜆x .t′1 such that typing is:

Γ1, x : A ⊢ t′ : B
Γ1 ⊢ t′ : A ⊸ B

abs
Γ2 ⊢ v : A

Γ1 + Γ2 ⊢ (𝜆x .t′) v : B
app

and we have reduction:
y#{𝐻, v, t}

𝐻 ⊢ (𝜆x .t) v {𝑠 𝐻, y ↦→𝑠v ⊢ t [y/x] {𝛽

(Part 1) Then for id ∈ dom(𝐻) and ref ∈ refs((𝜆x .t′) v), we assume the antecedent:∑
ref ↦→𝑝 id∈𝐻 𝑝 = 1.

Since the right-hand side of reduction does not introduce any new references then the goal
follows from the antecedent:

∑
ref ↦→𝑝 id∈𝐻 ′ = 1.

(Part 2) Trivial since the antecedent is always false as refs(t [y/x]) ⊆ refs((𝜆x .t) v).
(4) t1 = newRef

Therefore we induct on the second argument:
– t2 is a value and thus the typing is:

0 · Γ ⊢ newRef : A ⊸ ∃id .∗(Refid A)
newRef

with 𝐻 ⊲⊳ (Γ0 + Γ).
Thus there is a reduction as follows:

ref #𝐻 id#𝐻
𝐻 ⊢ newRef v {𝑠 𝐻, ref ↦→1id, id ↦→ ref (v) ⊢ pack ⟨id, ∗ref ⟩ {newRef

Part 1 follows as all id in the input heap and references pointing to them are preserved
in the output heap.
Part 2 follows since where ref ∉ dom(𝐻) and we have that ref ↦→1id ∈ 𝐻, ref ↦→1id

satisfying the goal.
– t2 is not a value and thus has a reduction, therefore we can build the compound reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ newRef t2 {𝑠 𝐻 ′ ⊢ newRef t′2

{prim

Then the result holds by induction.
(5) t1 = swapRef

and there is a reduction:
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ swapRef t2 {𝑠 𝐻 ′ ⊢ swapRef t′2
{prim

Therefore the borrow safety result holds by induction.
(6) t1 = swapRef (∗ref) Case on progress for t2:

– t2 is a value and we have a reduction:

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ swapRef (∗ref) v′ {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref (v′) ⊢ v {swapRef

(Part 1) Trivially true since the only change to the heap is the value that id is pointing to.
(Part 2) No new references are created so trivially true.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:52 Daniel Marshall and Dominic Orchard

– t2 is not a value and therefore has a reduction from which we form the congruence:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ swapRef (∗ref) t2 {𝑠 𝐻 ′ ⊢ swapRef (∗ref) t′2

{prim

(7) t1 = freezeRef Case on progress for t2:
– t2 is a value therefore by the value lemma t2 = ∗ref and we have a reduction:

𝐻, ref ↦→𝑝 id, id ↦→ ref (v) ⊢ freezeRef (∗ref) {𝑠 𝐻 ⊢ v {freezeRef

(Part 1) Thus, for id′ ∈ dom(𝐻), ref ′ ∈ refs(t) with assumption
∑

ref
′ ↦→𝑝 id

′∈𝐻 𝑝 = 1.
If id′ = id and ref

′ = ref then we can conclude with:
∑

ref
′ ↦→𝑝 id

′∈𝐻 ′ 𝑝 = 0 since the
reference and identifier assignments are removed from the output heap. Otherwise, the
heap is preserved so

∑
ref

′ ↦→𝑝 id
′∈𝐻 ′ 𝑝 = 1

(Part 2) No new references are created so trivially true.
– t2 is not a value and therefore has a reduction from which we form the congruence:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ freezeRef t2 {𝑠 𝐻 ′ ⊢ freezeRef t′2

{prim

(8) t1 = readRef Case on progress for t2:
– t2 is a value therefore by the value lemma t2 = ∗ref and we have a reduction:

𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟+1) ⊢ readRef (∗ref) {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ ref ([v]𝑟) ⊢ (v, ∗ref) {readRef

(Part 1) Trivially true since the heap is preserved.
(Part 2) No new references are created so trivially true.

– t2 is not a value and therefore has a reduction from which we form the congruence:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ readRef t2 {𝑠 𝐻 ′ ⊢ readRef t′2

{prim

(9) t1 = newArray therefore A = N
Therefore we induct on the second argument:
– t2 is a value and therefore by the value lemma (Lemma C.1) t2 = n and thus the typing is:

Γ ⊢ n : N
Γ ⊢ newArray n : ∗(Array

id
F)TyDerivednewArray

with 𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ).
Thus there is a reduction as follows:

ref #𝐻 id#𝐻
𝐻 ⊢ newArray n {𝑠 𝐻, ref ↦→1id, id ↦→ init ⊢ pack ⟨id, ∗ref ⟩ {newArray

Part 1 follows as all id in the input heap and references pointing to them are preserved
in the output heap.
Part 2 follows since where ref ∉ dom(𝐻) and we have that ref ↦→1id ∈ 𝐻, ref ↦→1id

satisfying the goal.
– t2 is not a value and thus has a reduction, therefore we can build the compound reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ newArray t2 {𝑠 𝐻 ′ ⊢ newArray t′2

{prim

Then the result holds by induction.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:53

(10) t1 = readArray therefore A = &𝑝 (Arrayid F) ⊸ N ⊸ F ⊗ &𝑝 (Arrayid F)
and there is a reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ readArray t2 {𝑠 𝐻 ′ ⊢ readArray t′2

{prim

Therefore the borrow safety result holds by induction.
(11) t1 = readArray (∗a) therefore A = N ⊸ F ⊗ ∗(Array

id
F)

– t2 is a value and therefore by the value lemma on Γ2 ⊢ t2 : N (Lemma C.1) implies t2 = n

and thus the typing is refined at runtime as follows:

[Γ1], a : Array
id
F ⊢ a : (Array

id
F) ref

[Γ1], a : Array
id
F ⊢ ∗a : ∗(Array

id
F)

∗ref*
Γ2 ⊢ n : N

[Γ1] + Γ2, a : Array
id
F ⊢ readArray (∗a) n : F ⊗ ∗(Array

id
F)
TyDerivedreadArray

with 𝐻 ′ ⊲⊳ (Γ0 + 𝑠 · ([Γ1] + Γ2, a : Array
id
F)), and by the heap compatibility rule for array

references there exists some 𝐻 such that 𝐻 ′ = 𝐻, a ↦→𝑝 id, id ↦→ arr.
Then there is a reduction as follows:

𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ readArray (∗ref) i {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ (v, ∗ref) {readArray

As the entirety of the heap is preserved (including the array reference a being read from
here), the goal follows trivially.

– t2 is not a value and thus has a reduction, therefore we can build the compound reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ readArray (∗a) t2 {𝑠 𝐻 ′ ⊢ readArray (∗a) t′2

{prim

And therefore the borrow safety result holds by induction.
(12) t1 = writeArray therefore A = &𝑝 (Arrayid F) ⊸ N ⊸ F ⊸ &𝑝 (Arrayid F)

with reduction
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ writeArray t2 {𝑠 𝐻 ′ ⊢ writeArray t′2
{prim

Therefore the borrow safety result holds by induction.
(13) t1 = writeArray (∗a) therefore A = N ⊸ F ⊸ ∗(Array

id
F)

with reduction:
𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2

𝐻 ⊢ writeArray (∗a) t2 {𝑠 𝐻 ′ ⊢ writeArray (∗a) t′2
{prim

Therefore the borrow safety result holds by induction.
(14) t1 = writeArray (∗a) i therefore A = F ⊗ &1 (Arrayid F)

Then we case on progress for t2:
– t2 is a value and therefore by the value lemma on Γ2 ⊢ t2 : F (Lemma C.1) implies t2 = 𝑓

and thus the typing is refined at runtime as follows:

[Γ1], a : Array
id
F ⊢ a : (Array

id
F) ref

[Γ1], a : Array
id
F ⊢ (∗a) : &𝑝 (Arrayid F)

nec
Γ2 ⊢ i : N Γ3 ⊢ 𝑓 : F

[Γ1] + Γ2 + Γ3, a : Array
id
F ⊢ writeArray (∗a) i 𝑓 : &𝑝 (Arrayid F)

TyDerivedwriteArray

with 𝐻 ′ ⊲⊳ (Γ0 + 𝑠 · [Γ1] + Γ2 + Γ3, a : Array
id
F), and by the heap compatibility rule for

array references there exists some 𝐻 such that 𝐻 ′ = 𝐻, a ↦→𝑝 id, id ↦→ arr.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:54 Daniel Marshall and Dominic Orchard

Then there is a reduction as follows:

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ writeArray (∗ref) i v {𝑠 𝐻, ref ↦→𝑝 id, id ↦→ arr[i] = v ⊢ ∗ref {writeArray

Here, the only change in the heap is to the array value that id is pointing to. As the
remainder of the heap is preserved, both parts of the goal follow trivially.

– t2 is not a value and thus has a reduction, therefore we can build the compound reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ writeArray (∗a) i t2 {𝑠 𝐻 ′ ⊢ writeArray (∗a) i t′2

{prim

Therefore the borrow safety result holds by induction.
(15) t1 = deleteArray therefore A = ∗(Array

id
F) ⊸ unit

Case on progress for t2:
– t2 is a value therefore by the value lemma t2 = ∗ref and we have a reduction:

𝐻, ref ↦→𝑝 id, id ↦→ arr ⊢ deleteArray (∗ref) {𝑠 𝐻 ⊢ () {deleteArray

(Part 1) Thus, for id′ ∈ dom(𝐻), ref ′ ∈ refs(t) with assumption
∑

ref
′ ↦→𝑝 id

′∈𝐻 𝑝 = 1.
If id′ = id and ref

′ = ref then we can conclude with:
∑

ref
′ ↦→𝑝 id

′∈𝐻 ′ 𝑝 = 0 since the
reference and identifier assignments are removed from the output heap. Otherwise, the
heap is preserved so

∑
ref

′ ↦→𝑝 id
′∈𝐻 ′ 𝑝 = 1

(Part 2) No new references are created so trivially true.
– t2 is not a value and therefore has a reduction from which we form the congruence:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ deleteArray t2 {𝑠 𝐻 ′ ⊢ deleteArray t′2

{prim

• (pr)
Γ ⊢ t : A ¬resourceAllocator(t)

𝑟 · Γ ⊢ [t]𝑟 : □𝑟A
pr

with a heap 𝐻 such that 𝐻 ⊲⊳ (Γ0 + 𝑠 · (𝑟 · Γ)) and reduction:

𝐻 ⊢ [t]𝑟 {𝑠 𝐻 ′ ⊢ t′′

which has only one possible derivation:

𝐻 ⊢ t {𝑠∗𝑟 𝐻 ′ ⊢ t′

𝐻 ⊢ [t]𝑟 {𝑠 𝐻 ′ ⊢ [t′]𝑟
{□

Thus, induction provides the goal, where the incoming heap compatibility by provides the
inductive heap compatibility as 𝐻 ⊲⊳ Γ0 + (𝑠 ∗ 𝑟) · Γ0 by associativity of ∗.

• (elim)
Γ1 ⊢ t1 : □𝑟A Γ2, x : [A]𝑟 ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
elim

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) and reduction:

𝐻 ⊢ let [x] = t1 in t2 {𝑠 𝐻 ′ ⊢ t′

which has two possible derivations:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:55

(1)
𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1

𝐻 ⊢ let [x] = t1 in t2 {𝑠 𝐻 ′ ⊢ let [x] = t
′
1 in t2

{let□

Then induction provides the goal following the same scheme of generalising the inductive
evidence as for the{appL case.

(2) Alternatively t1 = [v] such that the typing is:

Γ1 ⊢ v : A
𝑟 · Γ1 ⊢ [v]𝑟 : □𝑟A

pr
Γ2, x : [A]𝑟 ⊢ t2 : B

𝑟 · Γ1 + Γ2 ⊢ let [x] = [v]𝑟 in t2 : B
elim

and we have reduction:
y#{𝐻, v, t}

𝐻 ⊢ let [x] = [v]𝑟 in t {𝑠 𝐻, y ↦→(𝑠∗𝑟)v ⊢ t [y/x] {□𝛽

(where Γ = 𝑟 · Γ1 in the above.
Which trivially satisfies the goal since all references are then in𝐻 and we get the conditions
trivially (since no references are manipulated) similar to the 𝛽 proof above.

• (der)
Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
der

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ, x : [A]1) and reduction:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

As the term t is unchanged from the premise, the goal holds by induction regardless of how
this reduction is derived.

• (approx)
Γ, x : [A]𝑟 , Γ′ ⊢ t : B 𝑟 ⊑ 𝑠

Γ, x : [A]𝑠 , Γ′ ⊢ t : B
approx

with a heap 𝐻 such that 𝐻 ⊲⊳ (Γ, x : [A]𝑠 , Γ′) and reduction:

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

As the term t is unchanged from the premise, the goal holds by induction regardless of how
this reduction is derived.

• (pairIntro)
Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ (t1, t2) : A ⊗ B

⊗𝐼

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ0 + 𝑠 · (Γ1 + Γ2) and reduction:

𝐻 ⊢ (t1, t2) {𝑠 𝐻 ′ ⊢ t′′

which has two possible derivations:
(1)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ (t1, t2) {𝑠 𝐻 ′ ⊢ (t′1, t2)

{⊗L

Here, induction on t1 provides the goal following the same scheme of generalising the
inductive evidence as for the{appL case.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:56 Daniel Marshall and Dominic Orchard

(2) Otherwise, t1 = v for some value v and we can perform the reduction:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ (v, t2) {𝑠 𝐻 ′ ⊢ (v, t′2)

{⊗R

Here, induction on t2 provides the goal, following the same scheme of generalising the
inductive evidence as for the{appL case.

• (pairElim)
Γ1 ⊢ t1 : A ⊗ B Γ2, x : A, y : B ⊢ t2 : C

Γ1 + Γ2 ⊢ let (𝑥,𝑦) = t1 in t2 : C
⊗𝐸

Two possible reductions:
(1)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ let (𝑥,𝑦) = t1 in t2 {𝑠 𝐻 ′ ⊢ let (𝑥,𝑦) = t

′
1 in t2

{let⊗

and induction provides the goal, following the same scheme of generalising the inductive
evidence as for the{appL case.

(2) otherwise t1 = (v1, v2) such that the typing is:

Γ3 ⊢ v1 : A Γ4 ⊢ v2 : B
Γ3 + Γ4 ⊢ (v1, v2) : (A ⊗ B)

⊗𝐼
Γ2, x : A, y : B ⊢ t2 : C

Γ3 + Γ4 + Γ2 ⊢ let (𝑥,𝑦) = (v1, v2) in t2 : C
⊗𝐸

and we have reduction:
Γ1 ⊢ t′1 : A Γ2 ⊢ t′′1 : B

𝐻 ⊢ let (𝑥,𝑦) = (t′1, t′′1) in t3 {𝑠 𝐻, x ↦→𝑠 (Γ1 ⊢ t′1 : A), y ↦→𝑠 (Γ2 ⊢ t′′1 : B) ⊢ t3
{⊗𝛽

Then (part 1) for all id ∈ refs(𝐻) and all ref ∈ refs(t3) we have:∑︁
∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 =
∑︁

∀ref ∈ refs(t′) .
ref ↦→𝑝′ id ∈ 𝐻 ′

𝑝′

satisfying the goal and (part 2) for all id′ ∈ dom(𝐻 ′) ∧ id
′ ∉ dom(𝐻):∑︁

∀ref ′ ∈ refs(t′) .
ref

′ ↦→𝑞 id
′ ∈ 𝐻 ′

𝑞 = 1

since no references are introduced.
• (unitIntro)

0 · Γ ⊢ () : unit 1𝐼

The result type here is 1, so cannot contain any types of the form &𝑝A, and therefore the
result holds trivially.

• (unitElim)
Γ1 ⊢ t1 : unit Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ let () = t1 in t2 : B

1𝐸

Following essentially the same structure as the tensor proof where array reference counting
is not used so induction provides the goal.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:57

• (share)
Γ ⊢ t : ∗A

Γ ⊢ share t : □𝑟A
share

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ0 + 𝑠 · Γ and reduction:

𝐻 ⊢ share t {𝑠 𝐻 ′ ⊢ t′′

which has two possible derivations:
(1)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ share t {𝑠 𝐻 ′ ⊢ share t′ {share

Here, induction provides the goal following the same scheme of generalising the inductive
evidence as for the{appL case.

(2) t has the form ∗v for some value v, and we can reduce:
dom(𝐻) ≡ refs(v)

𝐻,𝐻 ′ ⊢ share (∗v) {𝑠 ([𝐻]0), 𝐻 ′ ⊢ [v] {share𝛽

(Part 1) Then for id ∈ dom(𝐻,𝐻 ′), ref ∈ refs(share (∗v)), we assume the antecedent∑
ref ↦→𝑝 id∈𝐻,𝐻 ′ 𝑝 = 1.

Then we have two cases:
– ref ∈ dom(𝐻) therefore in the output heap

∑
ref ↦→𝑝 id∈ ([𝐻]0),𝐻 ′ 𝑝 = 0 by the zeroing of 𝐻

here (thus 𝑝 = 0), satisfying the goal.
– ref ∈ dom(𝐻 ′) then ∑

ref ↦→𝑝 id∈ ([𝐻]0),𝐻 ′ 𝑝 = 1 following from the antecedent.
(Part 2) No new references are introduced in the output term, so this trivially holds.

• (clone)
Γ1 ⊢ t1 : □𝑟A Γ2, x : ∗A ⊢ t2 : □𝑟B 1 ⊑ 𝑟

Γ1 + Γ2 ⊢ clone’ t1 as x in t2 : □𝑟B
clone’

with a heap 𝐻 such that 𝐻 ⊲⊳ (Γ1 + Γ2) and reduction:

𝐻 ⊢ clone t1 as x in t2 {𝑠 𝐻 ′ ⊢ t′′

which has two possible derivations:
(1)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ clone t1 as x in t2 {𝑠 𝐻 ′ ⊢ clone t′1 as x in t2

{clone

Here, induction provides the goal, following the same scheme of generalising the inductive
evidence as for the{appL case.

(2) t1 has the form [v] for some value v, and we can reduce:

dom(𝐻 ′) ≡ refs(v) (𝐻 ′′, 𝜃, id) = copy(𝐻 ′) y#{𝐻, v, t}

𝐻,𝐻 ′ ⊢ clone [v]𝑟 as x in t {𝑠 𝐻,𝐻 ′, 𝐻 ′′, y ↦→𝑠pack ⟨id, ∗(𝜃 (v))⟩ ⊢ t [y/x]
{clone𝛽

Here, all of the references from the original heap 𝐻 (separated out as 𝐻 ′) are copied and
given a new identifier, to form 𝐻 ′′. In other words, for every ref ↦→𝑝 id, id ↦→ v in 𝐻 , there
now exists a new ref

′ and id
′ in 𝐻 ′′ such that ref ′ ↦→𝑝 id

′, id′ ↦→ v.
Therefore, for all id ∈ dom(𝐻) we have:∑︁

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 = 1 =⇒
∑︁

∀ref ∈ refs(t′) .
ref ↦→𝑝′ id ∈ 𝐻 ′

𝑝′ = 1

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:58 Daniel Marshall and Dominic Orchard

because none of the references in the preexisting heap have been modified in the new heap,
and there are no new references with the same identifiers as any references appearing in
𝐻 ′′ have fresh identifiers.
We also have that for all id′ ∈ dom(𝐻 ′) ∧ id

′ ∉ dom(𝐻):∑︁
∀ref ′ ∈ refs(t′) .
ref

′ ↦→𝑞 id
′ ∈ 𝐻 ′

𝑞 = 1

because any ref
′ ∉ dom(𝐻) must be in 𝐻 ′′, and so it matches up with another reference

ref appearing in 𝐻 , for which we have
∑

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 = 1 by the above argument.

• (withBorrow)

Γ1 ⊢ t1 : ∗A Γ2 ⊢ t2 : &1A ⊸ &1B

Γ1 + Γ2 ⊢ withBorrow t1 t2 : ∗B
with&

with a heap 𝐻 such that 𝐻 ⊲⊳ (Γ1 + Γ2) and reduction:

𝐻 ⊢ withBorrow 𝑓 t {𝑠 𝐻 ′ ⊢ t′′

which has three possible derivations:
(1)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ withBorrow t1 t2 {𝑠 𝐻 ′ ⊢ withBorrow t

′
1 t2
{with&L

Here, induction on t1 provides the goal, following the same scheme of generalising the
inductive evidence as for the{appL case.

(2) 𝑓 has the form (𝜆x .t1), and we can reduce:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ withBorrow (𝜆x .t1) t2 {𝑠 𝐻 ′ ⊢ withBorrow (𝜆x .t1) t′2

{with&R

Here, induction on t2 provides the goal, following the same scheme of generalising the
inductive evidence as for the{appL case.

(3) As above, but t also has the form (∗𝑣), and we can reduce:

y#{𝐻, v, t}
𝐻 ⊢ withBorrow (𝜆x .t) (∗v) {𝑠 𝐻, y ↦→𝑠 (∗v) ⊢ unborrow t [y/x] {with&

Here, the goal is trivial since the heap 𝐻 is preserved modulo new variable bindings.
• (split)

Γ ⊢ t : &𝑝A

Γ ⊢ split t : & 𝑝

2
A ⊗ & 𝑝

2
A

split

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ and reduction:

𝐻 ⊢ split t {𝑠 𝐻 ′ ⊢ t′′

which has four possible derivations:
(1)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ split t {𝑠 𝐻 ′ ⊢ split t′ {split

Here, induction provides the goal, following the same scheme of generalising the inductive
evidence as for the{appL case.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:59

(2) t has the form (∗ref) such that the typing is:

[Γ], ref : Refid A ⊢ (∗ref) : &𝑝 (Refid A) ∗ref*
[Γ], ref : Refid A ⊢ split (∗ref) : & 𝑝

2
(Refid A) ⊗ & 𝑝

2
(Refid A)

split

and we have reduction:
ref1#𝐻 ref2#𝐻

𝐻, ref ↦→𝑝 id, id ↦→ v ⊢ split (∗ref) {𝑠 𝐻, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id, id ↦→ v ⊢ (∗ref1, ∗ref2)

{splitRef

Thus for id′ ∈ dom(𝐻, id ↦→ v, ref ↦→𝑝 id) and ref
′ ∈ refs(split (∗ref)) we assume the

antecedent
∑

ref
′ ↦→𝑝′ id′∈𝐻,id ↦→v,ref ↦→𝑝 id

𝑝 = 1.
Since there is only one reference in the term then we have ref ′ = ref and id

′ = id and
𝑝′ = 𝑝 . However in the output heap we now have ref1 ↦→ 𝑝

2
id and ref2 ↦→ 𝑝

2
id in the output

heap and thus: ∑︁
ref ↦→𝑝 id∈𝐻 ′

𝑝 =
𝑝

2
+ 𝑝

2
= 𝑝 = 1

Satisfying the goal.
(3) t has the form (∗(v,w)) with reduction:

𝐻 ⊢ split (∗v) {𝑠 𝐻 ′ ⊢ (∗v1, ∗v2)
𝐻 ′ ⊢ split (∗w) {𝑠 𝐻 ′′ ⊢ (∗w1, ∗w2)

𝐻 ⊢ split (∗(v,w)) {𝑠 𝐻 ′′ ⊢ (∗(v1,w1), ∗(v2,w2))
{split⊗

Induction over the two premises gives us the result here, by threading the theorem’s
implications from 𝐻 to 𝐻 ′ via the first premise and then 𝐻 ′ to 𝐻 ′′ via the second.

• (join)
Γ1 ⊢ t1 : &𝑝A Γ2 ⊢ t2 : &𝑞A 𝑝 + 𝑞 ≤ 1

Γ1 + Γ2 ⊢ join t1 t2 : &𝑝+𝑞A
join

with a heap 𝐻 such that 𝐻 ⊲⊳ (Γ1 + Γ2) and reduction:

𝐻 ⊢ join t1 t2 {𝑠 𝐻 ′ ⊢ t′′

which has four possible derivations:
(1)

𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t′1
𝐻 ⊢ join t1 t2 {𝑠 𝐻 ′ ⊢ join t

′
1 t2
{joinL

Here, induction over t1 provides the goal, following the same scheme of generalising the
inductive evidence as for the{appL case.

(2) t1 = v for some value v, and we can reduce:

𝐻 ⊢ t2 {𝑠 𝐻 ′ ⊢ t′2
𝐻 ⊢ join v t2 {𝑠 𝐻 ′ ⊢ join v t

′
2
{joinR

Here, induction over t2 provides the goal, following the same scheme of generalising the
inductive evidence as for the{appL case.

(3) As above, but t2 has the form (∗ref2), which restricts v to have the form (∗ref1) such that
the typing is:

[Γ], ref1 : Refid A ⊢ (∗ref1) : &𝑝 (Refid A) ref+nec [Γ], ref2 : Refid A ⊢ (∗ref2) : &𝑞 (Refid A) ref+nec
[Γ], ref1 : Refid A, ref2 : Refid A ⊢ join (∗ref1) (∗ref2) : &𝑝+𝑞 (Refid A)

join

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:60 Daniel Marshall and Dominic Orchard

and we have reduction:
ref #𝐻

𝐻, ref1 ↦→𝑝 id, ref2 ↦→𝑞id, id ↦→ v ⊢ join (∗ref1) (∗ref2) {𝑠 𝐻, ref ↦→(𝑝+𝑞) id, id ↦→ v ⊢ ∗ref {joinRef

Here, for all id ∈ dom(𝐻, id ↦→ v, ref1 ↦→𝑝 id, ref2 ↦→𝑞id) and all ref ′ ∈ refs(join (∗ref1) (∗ref2))
then we assume the antecedent

∑
ref

′ ↦→𝑝 id∈𝐻 𝑝 = 1 then we have:
∑

∀ref ∈ refs(t′) .
ref ↦→𝑝′ id ∈ 𝐻 ′

= 𝑝+𝑞 =

1.
Part 2 is then follows trivially as there are no new resources created.

(4) t2 has the form (∗(v2,w2)), which restricts t1 to have the form (∗(v1,w1)), allowing the
reduction:

𝐻 ⊢ join (∗v1) (∗v2) {𝑠 𝐻 ′ ⊢ ∗v
𝐻 ′ ⊢ join (∗w1) (∗w2) {𝑠 𝐻 ′′ ⊢ ∗w

𝐻 ⊢ join (∗(v1,w1)) (∗(v2,w2)) {𝑠 𝐻 ′′ ⊢ ∗(v,w) {join⊗

Induction over the two premises gives us the result here, by threading the theorem’s
implications from 𝐻 to 𝐻 ′ via the first premise and then 𝐻 ′ to 𝐻 ′′ via the second.

• (push)
Γ ⊢ t : &𝑝 (A ⊗ B)

Γ ⊢ push t : (&𝑝A) ⊗ (&𝑝B)
push

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ and reduction:

𝐻 ⊢ push t {𝑠 𝐻 ′ ⊢ t′′

which has three possible derivations:
(1)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ push t {𝑠 𝐻 ′ ⊢ push t′ {push

Here, induction provides the goal, following the same scheme of generalising the inductive
evidence as for the{appL case.

(2) t has the form ∗(v1, v2) and we can reduce:

𝐻 ⊢ push (∗(v1, v2)) {𝑠 𝐻 ⊢ (∗v1, ∗v2)
{push∗

Here, the goal is trivial since the heap 𝐻 is preserved.
• (pull)

Γ ⊢ t : (&𝑝A) ⊗ (&𝑝B)
Γ ⊢ pull t : &𝑝 (A ⊗ B) pull

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ and reduction:

𝐻 ⊢ pull t {𝑠 𝐻 ′ ⊢ t′′

which has three possible derivations:
(1)

𝐻 ⊢ t {𝑠 𝐻 ′ ⊢ t′

𝐻 ⊢ pull t {𝑠 𝐻 ′ ⊢ pull t′ {pull

Here, induction provides the goal, following the same scheme of generalising the inductive
evidence as for the{appL case.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:61

(2) t has the form (∗v1, ∗v2) and we can reduce:

𝐻 ⊢ pull (∗v1, ∗v2) {𝑠 𝐻 ⊢ ∗(v1, v2)
{pull∗

Here, the goal is trivial since the heap 𝐻 is preserved.
• (newArray) (readArray) (writeArray) (deleteArray) (newRef) (swapRef) (freezeRef) (readRef)
All trivial as they have no reductions.

• (pack)
Γ ⊢ t : A id ∉ dom(Γ)

Γ ⊢ pack ⟨id′, t⟩ : ∃id .A[id/id′] pack

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ and reduction:

𝐻 ⊢ pack ⟨id, t⟩ {𝑠 𝐻 ′ ⊢ t′′

which has one possible derivation:
𝐻 ⊢ t {𝑠 𝐻 ⊢ t′

𝐻 ⊢ pack ⟨id, t⟩ {𝑠 𝐻 ⊢ pack ⟨id, t′⟩ {pack

Here, the goal is trivial since the heap 𝐻 is preserved.
• (unpack)

Γ1 ⊢ t1 : ∃id .A
Γ2, id, x : A ⊢ t2 : B id ∉ fv(B)

Γ1 + Γ2 ⊢ unpack ⟨id, x⟩ = t1 in t2 : B
unpack

with a heap 𝐻 such that 𝐻 ⊲⊳ Γ and reduction:

𝐻 ⊢ unpack ⟨id, x⟩ = t1 in t2 {𝑠 𝐻 ′ ⊢ t′′

which has two possible derivations:
(1)

y#{𝐻, v, t}
𝐻 ⊢ unpack ⟨id, x⟩ = pack ⟨id′, v⟩ in t {𝑠 𝐻, y ↦→𝑟v ⊢ t [y/x] {∃𝛽

Here, the heap is preserved with the exception of y. Since no references are affected, the
goal is achieved directly.

(2)
𝐻 ⊢ t1 {𝑠 𝐻 ⊢ t′1

𝐻 ⊢ unpack ⟨id, x⟩ = t1 in t2 {𝑠 𝐻 ⊢ unpack ⟨id, x⟩ = t
′
1 in t2

{unpack

Here, the goal is trivial since the heap 𝐻 is preserved.
□

Theorem D.4 (Multi-reduction borrow safety). For a well-typed term Γ ⊢ t : A and all

Γ0, 𝑠 , and 𝐻 such that 𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ), and multi-step reduction 𝐻 ⊢ t ⇒𝑠 𝐻 ′ ⊢ v, then for all

id ∈ dom(𝐻): ∑︁
∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 = 1 =⇒ ∃!ref ′ .ref ′ ↦→1id ∈ 𝐻 ′

i.e., for all resources with identifier id in the incoming heap and all references in the term pointing

to this resource, if the sum of all permissions pointing to this resource are 1 in the incoming heap

then their total permission of 1 is preserved from the incoming heap to the resulting term, with this

permission now contained in a single reference ref
′
.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:62 Daniel Marshall and Dominic Orchard

Furthermore, any new references in the final term should uniquely point to an identifier, and thus

have permission 1. That is, for all id′ ∈ dom(𝐻 ′) ∧ id
′ ∉ dom(𝐻) then:

∀ref ∈ refs(v). ∃!ref ′ . ref ′ ↦→1id
′ ∈ 𝐻 ′

Proof. By induction on the structure of the multi-reduction 𝐻 ⊢ t1 ⇒𝑠 𝐻 ′ ⊢ v.
• (refl)

𝐻 ⊢ v ⇒𝑠 𝐻 ⊢ v
refl

Since 𝑣 is a value which we know has type ∗A, then by the unique value lemma there are
two possibilities for the form of 𝑣 .

(1) 𝐴 = Resid A
′, and so 𝑣 has the form ∗ref . This restricts the typing as follows:

0 · Γ, ref : Resid A ⊢ ∗ref : ∗(Resid A)
∗ref*

Then we also have a heap 𝐻 such that 𝐻 ⊲⊳ (0 · Γ, ref : Resid A) which by inversion
of heap-compatibility for references implies that there exists a subheap 𝐻1 such that
𝐻 = 𝐻1, ref ↦→1id, id ↦→ v.
As we have a single reference in the heap annotated with 1, both the premise and the goal
of the implication in the theorem hold.

(2) 𝐴 = A
′ ⊗ B, and so 𝑣 has the form (v1, v2). This restricts the typing to two possible

derivations:

𝛾1 ⊢ v1 : A′ 𝛾2 ⊢ v2 : B
𝛾1 + 𝛾2 ⊢ (v1, v2) : A′ ⊗ B

⊗𝐼

𝛾1 + 𝛾2 ⊢ ∗(v1, v2) : ∗(A′ ⊗ B)
nec

𝛾1 ⊢ v1 : A′

𝛾1 ⊢ ∗v1 : ∗A′ nec
𝛾2 ⊢ v2 : B
𝛾2 ⊢ ∗v2 : ∗B

nec

𝛾1 + 𝛾2 ⊢ (∗v1, ∗v2) : ∗A′ ⊗ ∗B
⊗𝐼

𝛾1 + 𝛾2 ⊢ ∗(v1, v2) : ∗(A′ ⊗ B)
pull

In either case, by the unique value lemma we know that v1 and v2 are both restricted: they
can either be of the form 𝑎, meaning that one of the types in the product is Resid A, or they
can be of the form (v3, v4), meaning that one of the types is A′′ ⊗ B

′.
Proceed by inspecting each of v1 and v2 in turn. If the value is of the form ref , then
as above by inversion of heap compatibility the heap must contain a unique reference
ref ↦→1id, id ↦→ v, which satisfies the theorem as it is annotated with 1.
If the value is of the form (v3, v4), then we can restrict the typing of this subpart of the
derivation by exactly the above argument, and then inspect the form of v3 and v4 using
the unique value lemma following the same logic. This proceeds inductively; as typing
derivations are finite trees, this must eventually terminate in an reference which satisfies
the theorem at every leaf of the tree.

• (ext)
𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢ t2 𝐻 ′ ⊢ t2 ⇒𝑠 𝐻 ′′ ⊢ t3

𝐻 ⊢ t1 ⇒𝑠 𝐻 ′′ ⊢ t3
ext

First, consider the first premise, which is a single-step reduction of the form 𝐻 ⊢ t1 {𝑠 𝐻 ′ ⊢
t2.
From Theorem D.3, we know that for all Γ0 and heaps 𝐻 such that 𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ) then for
all id ∈ dom(𝐻): ∑︁

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 = 1 =⇒
∑︁

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻 ′

𝑝 ∈ {0, 1}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:63

and also that for all id′ ∈ dom(𝐻 ′) ∧ id
′ ∉ dom(𝐻) (new resources) we have:∑︁

∀ref ′ ∈ refs(t′) .
ref

′ ↦→𝑞 id
′ ∈ 𝐻 ′

𝑞 = 1

Now, we induct over the second premise, which is a multi-reduction of the form 𝐻 ′ ⊢
t2 ⇒𝑠 𝐻 ′′ ⊢ t3. Induction using the present theorem tells us that for all Γ0 and 𝐻 such that
𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ), then for all id ∈ dom(𝐻) we have:∑︁

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻 ′

𝑝 = 1 =⇒ ∃!ref ′ .ref ′ ↦→1id ∈ 𝐻 ′′

From our knowledge about the first premise (the single-step reduction), there are two cases.
• ∑

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻

𝑝 =
∑

∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻 ′

𝑝 = 1.

Then we know that fractions must sum to 1 for both references preserved from t1 and also
new references preserved from t2, but via the implication we obtained from induction on the
second premise, we know ∃!ref ′ .ref ′ ↦→1id ∈ 𝐻 ′′, which is exactly the required result.

• ∑
∀ref ∈ refs(t) .
ref ↦→𝑝 id ∈ 𝐻 ′

𝑝 = 0.

Then we only need to concern ourselves with new references preserved from t2, but via the
same implicationwe obtained via induction on the second premise, we know∃!ref ′ .ref ′ ↦→1id ∈
𝐻 ′′, again exactly as required.

□

Corollary D.5 (Uniqeness). For a well-typed term Γ ⊢ t : ∗A and all Γ0, 𝑠 , and 𝐻 such that

𝐻 ⊲⊳ (Γ0 + 𝑠 · Γ) and multi-reduction to a value 𝐻 ⊢ t ⇒𝑠 𝐻 ′ ⊢ ∗v, for all id ∈ dom(𝐻) then:

∀ref ∈ refs(t).(ref ↦→1id ∈ 𝐻 =⇒ ref ↦→1id ∈ 𝐻 ′)
∧ ∀id′ ∈ dom(𝐻 ′) ∧ id

′ ∉ dom(𝐻). ∀ref ∈ refs(v). ∃!ref ′ .ref ↦→1id
′ ∈ 𝐻 ′

i.e., any references contributing to the final term that are unique in the incoming heap stay unique in

the resulting term, and any new references contributing to the final term are also unique.

Proof. Follows directly from Lemma D.4, in the subcase where only one reference exists in
the initial heap (since

∑
ref ↦→𝑝 id∈𝐻 𝑝 = 1 must hold if there exists a single reference such that

ref ↦→1id ∈ 𝐻). □

E SOUNDNESS OF HEAP MODELWRT. EQUATIONAL THEORY
Theorem E.1 (Soundness with respect to the eqational theory). For all t1, t2 such that

Γ ⊢ t1 : A and Γ ⊢ t2 : A and t1 ≡ t2 and given 𝐻 such that 𝐻 ⊲⊳ Γ, there exist multi-reductions to

values that are equal under full 𝛽-reduction and evaluating any references to the value they point to

in the resulting heaps (written 𝐻 ′ (v1) and 𝐻 ′ (v2)):

𝐻 ⊢ t1 ⇒1 𝐻 ′ ⊢ v1 ∧ 𝐻 ⊢ t2 ⇒1 𝐻 ′′ ⊢ v2 ∧ 𝐻 ′ (v1) ≡ 𝐻 ′′ (v2)

Proof. • (𝛽∗)

clone (share v) as x in t
′ ≡ t

′ [pack ⟨id, v⟩/x]
𝛽∗

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:64 Daniel Marshall and Dominic Orchard

With typing derivation for the LHS:

Γ1, id ⊢ v : ∗A
Γ1, id ⊢ share v : □𝑟A

share
noIDs(Γ1) Γ2, x : ∃id′ .∗(A[id′/id]) ⊢ t : □𝑟B 1 ⊑ 𝑟

(Γ1 + Γ2), id ⊢ clone (share v) as x in t : □𝑟B
clone

And typing derivation for the RHS:

(Γ1 + Γ2), id ⊢ t [pack ⟨id, v⟩/x] : □𝑟B
By the value lemma (Lemma C.1) we know that v = ∗v′ therefore we know that we can
perform the following reduction (where we elide the output binding context and usage
context as they are not needed in the proof):

𝐻1, 𝐻2 ⊢ clone (share (∗v′)) as x in t

{clone+{share𝛽 → [𝐻1]0, 𝐻2 ⊢ clone [v′] as x in t

{clone𝛽 { [𝐻1]0, 𝐻2, 𝐻3, x ↦→𝑟pack ⟨id, 𝜃 (v)⟩ ⊢ t

where dom(𝐻1) ≡ refs(v) and (𝐻3, 𝜃, id) = copy(𝐻1)

• (∗assoc)
x#t3

clone t1 as x in (clone t2 as y in t3) ≡ clone (clone t1 as x in t2) as y in t3
∗assoc

With typing for the LHS:

Γ1, id1 ⊢ t1 : □𝑟1A1

Γ2, id2, x : ∃id′1.∗(A1 [id′1/id1]) ⊢ t2 : □𝑟2A2 Γ3, y : ∃id′2.∗(A2 [id′2/id2]) ⊢ t3 : □𝑟3A3

Γ2, x : ∃id′1 .∗(A1 [id′1/id1]) + Γ3 ⊢ clone t2 as y in t3 : □𝑟3A3
clone

(Γ1 + Γ2 + Γ3), id1, id2 ⊢ clone t1 as x in (clone t2 as y in t3) : □𝑟3A3
clone

where noIDs(Γ1) and noIDs(Γ2) and 1 ⊑ 𝑟1 and 1 ⊑ 𝑟2.
And with RHS typing, with the same conditions:

Γ1, id1 ⊢ t1 : □𝑟1A1 Γ2, id2, x : ∃id′1.∗(A1 [id′1/id1]) ⊢ t2 : □𝑟2A2

(Γ1 + Γ2), id1, id2 ⊢ clone t1 as x in t2 : □𝑟2A2
clone

Γ3, y : ∃id′2 .∗(A2 [id′2/id2]) ⊢ t3 : □𝑟3A3

(Γ1 + Γ2 + Γ3), id1, id2 ⊢ clone (clone t1 as x in t2) as y in t3 : □𝑟3A3
clone

There are four possibilities depending on the reduction of t1 and t2.
(1) Divergence: t1 →𝜔 (i.e., t1 diverges). Inwhich case then𝐻 ⊢ clone t1 as x in (clone t2 as y in t3){clone

𝜔

(diverging) and also 𝐻 ⊢ clone (clone t1 as x in t2) as y in t3{clone
𝜔 and so the the equa-

tion is trivially satisfied as both sides diverge.
If t1 converges, but t2 diverges then both sides diverge by similar reasoning. Similarly if
both diverge then overall both sides diverge.

(2) Convergence: t1 reduces to a value v1 and t2 reduces to a value v2. By the typing and the
value lemma (Lemma C.1) then ∃v′1. v1 = [v′1] and then ∃v′2. v2 = [v′2].
Then we can reduce as follows on the LHS:

𝐻 ⊢ clone t1 as x in (clone t2 as y in t3)
{ ∗ 𝐻 ′ ⊢ clone [v′1] as x in (clone t2 as y in t3)

{clone𝛽 { 𝐻1, 𝐻
′
1, 𝐻

′′
1 , x ↦→𝑟pack ⟨id1, ∗𝜃 (v1)⟩ ⊢ clone t2 as y in t3 dom(𝐻 ′

1) ≡ refs(v1) ∧ (𝐻 ′′
1 , 𝜃, id1) = copy(𝐻 ′

1)
{ ∗ 𝐻 ′′ ⊢ clone [v2] as y in t3

{clone𝛽 { 𝐻2, 𝐻
′
2, 𝐻

′′
2 , y ↦→𝑟pack ⟨id2, ∗𝜃 ′ (v2)⟩ ⊢ t3 dom(𝐻 ′

2) ≡ refs(v2) ∧ (𝐻 ′′
2 , 𝜃, id2) = copy(𝐻 ′

2)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:65

and on the RHS:

𝐻 ⊢ clone (clone t1 as x in t2) as y in t3
{ ∗ 𝐻 ′ ⊢ clone (clone [v1] as x in t2) as y in t3
{ 𝐻1, 𝐻

′
1, 𝐻

′′
1 , x ↦→𝑟pack ⟨id1, ∗𝜃 (v1)⟩ ⊢ clone t2 as y in t3 dom(𝐻 ′

1) ≡ refs(v1) ∧ (𝐻 ′′
1 , 𝜃, id

′
1) = copy(𝐻 ′

1)
{ ∗ 𝐻 ′′ ⊢ clone [v2] as y in t3

{clone𝛽 𝐻2, 𝐻
′
2, 𝐻

′′
2 , y ↦→𝑟pack ⟨id2, ∗𝜃 ′ (v2)⟩ ⊢ t3 dom(𝐻 ′

2) ≡ refs(v2) ∧ (𝐻 ′′
2 , 𝜃, id

′
2) = copy(𝐻 ′

2)

matching in both sides.

• (&unit)

withBorrow (𝜆x .x) t ≡ t

&unit

With typing derivation for the LHS:

Γ1 ⊢ t : ∗A
0 · Γ2, x : &1A ⊢ x : &1A

var

0 · Γ2 ⊢ (𝜆x .x) : &1A ⊸ &1A
abs

Γ1 + 0 · Γ2 ⊢ withBorrow (𝜆x .x) t : ∗A
with&

and typing derivation for the RHS:

Γ1 + 0 · Γ2 ⊢ t : ∗A

There are two possibilities depending on the reduction of t.
(1) If reduction of t diverges, then reduction on the LHS also diverges, since we repeatedly

apply the{with&R rule. Hence, the equation is trivially satisfied as both sides diverge.

(2) Otherwise, t reduces to a value v. By the typing and the value lemma (Lemma C.1) then
∃v′ . v = ∗v′.
Then we can reduce as follows on the LHS:

𝐻 ⊢ withBorrow (𝜆x .x) t
{ ∗ 𝐻 ′ ⊢ withBorrow (𝜆x .x) (∗v′)

{with& { 𝐻 ′, y ↦→𝑟 ∗ v′ ⊢ unborrow (x [y/x])
{ ∗ 𝐻 ′, y ↦→𝑟 ∗ v′ ⊢ unborrow y

{un& { 𝐻 ′, y ↦→𝑟 ∗ v′ ⊢ y
{ ∗ 𝐻 ′, y ↦→𝑟 ∗ v′ ⊢ ∗v′

and as follows on the RHS:

𝐻 ⊢ t
{ ∗ 𝐻 ′ ⊢ ∗v′

• (&assoc)

withBorrow (𝜆x .(𝑓 (g x))) t ≡ withBorrow 𝑓 (withBorrow g t) &assoc

If any of the terms 𝑓 , g or t diverge, then the LHS and RHS both diverge, and so the equation
is trivially satisfied.
Otherwise, all three terms must reduce to values v1, v2 and v3.
By typing and the value lemma (Lemma C.1) then v1 = 𝜆x1.t1, v2 = 𝜆x2.t2, and ∃v′3 . v3 = ∗v′3.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

131:66 Daniel Marshall and Dominic Orchard

Then we can reduce as follows on the LHS:
𝐻 ⊢ withBorrow (𝜆x .(𝑓 (g x))) t

{ ∗ 𝐻 ′ ⊢ withBorrow (𝜆x .(𝑓 (g x))) (∗v′3)
{with& { 𝐻 ′, y ↦→𝑟 ∗ v′3 ⊢ unborrow ((𝑓 (g x)) [y/x])

{ ∗ 𝐻 ′, y ↦→𝑟 ∗ v′3 ⊢ unborrow (((𝜆x1.t1) ((𝜆x2.t2) y)))
{𝛽 { 𝐻 ′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3) ⊢ unborrow (((𝜆x1.t1) t2))

If t2 diverges, then again both sides diverge. Otherwise, t2 must reduce to a value v4, and by
the value lemma ∃v′4 . v4 = (∗v′4). Then we can continue reducing as follows:

{ ∗ 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3) ⊢ unborrow (((𝜆x1.t1) (∗v′4)))
{𝛽 { 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), x1 ↦→𝑠′ (∗v′4) ⊢ unborrow (t1)

If t1 diverges, then again both sides diverge. Otherwise, t1 must reduce to a value v5, and by
the value lemma ∃v′5 . v5 = (∗v′5). Then we can continue reducing as follows:

{ ∗ 𝐻 ′′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), x1 ↦→𝑠′ ((∗v′4)) ⊢ unborrow ((∗v′5))
{un& { 𝐻 ′′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), x1 ↦→𝑠′ (∗v′4) ⊢ ∗v′5

and on the RHS:
𝐻 ⊢ withBorrow 𝑓 (withBorrow g t)

{ ∗ 𝐻 ′ ⊢ withBorrow (𝜆x1.t1) (withBorrow (𝜆x2 .t2) (∗v′3))
{with& { 𝐻 ′, y ↦→𝑟 ∗ v′3 ⊢ withBorrow (𝜆x1 .t1) (unborrow (t2 [y/x2]))

∼ 𝐻 ′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3) ⊢ withBorrow (𝜆x1 .t1) (unborrow (t2))
If t2 diverges, then again both sides diverge. Otherwise, t2 must reduce to a value v4, and by
the value lemma ∃v′4 . v4 = (∗v′4). Then we can continue reducing as follows:

{ ∗ 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3) ⊢ withBorrow (𝜆x1 .t1) (unborrow ((∗v′4)))
{un& { 𝐻 ′′, y ↦→𝑟 ∗ v3, x2 ↦→𝑠 (∗v′3) ⊢ withBorrow (𝜆x1 .t1) (∗v′4)
{with& { 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), z ↦→𝑟 ′ ∗ v′4 ⊢ unborrow (t1 [z/x1])

∼ 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), z ↦→𝑟 ′ ∗ v′4, x1 ↦→𝑠′ ((∗v′4)) ⊢ unborrow (t1)
If t1 diverges, then again both sides diverge. Otherwise, t1 must reduce to a value v5, and by
the value lemma ∃v′5 . v5 = (∗v′5). Then we can continue reducing as follows:

{ ∗ 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), z ↦→𝑟 ′ ∗ v′4, x1 ↦→𝑠′ ((∗v′4)) ⊢ unborrow (∗v′5)
{un& { 𝐻 ′′, y ↦→𝑟 ∗ v′3, x2 ↦→𝑠 (∗v′3), z ↦→𝑟 ′ ∗ v′4, x1 ↦→𝑠′ ((∗v′4)) ⊢ ∗v′5

• (let (𝑥,𝑦) = (split t) in (join x y)) ≡ t

If t diverges, then both sides diverge.
Otherwise t reduces to a value v which by (Lemma C.1) is over the form ∗𝑟𝑒 𝑓 .
Thus, we reduce by:

𝐻 ⊢ let (𝑥,𝑦) = split t in (join x y)
{ ∗ 𝐻 ′, id ↦→ v, ref ↦→𝑝 id ⊢ let (𝑥,𝑦) = split (∗ref) in (join x y)

{let⊗ +{splitRef {∗ 𝐻 ′, id ↦→ v, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id ⊢ let (𝑥,𝑦) = (∗ref1, ∗ref2) in (join x y)

{⊗𝛽 { 𝐻 ′, id ↦→ v, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id, x′ ↦→1 ∗ ref1, y′ ↦→1 ∗ ref2 ⊢ join x

′
y
′

({prim+{var)*2 {∗ 𝐻 ′, id ↦→ v, ref1 ↦→ 𝑝

2
id, ref2 ↦→ 𝑝

2
id, x′ ↦→1 ∗ ref1, y′ ↦→1 ∗ ref2 ⊢ join (∗ref ′1) (∗ref ′2)

{joinRef {∗ 𝐻 ′, id ↦→ v, ref ′ ↦→𝑝 id, x
′ ↦→1 ∗ ref1, y′ ↦→1 ∗ ref2 ⊢ ∗ref ′

Evaluating under the heap (𝐻 ′, id ↦→ v, ref ′ ↦→𝑝 id, x
′ ↦→1 ∗ ref1, y′ ↦→1 ∗ ref2) (∗ref ′) = 𝑣 .

The RHS then reduces to: 𝐻 ′, id ↦→ v, ref ↦→𝑝 id ⊢ (∗ref)
Evaluating under the heap (𝐻 ′, id ↦→ v, ref ↦→𝑝 id) (ref) = 𝑣 , satisfying the goal.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

Functional Ownership through Fractional Uniqueness (Appendix) 131:67

• split (join t1 t2) ≡ (t1, t2)
If either t1 or t2 diverge then both sides diverge. Otherwise, we assume reduction to values,
using the value lemma to ascertain their form:

𝐻 ⊢ split (join t1 t2)
{ ∗ 𝐻 ′, id ↦→ v, ref1 ↦→𝑝 id, ref2 ↦→𝑞id ⊢ split (join (∗ref1) (∗ref2))

{joinRef { 𝐻 ′, id ↦→ v, ref ↦→(𝑝+𝑞) id ⊢ split (∗ref)
{splitRef { 𝐻 ′, id ↦→ v, ref ′1 ↦→ (𝑝+𝑞)

2
id, ref2 ↦→ (𝑝+𝑞)

2
id ⊢ (∗ref ′1 , ∗ref ′2)

Evaluating under the heap (𝐻 ′, id ↦→ v, ref ′1 ↦→ (𝑝+𝑞)
2

id, ref2 ↦→ (𝑝+𝑞)
2

id) ((∗ref ′1 , ∗ref ′2)) = (v, v).
The RHS then reduces to 𝐻 ′, id ↦→ v, ref1 ↦→𝑝 id, ref2 ↦→𝑞id ⊢ (∗ref1, ∗ref2).
Evaluating under the heap (𝐻 ′, id ↦→ v, ref1 ↦→𝑝 id, ref2 ↦→𝑞id) ((∗ref1, ∗ref2)) = (v, v), satisfy-
ing the goal.

□

REFERENCES
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning with Graded Modal

Types. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 1–30.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 131. Publication date: April 2024.

	Contents
	A Collected rules
	A.1 Typing
	A.2 Reduction rules for heap semantics
	A.3 Equational theory
	A.4 Parallel sum example in Granule

	B Substitution proofs
	C Type safety
	C.1 Progress proof
	C.2 Type preservation proof

	D Uniqueness and borrow safety proofs
	E Soundness of heap model wrt. equational theory
	References

