
Simple Agents Benefit Only From Simple Brains
Valeri A. Makarov, Nazareth P. Castellanos, and Manuel G. Velarde

Abstract— In order to answer the general question: “What does a
simple agent with a limited life-time require for constructing a useful
representation of the environment?” we propose a robot platform
including the simplest probabilistic sensory and motor layers. Then
we use the platform as a test-bed for evaluation of the navigational
capabilities of the robot with different “brains”. We claim that a
protocognitive behavior is not a consequence of highly sophisticated
sensory–motor organs but instead emerges through an increment of
the internal complexity and reutilization of the minimal sensory
information. We show that the most fundamental robot element, the
short-time memory, is essential in obstacle avoidance. However, in
the simplest conditions of no obstacles the straightforward memory-
less robot is usually superior. We also demonstrate how a low level
action planning, involving essentially nonlinear dynamics, provides
a considerable gain to the robot performance dynamically changing
the robot strategy. Still, however, for very short life time the brain-
less robot is superior. Accordingly we suggest that small organisms
(or agents) with short life-time does not require complex brains and
even can benefit from simple brain-like (reflex) structures. To some
extend this may mean that controlling blocks of modern robots are too
complicated comparative to their life-time and mechanical abilities.

Keywords— Neural network, probabilistic control, robot naviga-
tion.

I. INTRODUCTION

Cognition is one of the core concepts of artificial in-
telligence, involving processes such as perception, memory,
and thinking usually related to humans. Recent advances in
behavioral studies and robot design have led to formulation
of the concept of minimal cognition (see e.g. [1], [2]) that
in particular states: a model agent must be simple enough
to be computationally and analytically tractable, otherwise
there is no chance to deeply understand its behaviour. In this
article we address the navigation problem in mobile robotics
exemplifying the principle of minimal cognition by drawing
relation between the agent sensory-motor complexity, life-time
and the complexity of its brain.

In the 1980s and the first half of 1990s deterministic
approach to guide a robot towards a goal was in high promi-
nence (see e.g. [3]-[5]). This approach assumes implicitly that
the robot has infinite computational capacity, the complete
information on the external world, and the measurement, e.g.
of the distance or position, has no error. Although this concept
may work in some ideal (toy-like) conditions, frequently such
robots fail to perform properly.
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Numerous studies show that living organisms (especially
the simplest) have no huge computational capacity, neither
they rely on the precise measures nor reconstruct an exact
physical model of the environment, but they do perform very
successfully in a complex, dynamically changing world. So a
different logic should be behind of this success. Then a new
methodology, opposite to the deterministic approach, gained
interest.

Robots are inherently uncertain about their state and the
state of the environment. Accordingly the new approach was
based on probabilistic principles that scale better with the
complexity of real-world applications [6], [7]. The core of the
probabilistic approach is built upon the two items: probabilistic
perception and control. When, for example, guessing a quan-
tity from sensor data, the probabilistic approach computes the
whole probability distribution, instead of generating a single
best guess only. Moreover, a probabilistic robot knows about
its own ignorance, a key prerequisite of truly autonomous
robots. As a result, such a probabilistic robot can gracefully
recover from errors, for instance in the kidnapped robot
problem [8]. A recent example of the probabilistic approach is
MEDUSA algorithm [9]. Offering many advantages over the
deterministic approach the probabilistic robots usually require
a very high computational capacity to the robot and a need of
approximation.

In the following sections we make use of the concept of
minimally cognitive artifacts to answer the question: What
does a simple agent with a limited life-time really require
for constructing a useful representation of the environment?
A widely accepted idea is that the system should exploit
statistical dependences contained in the sensory signals and
reduce redundancy [10]-[15]. However, the limited life-time
implies that sometimes an agent has no time or capability
to generate objective and action-independent response. The
system should make use of a personalized representation of
the world that depends on its own physical properties, which,
as we shall see further, in certain circumstances can lead to
the surprising conclusion that a complex brain is useless for a
simple organism.

II. THE ROBOT PROBABILISTIC SENSORY - MOTOR LAYERS

In this section we adopt the concept of probabilistic percep-
tion and motor control, and propose a robot platform, i.e. the
sensory and motor layers. To reduce the problem dimension,
staying in the minimal cognition principle, we consider very
simple sensor and motor layers. This will later allow us to
study how the navigational capabilities of the robot change
when its brain evolves.

Figure 1A sketches the general robot architecture including
the sensory, neural network (the “brain”), and motor layers.
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We shall deal with a robot having a limited life time, able
to move in a limited space (a room) with a goal to reach a
target. The robot moves one step at a time (Fig. 1B) in either
of four directions (left, right, up, down). The limited life-time
implicitly forces the robot to go to the target in the minimal
number of steps.

Robot
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Fig. 1. A) General scheme of a robot consists of three main blocks: sensory
system, neural network (brain), and motor control. B) The robot moves one
step at a time in either of four directions with probabilities depending on the
input received by the motor layer.

A. Sensory Layer

The robot sensory system perceives stimulus emitted by the
target (e.g. sound or smell), whose intensity decreases with the
distance. For illustrations we assume that the stimulus intensity
decays as:

I(r) =
hI0

r + h
, (1)

where r is the distance from the current robot position to the
target, I0 is the intensity at the target, and h is the cut-off
constant. According to the limited resources concept, the exact
world model (1) is not available to the robot. Instead the robot
can compare but not measure the stimulus intensity between
the two consecutive steps getting the differential characteristic:

ΔIi = Ii − Ii−1 + δi, (2)

where δi is the sensor noise describing the measurement uncer-
tainty and uniformly distributed in [−δ, δ]. When the stimulus
difference is much higher than the uncertainty |ΔIi| � δ the
sensory system provides a reliable output. The radius at which
the robot “correctly hears” the target is:

r ≈
√

hI0

δ
. (3)

The robot performs a step at a time consequently the sensory
output occurs at integer multipliers of the step time interval Δ.
Without loss of generality we set Δ = 1. When the robot does
a step towards the target its sensory system produces a spike.

Then the output can be presented as a sequence of δ-functions
or spikes:

S(t) =
∑

k

δ(t − mk), (4)

where {m} is the set of steps with positive ΔI .
Here we note that the stimulus measurement, i.e. inferring

on the absolute value of I(r) is much stronger, unnecessary
requirement to the robot skill. The possibility of testing the
gradient of the stimulus intensity means that the robot has got
a simple one-step-memory capacity in the sensor. This allows
us to draw the first important conclusion: minimal (proto)
intelligence requires the memory capacity in the sensors. We
also add that the hardware implementation of such a sensor
can be achieved with few capacitors and switches.

B. Motor Layer

The robot motor layer is defined by two parameters: α and
γ (Fig. 1A). These parameters, either fixed in time or changing
from step to step, determine the robot navigational behaviour.

1) Directionality parameter α: Let us for simplicity fix
γ = 1, and assume that the sensory output is fed directly to
the motor layer (i.e. there is no intermediate neural network
between the sensory and motor layers). Then the robot next
step is defined by the successfulness of the previous action,
i.e. by the presence or absence of sensory spike. From Fig. 2
(left inset) it follows that the probabilities (Fig. 1B) are given
by:

pleft = pright = α,

(pahead, pback) =
{

(α, 1 − 3α), a spike received
(1 − 3α, α), otherwise.

(5)

An increase of α diminishes the probability of going back and
increases the probability to follow the successful direction.
Thus the constant α controls the robot directionality. In
the appropriate limits we get “Brownian” robot (α = 1/4,
absolutely stochastic), and “Purposeful” robot (α = 1/3) that
always does a step in the direction of the possible target
location. However, even in the later case the robot remains
probabilistic.

2) Modulation parameter γ (stochastisity level): A success-
ful previous step, defines the target location in the right half
space (Fig. 2 left inset). Consequently, the robot next move
should be either to go ahead or turn to the left or right. As
above mentioned the directionality parameter α is responsible
for that. Parameter γ scales the probability of going ahead, so
generalizing the motor layer.

The next robot step further divides the half-space into two
unequal parts. Since we assumed no a priory knowledge on
the target position, the probability to find the target in the
corresponding part is proportional to its area:

Psuccessful

Punsuccessful
=

S2

S1
⇒ Psuccessful =

S2

S1 + S2
, (6)

where S1 and S2 are the areas behind and in front of the
robot, respectively (Fig. 2 middle and right insets). According
to (6) the best strategy for the next step depends on the area
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Fig. 2. Sketch diagram illustrating the relation of the areas with possible
location of the target. The ratio of different areas gives the probability of the
next step to be successful or not.

ratio, i.e. on the current robot position in the room. Since the
robot has no information on its position in the room, a good
approximation is an open space, i.e. room boundaries are far
enough from the robot position. In this case the probabilities
are:

Pahead = 1 − 2
L

, Pturn =
1
2
− 2

L
, (7)

where L is the room size. For L � 1 Pahead = 2Pturn, thus
suggesting the optimal parameter value to be γ ≥ 2.

The motor layer parameters satisfy to the condition: β+(2+
γ)α = 1. From this condition γ is limited by γ ≤ γmax = (1−
2α)/α. We can equal the probability of going ahead and back
by setting the modulation parameter: γeq = 1

2α − 1. γ < γeq

corresponds to a robot that tends to escape (go away) from
the target. The robot with γeq < γ ≤ γmax will move to the
target.

Let us make an important note here. The case

γ → ∞, αγ → 1

corresponds to a deterministic robot. Indeed, such a robot
always (with probability 1) follows the previous step in the
direction of increasing of the stimulus intensity. Hence in one
limit our concept of the probabilistic motor layer also includes
the deterministic case. Thus the modulation parameter γ biases
the robot behaviour from stochastic to deterministic.

III. OBSTACLES, PATH COMPLEXITY AND THE ROBOT IQ
TEST

We assume that the obstacles do not change the sensory
information available to the robot, but the robot never crosses
an obstacle. We recall that the robot has no information on the
presence and positions of the obstacles. In general, obstacles
on the pathway make harder the robot task of reaching the
target. Path complexity quantifies how complex the way from
the start to the end is. We define it as the mean number of steps
needed by Brownian particles (i.e. Brownian robots without
step limit) to reach the target:

Pc = 〈NBrownian〉 . (8)

Note that the definition (8) is universal. It is expressed in
a natural robot measure – the number of steps, and it is a
function of the obstacle geometry and the distance to the target,
but not of the capabilities of a particular robot. Besides its
use does not require precise and complete information on the
external world (room) configuration. The Pc is limited from
below by the minimal initial distance to the target and can

Room configuration

Empty Small obstacle Complex obstacle

Path complexity (×105) 6.44 6.59 6.81

be infinite when the target is unreachable, i.e. when no path
connecting the starting robot position and the target exists. We
quantified the path complexity for three room configurations
(see table): empty, with small obstacle and with complex
obstacle. As expected the empty room has the minimal Pc
and the room with the complex obstacle exhibits the highest
path complexity.

As a measure of the robot quality we introduce its intelli-
gence coefficient:

IQ = k log
(

Pc
〈Nsteps〉 ,

)
(9)

where 〈Nsteps〉 is the mean number of steps required by the
robot to reach the target, and k = Nsc/Ntr ≤ 1 is the robot
successfulness, i.e. the ratio of the number of successful target
reaching to the number of statistical experiments or trials. Thus
the robot that frequently fails to reach the target is penalized.

We performed exhaustive statistical experiments using as
a test bed the three different room configurations: empty,
with small obstacle, and with complex obstacle. In the empty
room the robot IQ (Fig. 3A) is a growing function of both
parameters α and γ. The maximum “intelligence” the robot
shows at γ = 10 and α = 0.083. However, when even a
small obstacle appears on the path, this robot strongly loses
in performance (Fig. 3B). The better strategy would be to
reduce the modulation parameter γ to 2 but still keeping α
maximal. Thus for simple obstacles we need to decrease the
robot determinism without changing the strategy.
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Fig. 3. Robot IQ for different values of the motor layer constants and different
configurations of the environment (room): A) in an empty room, B) in a room
with small obstacle, and C) in a room with complex obstacle.

In the presence of the complex obstacle (Fig. 3C) all curves
for different modulation parameter γ have a maximum at
intermediate values of α. Surprisingly all maxima have similar
robot IQ. This means that in the presence of complex obstacles
the robot determinism is less important but the strategy should
be changed, by decreasing of the directionality coefficient α
to an intermediate value. Indeed to avoid a complex obstacle
the robot should make a random walk backwards from the
target and then to one of the side. Just decreasing γ we cannot
achieve this behavior, since the robot most likely will return
back to the trap.
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IV. FIRST NEURON: MEMORY SKILL

In the previous section we considered robot models having
no “brain”, but only direct sensory – motor connection. Experi-
ments with such a robot showed that in different environmental
conditions different choice of the motor layer parameters is
required. The next step introduces a simple brain (a network
of artificial deterministic neurons) to the simple agent. This
network can have an internal dynamics and is activated by the
robot sensory system.

The sensory spike train (4) innervates the neuron according
to:

du

dt
= −u

λ
+ J + wS(t), (10)

where u is the “membrane” potential, J is the constant
membrane current, w accounts for the synaptic strength, and
λ is the membrane time constant. As we shall show below
this neuron adds a short-time memory skill to the robot with
λ defining the “forgetting” time scale.

To finish the robot design we couple the internal brain state
to the motor parameters:

α = α(u, j), γ = γ(u, j). (11)

A. Memory Updating Rule

The dynamics of the membrane potential u at the j-th step
is given by:

u(j+ε) = u(j−1+ε)e−
1−ε

λ +(1−e−
1−ε

λ )λJ +wδj,m, (12)

where ε is an infinitesimal constant, δjm is the Kronecker
symbol defining whether a sensory spike at j-th step occurs
or not. Without loss of generality, rescaling and shifting the
membrane voltage u �→ wu + λJ , we get from Eq. (12) the
following 1D map:

uj = Buj−1 + δ(j,m), (13)

where B = e−1/λ defines how strongly the next brain state
keeps track of the previous one. Thus map (13) describes short
time memory. The bigger the λ the slower the system forgets
its past. Our previous robot design corresponds to λ = 0, i.e.
to a robot with no memory.

The map (13) now can be used as an updating rule for the
memory state. We note that such memory realization does not
consume the memory (computer resources) since the internal
variable u is updated at each state using only the constant
B, previous value of u, and last sensory output (presence
or absence of spike). Nevertheless the robot past affects its
current state so the robot remembers its behavior.

In general case the map (13) admits complex solutions.
Figure 4 illustrates some important particular cases of the
map dynamics under different periodic inputs from the sensory
layer.

uj -1

uj

1

sensory output

uj -1

uj

1

uj -1

uj

1

A

uj -1

uj

1

sensory outputB

sensory outputDsensory outputC

Fig. 4. Examples of periodic sensory outputs and the dynamics of the sensory
neuron driven by those stimuli. A) Periodic spikes from the sensory unit lead
to a successive increase of the state variable uj = 1−Bj−1

1−B
+ Bj−1u1

by progressively decreasing steps towards the fixed point of the map (14) at
u+ = (1 − B)−1, i.e. the robot “learns” the good strategy; B) No spike from
the sensory unit, i.e. the robot goes away from the target, leads to a successive
decrease of the state variable to u− = 0; C) Period two spikes, i.e. the
robot does steps towards and backwards. The internal state oscillates between
two different states u+

c = 1
1−B2 , and u−

c = B
1−B2 ; D) More complicated

sensory signal (two steps forward, one backward) provokes period three stable
fixed point.

B. IQ of the Robot with Memory

For illustration we used the simplest form of (11):

αj = α0, γj =
γ0

1 − B
uj , (14)

where α0 and γ0 are the coefficients of the motor layer of the
robot with no memory. We simulated the robot motion in dif-
ferent room configurations evaluating the robot IQ according
to (9). Figure 5 summarizes results.

Not surprisingly in an empty room the memory does not
give any gain comparing to the memory-less robot. The robot
IQ even reduces for longer memory scales (upper insets in
Fig. 5). This is explained by the memory “inertness”. Due to
the inevitable presence of randomness in the sensory output,
for big λ the memory state never reaches the optimal value.
Instead it oscillates according to (13) around some suboptimal
value similar to Fig. 4D. This is equivalent to an effective
decrease of the modulation parameter γ due to (14), which
biases the robot from deterministic to stochastic behavior.
As we observed before (Fig. 3A) such a decrease leads to
a decrease of the robot IQ leading to the conclusion that
“thinking to much” is not good in a simple situation. However,
the picture significantly changes in the presence of obstacles.
Even small obstacle was a big problem for the memory-less
robot in the case of γ = 10 (Fig. 3B). The simple memory unit
with λ ≈ 1 greatly improves the robot performance (middle
inset in Fig. 5). In the presence of a complex obstacle the
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Fig. 5. Comparative performance (IQ test) of robots with (blue curves) and
without (red dashed lines) memory skill in different environments. λ defines
the memory time scale with λ = 0 corresponding to the memory-less robot.

robot with the simplest brain does not leave any chance to its
memory-less counterpart. For λ ≈ 2 it wins both for γ = 2
and γ = 10 (Fig. 5 lower inset). Noticeably that the robot IQ
raises up to the values relatively closed to the IQ of the simple
memory-less robot in the empty room (IQ = 4 vs 6), i.e. such
a robot copes very successfully with the complex obstacle and
performs practically equally in the empty room. We also note
that IQ of the robot with memory is practically the same (about
4) for essentially different values of the modulation parameter
γ, i.e. the robot behavior is more robust.

V. SECOND NEURON: ACTION PLANNING

To make the robot more flexible, capable to change the
strategy “on the fly”, let us now further improve the robot
brain model by introducing one more neuron that we shall
refer to as motor neuron.

First, we note that a change of strategy is not possible with-
out having memory, i.e. planning is a superior brain function.
Second, it involves essentially nonlinear dynamics, i.e. any
linear extension can be viewed as a memory modification that
may lead to quantitative but not qualitative improvements.

The membrane dynamics of the moto-neuron reads:

v̇ = f(v) + u, (15)

where f(v) is a nonlinear function that for reasons of hardware

implementation we choose in a piece-wise linear form:

f =

⎧⎨
⎩

− v
k , if v < bk

(b−a)v−b(1−k)
1−(1+b−a)k if bk ≤ v ≤ 1 − (1 − a)k

−1 + (1 − v)/k if v > 1 − (1 − a)k
(16)

with a, b, and k being constants. Equations (15) and (16) define
a piece-wise linear map, which then is used as an updating rule
for the new brain variable vj = g(vj−1, uj−1) similar to (13).

The motor neuron allows better tuning the motor layer
parameters according to the task performing by the robot
at a given time instance. To test the robot performance we
built a room model with different obstacles of different shape
(Fig. 6A) and ascribed to three different robots, called accord-
ing their brain structures as: “brain-less”, “sensory neuron”,
and “sensory+motor neurons”, a task to search for objects
appearing at random positions in the room. The robots have
limited operational time interval (life-time) to perform each
task. If in the given time interval the robot finds an object we
assume that the task has been accomplished.

brain-less sensory neuron

3927 steps 967 steps

sensory + motor neurons

1542 steps

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Brain-less

Sensory neuron

Sensory + motor neurons

s
u
c
c
e
s
s

[%
]

number of stepsavailable

A

B

Fig. 6. Comparative performance in target searching for three different robot
designs. The robots are instructed to search for the targets that appear at
random positions in the untidy room of (353×448) size. A) Examples of the
robot trajectories from the initial position marked by blue square to the target
marked by green circle. Obstacles are shown in black. Blue dashed circles
highlight the points where robots got stacked and spent a lot of steps before
finding a way out. B) Mean success rate to find an object by different robots
for a given number of steps.

Figure 6A shows examples of robot trajectories. All the
three robots find the object. However they spend considerably
different amount of steps: 3927, 1542 and 967. In general
trajectories of the brain-less robot are quite straightforward,
so it usually wins when the target is nearby. However it also
frequently stacks even in simple obstacles (Fig. 6A). The
internal neural dynamics makes the robot trajectory less direct
but also helps to get out from obstacles.

Figure 6B shows the mean success rate. For a given accept-
able percentage of success the robots require different time
intervals. For small rates, less than 30% (i.e. only about 1 of
3 objects is found by the robots), the brain-less robot wins the
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competition. It occurs due to frequent appearance of objects
just in front of the robot initial position. However, such a
robot cannot reach even 45% of success for any time interval,
i.e this robot finds less than 45% of the target whatever time
it has. The presence of the memory neuron provides a gain
for the number of steps bigger than 2000. Then the robot
possessing the short time memory significantly improves the
success rate, finding those targets that are unreachable for the
“brain-less” robot. This result is in accordance with Fig. 5,
where the memory function led to a gain only in environments
with obstacles on the robot path. Finally the second “action
planning” neuron improves even more the robot skill. As we
expected, for the small number of steps it provides much
better performance over the robot with single memory neuron,
achieving the same as the brain-less robot performance at 1000
steps. For bigger step number, the robot with action planning
is superior. Thus the motor neuron profitably changes the robot
strategy according to the task complexity.

VI. CONCLUSIONS

We have proposed a probabilistic model of a robot platform
including sensory and motor layers. We have implemented
a limited life time, which may be given e.g. by the battery
charge or a limited operational time interval, and ascribed to
the robot a goal of searching for a target. The robot sensory
skill includes the simplest differential sensor that does not
explicitly measure the sensory intensity neither its absolute
position. The motor layer is described by two parameters
controlling the strategy and stochasticity. With no doubts the
robot performance could be easily increased by improving
the robot sensory or/and motor layers. However we claim
that a protocognitive behavior is not a consequence of highly
sophisticated sensory–motor organs but emerges through an
increment of the internal complexity and reutilization of the
minimal sensory information.

Using the platform as a test-bed we have shown that in
the presence of obstacles the robot strategy and the level of
determinism on the motor layer should be flexible. Simple
obstacles can be overcome by reducing the robot determin-
ism and keeping the strategy, whereas for avoiding complex
obstacles a strategy change is required.

Starting from the simplest robot we have introduced a
“brain” based on a simple neural network using deterministic
dynamical systems. This helped to solve the problem of
extensive computation and also provided robustness against
perturbations. We have shown that the most fundamental
robot element, the short-time memory, is essential in obstacle
avoidance. However, in the simplest conditions of no obstacles
the straightforward memory-less robot is usually superior.
Thus the memory is only good in complex environments
and a superior brain function is necessary to improve the
robot performance. Then we have shown that low level action
planning involves essentially nonlinear dynamics and provides
a considerable gain to the robot performance dynamically
changing the robot strategy. Still, however, for very short
life time the brain-less robot was superior. Accordingly, we
suggest that small organisms (or agents) with short life-time do

not require complex brains and even can benefit from simple
brain-like (reflex) structures. To some extend this may mean
that controlling blocks of modern robots are too complicated
comparative to their life-time and mechanical abilities.
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