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Detecting Anomalies and De-Noising Monitoring Data from Sensors: 27 

A Smart Data Approach  28 

 29 

Abstract: When monitoring safety levels in deep pit foundations using sensors, anomalies (e.g., 30 

highly correlated variables) and noise (e.g., high dimensionality) exist in the extracted time 31 

series data, impacting the ability to assess geotechnical and structural safety risks. Our research 32 

aims to address the following question: How can we detect anomalies and de-noise monitoring 33 

data from sensors in real time to improve its quality and use it to assess geotechnical safety 34 

risks? In addressing this research question, we develop a hybrid smart data approach that 35 

integrates Extended Isolation Forest and Variational Mode Decomposition models to detect 36 

anomalies and de-noise data effectively. We use real-life data obtained from sensors to validate 37 

our smart data approach while constructing a deep pit foundation. Our smart data approach can 38 

detect anomalies with a root mean square error and signal-to-noise ratio of 0.0389 and 24.09, 39 

respectively. To this end, our smart data approach can effectively pre-process data enabling 40 

improved decision-making and the management of safety risks. 41 

 42 

Keywords: Anomaly, deep pit foundations, de-noise, detection, smart data, safety risks 43 

  44 
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1.0 Introduction 45 

Developments in sensing and data-processing technologies have enabled the effective 46 

monitoring of engineering data during the construction of deep pit foundations enabling 47 

geotechnical safety risks to be examined in greater detail (Zhou et al., 2019a;b; Asadzadeh et 48 

al., 2020). The data extracted and transmitted from sensors is imperfect, containing anomalies 49 

and noise, which severely jeopardizes its accuracy and completeness, which can also be 50 

exacerbated by random disturbances (Bao et al., 2019; Nessa et al., 2020; Li et al., 2021; Liu 51 

et al., 2022; Seites-Rundlett et al., 2022). 52 

 53 

Anomalies do not comply with the expected patterns (e.g., data missing) and possess various 54 

characteristics, which are common when using sensors. They generally occur due to faults, 55 

transmission errors, or structural damage (Kromanis and Kripakaran, 2013; Yi et al., 2013). 56 

Consequently, anomalous data may provide false information for decision-making and 57 

determination of safety risks (e. g., assessing geotechnical conditions). Thus, monitoring data 58 

needs to be automated and accurately detect anomalies to ensure it is robust and relevant for 59 

risk assessment (Nguyen and Goulet, 2019). 60 

 61 

However, detecting anomalies is challenging due to the high dimensionality and correlations 62 

between the extracted engineering data (Thudumu et al., 2020). As sensors continuously 63 

monitor data, it is unfeasible to inspect and detect it in real time manually. Thus, several 64 

machine-learning approaches, such as neural network classifiers and decision trees, have been 65 

proposed to detect anomalies in real-time (Zuo and Xiong, 2019; Huang et al., 2020). While 66 

such approaches can detect anomalies quickly, they depend on several labeled 67 

(normal/abnormal) databases for their identification (Ahmed et al., 2016). Furthermore, labeled 68 

samples often contain noise generated by external disturbances. In the case of data monitoring 69 
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in deep pit foundations, such disturbances are attributable to movements and vibrations 70 

generated by plants and equipment. 71 

 72 

To detect anomalies, supervised and unsupervised approaches have been adopted widely. 73 

Commonly used supervised that can detect anomalies with high levels of performance (i.e., 74 

low false alarm rate) are the Support Vector Machine (Bhavsar and Waghmare, 2013) and 75 

Random Forest (Hasan et al., 2014). The datasets that employ supervised approaches in 76 

complex engineering environments require high-quality labeling. But datasets are often 77 

incomplete, requiring labeling to be undertaken manually, which is a time-consuming process. 78 

Contrastingly, the unsupervised approach does not require labeling. Their use has been 79 

advocated for detecting anomalies in sensor data (Chen et al., 2017). However, the detection 80 

rate is always low, and false-positive rates are high (Chen et al., 2017). Typical techniques used 81 

to process signals are the Wavelet Transform, Fourier Transform, and Empirical Mode 82 

Decomposition (EMD), though each has limitations (Abbate et al., 1997; Urciuolo and Marta, 83 

2008; Hou and Guo, 2020). For example, the Fourier transform is unsuitable for handling non-84 

stationary, non-linear signals with frequency over time (Urciuolo and Marta 2008), and the 85 

components of EMD are prone to modal aliasing (Hou and Guo 2020). 86 

 87 

Against this contextual backdrop, our research addresses the following question: How can we 88 

detect anomalies and de-noise monitoring data in real-time to improve its quality and use it to 89 

assess geotechnical safety risks? In addressing this research question, a hybrid smart data 90 

approach that integrates the EIF and Variational Mode Decomposition (VMD) models is 91 

proposed to effectively detect anomalies and de-noise monitoring data to improve its quality to 92 

assess safety risks. The Extended Isolation Forest (EIF), an unsupervised anomaly detection 93 

algorithm, can detect anomalies and performs comparably to supervised algorithms (Carrera et 94 
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al., 2022).  95 

 96 

The basic idea of EIF is similar to the Isolation Forest (IF), which does not rely on building a 97 

profile for data to find non-conforming samples and remedies the shortcomings of the IF, which 98 

arise due to biases in the way the branching of the trees takes place (Hariri et al., 2021). The 99 

EMD is an algorithmic method to detect and decompose a signal into principal “modes” and is 100 

widely used in various time-frequency analysis applications. The EMD method is adaptive and 101 

applicable to non-linear and non-stationary processes (Huang et al., 1998). The variational 102 

mode decomposition (VMD) (i.e., a non-recursive and noise robustness multi-resolution 103 

decomposition method) has better noise robustness performance than EMD in the application 104 

of vibration signal decomposition (Li et al., 2021). Furthermore, when compared with EMD, 105 

problems such as modal aliasing and end-point effects are better avoided (Cai et al., 2022), so 106 

the method is introduced in geotechnical engineering monitoring. 107 

 108 

Our research commences by reviewing existing studies on anomaly data detection and 109 

denoising (Section 2). We then present a novel smart data approach that integrates EIF and 110 

VMD models to address anomalies and de-noise monitoring data to improve the ability to 111 

assess safety risks (Section 3). Our approach is smart as we focus on extracting only relevant 112 

engineering data for making decisions about geotechnical safety risks (Matthews et al., 2022). 113 

Next, the feasibility and effectiveness of our proposed approach are presented (Section 4). We 114 

subsequently discuss the implications of our approach and identify its limitations (Section 5) 115 

before submitting our conclusions (Section 6). 116 

 117 

2.0 Monitoring Data from Sensors 118 

The quality of engineering data obtained from sensors plays a pivotal role in monitoring the 119 
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safety conditions in construction, especially in hazardous areas such as deep pit foundations. 120 

The detection of anomalous behavior from sensor data has received considerable attention in 121 

the literature. However, within the context of construction operations, research has been limited, 122 

though the problem of anomalies and noise reduction remains akin to other applications (e.g., 123 

Rabatel et al., 2011; Ahmed et al., 2016; Domingues et al., 2018; Hu et al., 2019). 124 

 125 

2.1 Detecting Anomalies and Noise 126 

Many approaches have been designed and developed to detect anomalies and are reported in 127 

the extant literature (Hill and Minsker, 2010; Cha and Wang, 2018). Existing sensor 128 

measurement approaches can be divided into three categories: (1) rule-based; (2) supervised 129 

learning-based; and (3) unsupervised learning-based (Huang et al., 2017; Cha and Wang, 2018; 130 

Huang et al., 2020; Gao et al., 2022). For example, Mu and Yuen (2015) formulated an outlier-131 

resistant extended Kalman filter to detect outliers caused by measurement errors. Similarly, 132 

Cha and Wang (2018) proposed an unsupervised anomaly-identification approach by 133 

modifying the original density-based fast clustering method. In this instance, Cha and Wang 134 

(2018) improved the ability to detect the location of structural damage by using a ‘Gaussian 135 

kernel function of radius’ to calculate the local density of data points. By the same token, under 136 

the assumption that measurement noise is Gaussian distributed, Huang et al. (2017) presented 137 

an anomaly-identification method in the noisy subspace of Principle Component Analysis. 138 

Examples of studies detecting anomalies from sensor measurement are shown in Table 1. 139 

 140 

Notably, several challenges arise when using the above approaches to detect anomalies. For 141 

example, the rule-based approaches fail to recognize malicious events where no rules have 142 

been specified (Thottan and Ji 2003). Indeed, rule-based systems are restricted to only 143 

identifying events where rules exist. In the case of supervised learning, training data needs to 144 
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be labeled, and algorithms cannot be used if this is not the case (Chandola et al., 2009; Ahmed 145 

et al., 2016). However, unsupervised learning approaches can train unlabeled data (Otoum et 146 

al., 2018). Despite unsupervised learning addressing this problem, training has challenges 147 

(Ahmed et al., 2016). Most unsupervised machine learning approaches to detect anomalies are 148 

evaluated on relatively small datasets in other domains (Inoue et al., 2017; Otoum et al., 2018). 149 

Moreover, with data being unlabeled, normal and abnormal signals can become mixed, 150 

rendering it difficult to demarcate the boundary between them. Therefore, normal data may 151 

contain anomalies in some specific scenarios. 152 

 153 

Table 1. Examples of detecting anomalies in sensor measurement studies 154 

 155 
Research approach Description Author (Year) 
Pattern recognition 
neural network 

Detection of multi-type data anomaly 
for structural health monitoring (SHM) Gao et al. (2022) 

Dynamic independent 
component analysis 

Identification of two types of data 
anomalies in the SHM system of a 
cable-stayed bridge and then infer the 
structural damage 

Huang et al. (2020) 

Data visualization and 
deep learning network 

Detect seven types of data anomalies 
in the SHM system of a long-span 
bridge 

Bao et al. (2019) 

Artificial neural 
network 

A distributed similarity test and an 
artificial neural network were proposed 
to identify drift, spikes, and bias 
anomalies in wireless sensor networks 

Fu et al. (2019) 

Neural network 

Estimate the state and detect the 
anomaly in a thermal power plant via a 
health monitoring system with 
multilayer perception 

Banjanovic-
Mehmedovic et al. 
(2017) 

Autoregressive 
modelling and 
Kalman estimator 

Detection of three types of data 
anomalies Chang et al. (2017) 

  156 

To this end, we aim to address the above challenges to develop an effective anomaly detection 157 
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approach to improve the quality of engineering data extracted from sensors within deep pit 158 

foundations. Thus, to detect anomalies, we propose using the EIF described below. 159 

 160 

2.1.1  Extended Isolation Forest 161 

The EIF model was first proposed by Hariri et al. (2021). It extends the model-free anomaly 162 

detection algorithm, Isolation Forest (iForest). The EIF extracts features from each monitoring 163 

dataset (e.g., the shaft force of steel shotcrete and building settlement) and builds a baseline 164 

model by creating an extended isolation forest tree collection. When new monitoring data is 165 

collected, it is mapped into each of these IFtrees, and an anomaly score is calculated. It will be 166 

defined as normal if its anomaly score is under a designated threshold value (Table 1). 167 

Otherwise, the monitoring data will be specified as abnormal. 168 

 169 

iForest samples n instances as a subset from the training dataset {{𝑋!, 𝑋", … , 𝑋#}, where Χ$ =170 

[Χ$,!, Χ$,", … , Χ$,&]' denotes one D-dimensional data instance and then generates a binary tree 171 

from the root node. It randomly chooses one dimension from all D dimensions and randomly 172 

samples a split value from the uniform distribution U(min$(!,…,*𝑋$,+ , max$(!,…,*𝑋$,+).  173 

 174 

Then the dataset is split into two parts: (1) {𝑋$|𝑋$,+ < 𝑠𝑝𝑙𝑖𝑡	𝑣𝑎𝑙𝑢𝑒; 𝑖 = 1,… , 𝑛}  which is 175 

passed to the left branch of the node; and (2) {𝑋$|𝑋$,+ ≥ 	𝑠𝑝𝑙𝑖𝑡	𝑣𝑎𝑙𝑢𝑒; 𝑖 = 1,… , 𝑛} which is 176 

passed to the right branch of the node. The procedure is repeated iteratively to create each node 177 

of the tree until only one distinct instance remains in one node or reaches the height limit. The 178 

EIF used an axis-obliqued splitting method to solve the issue that the split process of the 179 

original IF will generate artifacts. Specifically, EIF creates a hyperplane with the form of a 180 

point-norm equation to split the data as shown in Eq. [1]: 181 

 (Χ − Ρ) ∙ 𝑛' = 0 [1] 182 
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Where the point vector Ρ = {𝑝,|𝑝,~UGmin$𝑋$,, , max$𝑋$,,H; 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝐷} , the 183 

norm vector n = {𝑛,|𝑛,~𝑁(0,1)} . Then the split rule becomes: {𝑋$|(Χ − Ρ) ∙ 𝑛' < 0; 𝑖 =184 

1,…𝑛} → 𝑙𝑒𝑓𝑡	𝑏𝑟𝑎𝑛𝑐ℎ; {𝑋$|(Χ − Ρ) ∙ 𝑛' ≥ 0; 𝑖 = 1,…𝑛} → 𝑟𝑖𝑔ℎ𝑡	𝑏𝑟𝑎𝑛𝑐ℎ. 185 

 186 

The iForest algorithm assumes that the anomaly instances are rare. Such instances differ from 187 

those deemed normal in a given data set, making them more susceptible to isolation in several 188 

binary tree structures. In a random tree, instances are partitioned repeatedly until all instances 189 

are isolated. In contrast, nominal instances require many more splits to finally reach their leaf 190 

nodes (Li et al., 2020). For a given dataset, the algorithm takes n random samples of size m. A 191 

binary search tree is constructed for each random example, selecting a dimension and partition 192 

point for each comparison node in the tree. The anomaly score of a new data point is calculated 193 

by inserting it into each n random tree.  194 

 195 

Isolation refers to the separation of an instance. Anomalous data has the nature of ‘few and 196 

special’, and it is easy to isolate outliers from normal data. The iForest algorithm isolates data 197 

by recursively and randomly partitioning. Usually, normal data is typically dense and needs to 198 

be divided many times to be isolated. Conversely, abnormal data are outliers and only need to 199 

be randomly divided a few times to be isolated. In the whole process of isolation, a binary tree 200 

can represent the process of division. The earlier a point is divided, the more likely it is an 201 

abnormal point. An example of the partitioning process is presented in Figure 1, where the ‘red’ 202 

leaf node is most likely an outlier. 203 

 204 
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  205 
 206 

Figure 1. Example of the structure of an iTree 207 

 208 

The node (T) of the isolation tree is either external with no child or internal with one test and 209 

two daughter nodes (Tl, Tr), where the number of external nodes is n, the number of internal 210 

nodes is n−1, and the total number of nodes of an iTree is 2n−1 (Liu et al. 2012). A test consists 211 

of an attribute q and a split value p. Given a database X = {x1..., xn} of n in instances from a d-212 

variate distribution, to build an iTree, we recursively divide X by randomly selecting an 213 

attribute q and a split value p, until either: (1) the tree reaches a height limit, (2) |X| = 1 or all 214 

data in X have the same values (Liu et al. 2012).  215 

 216 

The Path length (h(x)) is determined by the number of edges x traverses an iTree from the root 217 

node until the traversal is terminated at an external node. We borrow the analysis from Binary 218 

Search Tree (BST) to estimate the average path length (E(h(x))) of iTree. The anomaly score 219 

(s) of an instance x is defined as: 220 

𝑠(𝑥, 𝑛) = 2-
!"#(%)'
(())        Eq. [2] 221 

 222 

Isolation tree

Root node

Internal node

Leaf node(Anomaly)

Leaf node(Background)
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𝑐(𝑛) = 2𝐻(𝑛 − 1) − V"(*-!)
*

W      Eq. [3]. 223 

 224 

Specific details of the assessment process can be found in Liu et al. (2008). 225 

 226 

2.2  De-noising Data` 227 

Due to the spatial-temporal uncertainty and complexity of working conditions in deep pit 228 

foundations, raw monitoring data invariably contains noise. The noise will interfere with data 229 

analysis and decision-making accuracy in this instance. Methods such as low-pass filtering (De 230 

et al., 2010), Wiener filtering (Aschero et al., 2010), adaptive learning (Ortolan et al., 2003), 231 

and Kalman filtering (Singh et al., 2018) are traditionally used to de-nose signals. Despite their 232 

success, such approaches have limitations, as they filter out useful information or reduce 233 

valuable features (Andrate et al., 2006; Xiao et al., 2019).  234 

 235 

To address the above limitations, a wavelet transforms a time-frequency domain method has 236 

been introduced to de-noise signals (Andrade et al., 2006; Maier et al., 2018). This method 237 

comprises three steps: (1) signal decomposition; (2) detail coefficient thresholding; and (3) 238 

signal reconstruction. When a wavelet transform is used, there is no requirement to incorporate 239 

artificial components into the original signal (Andrade et al., 2006; Maier et al., 2018). 240 

However, the limitation of such an approach is that the mother wavelet function must be pre-241 

defined. Additionally, the selection of different mother wavelet functions can affect detection 242 

performance (Maier et al., 2018; Xiao et al., 2019). 243 

 244 

Monitoring data is often mixed with multi-type noise. Thus, a novel signal analysis method is 245 

needed to decompose a multi-component signal into several band-limited intrinsic mode 246 
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functions (BLIMFs). The VMD effectively determines the signal segmentation in the 247 

frequency domain and the components' separation. It has also been proven to simultaneously 248 

achieve accurate signal separation, better noise robustness, and higher computational efficiency. 249 

With this in mind, we will use the VMD in this research to de-noise the data.  250 

 251 

Several studies have attempted to denoise the time series data using the traditional method for 252 

solving the signal denoising problem, which involves using linear time-invariant (LTI) filters 253 

(Selesnick et al., 2014; Prateek et al., 2021). An alternative approach uses wavelets; the main 254 

drawback of this approach is that it introduces pseudo-Gibbs artifacts at the singular points due 255 

to more local oscillations and smaller amplitude near signal discontinuities. And the sparsity-256 

based methods, such as compressed sensing with dictionary elements from an oversampled 257 

discrete Fourier transform (DFT) matrix, cannot reconstruct the signal perfectly. The modal 258 

decomposition algorithm handles non-linear and non-smooth signals with good adaptive 259 

decomposition capability. It can decompose complex signals into intrinsic modal function 260 

forms sorted by frequency from high to low and extract the decomposed modal function to 261 

construct a filter. As a modal decomposition algorithm, VMD is selected in our research as it 262 

can separate tones of similar frequencies to represent time series characterization. 263 

 264 

2.2.1  Variational Mode Decomposition 265 

The VMD proposed by Dragomiretskiy and Zosso (2013) is a non-recursive decomposition 266 

method used for adaptive and quasi-orthogonal signal decomposition. It can simultaneously 267 

decompose a multi-component seismic trace into a finite number of band-limited intrinsic 268 

mode functions (IMFs). The VMD generalizes the classic Wiener filter into multiple adaptive 269 

bands. Wiener filtering is one of the most ubiquitous tools in signal processing, particularly for 270 

signal denoising and source separation. In the context of audio, it is typically applied in the 271 
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time-frequency domain using the short-time Fourier transform (STFT) (Samuel and James, 272 

2008). The VMD algorithm is more robust to noise than the EMD-based adaptive 273 

decomposition methods (Dragomiretskiy and Zosso, 2013). The concepts and theories related 274 

to VMD are as follows.  275 

 276 

Definition 1: (Intrinsic Mode Function) 277 

Intrinsic Mode Functions are amplitude-modulated-frequency-modulated (AM-FM) signals, 278 

which differs from the definition of EMD.  279 

 280 

 𝜇0(𝑡) = 𝐴0(𝑡)cos	(∅0(𝑡)) [4] 281 

 282 

Where the phase𝐴0(𝑡) is an envelope of 𝜇0(𝑡) and ∅0(𝑡) is a non-decreasing function. The 283 

equation of phase ∅0(𝑡) and instantaneous frequency 𝜔0(𝑡) is as follow: 284 

 285 

 𝜔0(𝑡) =
+∅*(2)
+2

≥ 0 [5] 286 

 287 

Definition 2: (Total Practical IMF Bandwidth) 288 

The total practical bandwidth of an IMF is estimated as Eq. [6]. Depending on the actual IMF, 289 

either of these terms may be dominant. 290 

 291 

 𝐵𝑊34-54 = 2(Δ𝑓 + 𝑓54 + 𝑓34) [6] 292 

 293 

The workflow of the VMD, which we will follow, is presented in Figure 2. 294 
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 295 

 296 

Figure 2. Workflow of implementation of VMD 297 

 298 

The VMD comprises the following steps: 299 

 300 

Step 1: modes update. The modes (𝑢c0*6!(𝑤)) are updated by Eq. [7], where 𝛼 is the penalty 301 

factor, 𝜆 is the Lagrangian multiplier, 𝜇0 is the IMF. Wiener filtering is embedded for an 302 

update as the mode directly in the Fourier domain with a filter tuned to the current center 303 

frequency 𝑤0*;  304 

 305 

𝑢c0*6!(𝑤) =
78(9)-∑ ;<+

),-
+.* (9)-∑ ;<+

)
+/* (9)6=>?)(@)/"B

!6"C=@-@*
)B0

    Eq.[7] 306 

 307 

Step 2: Center frequencies update. The center frequencies are updated as the center of gravity 308 

of the corresponding mode’s power spectrum, as shown in Eq. [8] 309 

 310 

Construction of 
sliding window

Set the initial optimal 
K

Decomposition of 
sliding window data 

into IMF

Select effective IMF 
components and 

combine denoised 
data

Calculate RMSE and 
SNR metrics before 
and after denoising

Dynamically adjust 
the K
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𝜔0*6! =
∫ @E;<*

),-(9)E∞
1

0
+2

∫ E;<*
),-(9)E∞

1

0
+2

       Eq. [8] 311 

 312 

Step 3: Dual ascent update. For all 𝜔 ≥ 0, the Lagrangian multiplier 𝜆g*6! is updated by Eq. 313 

[9] as a dual ascent to enforce exact signal reconstruction until ∑ ‖𝑢c0*6!(𝑤) − 𝑢c0*(𝑤)‖""/0314 

‖𝑢c0*‖"" < 𝜀. 315 

 316 

𝜆g*6! = 𝜆g* + 𝜏G𝑓g − ∑ 𝑢c0*6!0 H       Eq. [9] 317 

 318 

Additional details about the VMD can be found in the works of Dragomiretskiy and Zosso 319 

(2013). 320 

 321 

3.0 Research Approach 322 

To recap, our research aims to develop a smart data approach to detect anomaly monitoring 323 

data and reduce noise to improve the quality of monitoring data extracted during the 324 

construction process of hazardous activities such as deep pit foundations. Our smart data 325 

approach extracts data relevant for decision-making to determine safety risks and consists of 326 

EIF and VMD. In the process of data collection, it is inevitable to produce some data that 327 

deviates from the rest of the observations in the sample to which it belongs. The reasons mainly 328 

include: (1) the failure of the equipment; (2) the abnormality of the collected data caused by 329 

the dynamic working environment.  330 

 331 

To obtain a high-quality time-series monitoring dataset, it is necessary to perform abnormal 332 

processing on the data. While noise and outliers are similar in their statistical distribution and 333 

characteristics, they originate from fundamentally different causes. The workflow of our 334 
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proposed method is presented in Figure 3. The research process we have adopted to develop 335 

our hybrid smart data approach consists of the following three steps (Figure 3):  336 

 337 

• Step 1 - Data segmentation: Extracted monitoring data is divided into segments using a 338 

rectangle sliding window. Then, various numerical features, such as root mean square 339 

(RMS) and kurtosis of each data window, are determined. 340 

• Step 2(a) - Extended isolation forest construction: The EIF is an outlier detector that 341 

builds an ensemble of iTrees for a given dataset. The EIF resolves the issues associated 342 

with assigning anomaly scores to given data points by using hyperplanes with random 343 

slopes (non-axis-parallel) to split data to create iTrees (Hariri et al., 2021) 344 

• Step 2(b) - Data anomaly detection: In an EIF, data are subsampled and processed in a 345 

tree structure based on random cuts in the values of arbitrarily selected features in each 346 

dataset. Each tree is grown until each instance is isolated into a leaf node. The samples 347 

with shorter branches indicate anomalies. 348 

• Step 3 - Variational model decomposition construction: As an adaptive signal processing 349 

method, the VMD removes harmonic noise and improves data quality. The VMD 350 

algorithm concurrently decomposes the input signal into several narrow-band modes. 351 

Each mode is band-limited around its center frequency, which leads to less spectral 352 

overlapping or instantaneous frequency fluctuation is observed in the VMD results. The 353 

VMD algorithm decomposes and reconstructs the monitoring data to achieve adaptive 354 

signal decomposition and noise reduction. 355 
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 356 

Figure 3. The workflow for the research  357 

 358 

We now explain in greater detail our research approach for detecting anomalies and de-noising 359 

the engineering data extracted from sensors used to monitor deep pit foundations by focusing 360 

on EIF and VMD. 361 

 362 

4.0   Case Study 363 

We use an explanatory case study to demonstrate and validate our hybrid smart data approach 364 

(Dubé and Paré, 2003). A deep foundations pit of a subway project in Wuhan, China, while under 365 

construction, is selected. The project was chosen as sensors were used to monitor geotechnical 366 

safety risks, and the researchers worked closely with contractors on several other studies. 367 

 368 

4.1  Case Description 369 

The selected subway project is a T-shaped transfer between stations A and B. Subway station 370 

A is an underground three-story double-column 13m island platform station. The total length 371 

of the station is 239.2m, the full width of the standard section is 22.5m, the structure height is 372 
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22.63m-25.08m, and the roof is buried deep about 3m-4.1m, both ends of the station are shield 373 

tunnel receiving wells. Subway station B is a 14-meter island-style station with two 374 

underground floors and two columns. The total outsourcing of the station is 634.105m, and the 375 

full width of the standard section is 23.1m. The landform can be classified as a denudation 376 

accumulation ridge area (grade III terrace), and the ground elevation of the exploration area is 377 

between 26.0 and 30.7m. 378 

 379 

 380 
 381 

Figure 4. Example of deep pit foundation 382 
 383 

4.2  Experimental Set-up 384 

We first install sensors while excavations are constructed to conduct this experiment, focusing 385 

explicitly on the supporting shaft’s axial forces and building settlement. The layout of these 386 

sensors is presented as follows:  387 

 388 

• Support shaft axial force monitoring: The axial force meter monitors the axial force of 389 

steel support. The meter is installed at the end of the steel support. In this case, four axial 390 

force monitoring points are established on the fourth and fifth layers of steel supports, with 391 

two monitoring points on each layer. The monitoring equipment used is the Vibrating 392 
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String Axial Force Meter produced by the Shenzhen JingSheng Tech Co., LTD, model 393 

MAS-AXF-40. The maximum range is 4000KN, a MAS of 0.1%, and a precision of ±0.5. 394 

• Building settlement monitoring: Based on the experience of experts, four-building 395 

settlement monitoring points were installed symmetrically on the four corners of the 396 

building, closest to the foundation pit. The monitoring equipment used is Photoelectric 397 

Static Level produced by TongWei Sensing, model ESJS-50. The measuring range is 398 

50mm, and the precision is ±0.1mm. 399 

 400 

Examples of sensors installed in the case are presented in Figure 5. After the sensors are 401 

installed, the data are transmitted and stored in the web-based monitoring system, as shown in 402 

Figure 6.  403 

 404 

 405 

Figure 5. Examples of sensors installed in foundation pit 406 
 407 
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 408 

Figure 6. Web-based monitoring data system 409 

 410 

4.3  Anomaly Monitoring Data Detection 411 

The four installed sensors act as the monitoring points and our data source, one of which is 412 

used as the baseline, and the other three monitoring points (CJ1, CJ2, CJ3) are for analysis. As 413 

noted in Figure 7a, the settlement data has no apparent abnormality; The anomaly data 414 

detection under one (i.e., CJ1), two (i.e., CJ1 and CJ2, and three (CJI CJ2, and CJ3) 415 

dimensional analysis. An anomaly value is calculated for each point under different training set 416 

sizes in anomaly data detection. The distribution of anomaly value is used to analyze the effect 417 

of dimension selection and dataset size on anomaly detection. The results of anomaly 418 

monitoring data detection under different training sets and dimensional analysis are presented 419 

in Figure 7b. 420 

 421 

Here we define the data with anomaly scores higher than 0.6 as outliers and analyze the 422 

anomaly scores of the outliers. Figure 7b shows that one-dimensional data has a higher anomaly 423 

score than two-dimensional and three-dimensional data. As the sizes of the training set change, 424 

the anomaly scores of the one-dimensional data also change, but these values generally exceed 425 

Monitoring points

• Temperature and humidity

• groundwater level

• Anchor cable pressure

• Steel Support Axial Force

• Support shaft force

• Column internal force

• Maintenance Wall Lateral Earth Pressure

• Reinforced concrete strain stress

• surface cracks
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0.78. Conversely, the anomaly scores of two-dimensional and three-dimensional data are lower 426 

than 0.74. The maximum value of the anomaly score of the two-dimensional data fluctuates 427 

between 0.71 and 0.74. The maximum value of the anomaly score of the three-dimensional 428 

data ranges between 0.69 and 0.71. The anomaly scores for outliers in high-dimensional 429 

datasets are more concentrated with lower anomaly scores. Thus, we can conclude that the 430 

iForest algorithm can process high-dimensional data (i.e., settlement monitoring data). The 431 

detection of outliers is smoother than the low-dimensional data, and the abnormal value is 432 

relatively lower. 433 

 434 

Again, four monitoring points are selected to analyze the steel support axial forces (ZCL-02-435 

21, ZCL-02-22, ZCL-04-C6, ZCL-04-C7). Our results are presented in Figure 8a, and we can 436 

conclude that the monitoring data of ZCL-04-C6 is abnormal. As a result, we then analyzed the 437 

anomaly data detection under different dimensional conditions, with the results being presented 438 

in Figure 8b. As seen from Figures 8 and 9, in the detection data of the iForest, the higher the 439 

dimension of monitoring data, the less sensitive it is to detecting anomalies. We can find the 440 

difference between single and multi-dimensional anomalies by analyzing high-dimensional 441 

monitoring data. The higher the dimension of monitoring data, the higher the anomaly value, 442 

and the easier it is to determine the cause of the abnormality. 443 

 444 

4.4  Evaluation Performance 445 

We compared the EIF with the iForest algorithm to determine which method can better identify 446 

abnormal points. Figure 9 shows the two-dimensional abnormal point detection of the steel 447 

support axial force monitoring data using EIF and a standard iForest algorithm. The left and 448 

right columns are the standard isolation forest and EIF algorithms. 449 

 450 
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 451 

(a) Examples of monitoring data 452 

 453 

(b) Settlement data: different dimensional and training set sizes 454 
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Figure 7. Examples of monitoring and settlement data 455 

 456 

(a) Examples of monitoring data 457 

 458 

(b) Steel support axial force: different dimensional and training set sizes 459 

Figure 8. Examples of monitoring steel support axial force data 460 
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Figure 9 shows that when the anomaly score is 0.75, all the anomalous data cannot be identified. 461 

We suggest that the reason is that the training set in this figure includes many abnormal data, 462 

and the data selection for model training cannot directly take the sliding window of a time point. 463 

 464 

4.4.1 Quality of Training Database 465 

The detection of anomalies using the EIF algorithm consists of two phases:  466 

 467 

1. Training: An isolated tree is built based on subsamples of the training set;  468 

2. Testing: An isolated tree calculates anomaly scores for each test sample. Hence, we 469 

design two group experiments to conduct this test: (i) a training database; and (ii) a 470 

training dataset without anomaly monitoring data. The size of the training database of 471 

these two group experiments is set to 800. The results are presented in Figure 10. 472 

 473 

Figure 10 shows that the training set that excludes abnormal monitoring data achieves better 474 

performance on abnormal data detection. We process the data by setting a threshold for the 475 

anomaly score; that is, data with an anomaly score over 0.7 will be removed. During data 476 

analysis, we conclude that the different performance is from the abnormal points not excluded, 477 

leading to the other points being no longer ‘isolated’ as the other data set. Therefore, in 478 

detecting anomalies in iForests, the quality of the training set should be maintained. 479 

 480 

4.4.2 Size of the Training Database 481 

In this experiment, the training set size ranges from 300 to 800. It is trained with a gradient of 482 

100, with the abnormal detection results presented in Figure 11. Here we can see that with 483 

increased increments in the training set, the algorithm achieves better performance on anomaly 484 

detection until the 600 mark, where almost all anomalies are detected. 485 
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 486 

Figure 9. The comparison results of EIF and iForest algorithms 487 
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 488 
 489 

Figure 10. The comparison result of using two training databases 490 

 491 

 492 

Figure 11. A comparison of the results for different training databases 493 

-40000 -20000 0 20000
800

900

1000

1100

1200

1300
without-anomaly-0.7

-40000 -20000 0 20000
800

900

1000

1100

1200

1300 standard-0.7

-40000 -30000 -20000 -10000 0 10000
800

900

1000

1100

1200
train size-300

-40000 -30000 -20000 -10000 0 10000
800

900

1000

1100

1200

train size-700

-40000 -30000 -20000 -10000 0 10000
800

900

1000

1100

1200

train size-800
-40000 -30000 -20000 -10000 0 10000
800

900

1000

1100

1200

train size-600
-40000 -30000 -20000 -10000 0 10000
800

900

1000

1100

1200

train size-400

-40000 -30000 -20000 -10000 0 10000
800

900

1000

1100

1200

train size-500



Advanced Engineering Informatics (Re-Submission) 

 27 

4.4.3 Effectiveness of EIF 494 

We use the steel support axial force dataset to verify the effectiveness of the EIF algorithm 495 

compared with the KNN algorithm and the ABOD (angle-based outlier detection) algorithm. 496 

We calculate the results using a two-dimensional dataset and a four-dimensional dataset, 497 

respectively, for analysis. The evaluation measures are area under the curve (AUC) and 498 

Accuracy. The AUC is an index normally used to evaluate the efficiency of classifiers, defined 499 

as the area under the receiver operating characteristic (ROC) curve. Accuracy is the proportion 500 

of instances in the monitoring data detected correctly. The results are shown in Table 2. 501 

 502 

Table 2. AUC and Accuracy of EIF, KNN, and ABOD 503 

Algorithm AUC Accuracy 

ABOD(2-Dimensional) 0.8629 89.5 

EIF(2-Dimensional) 0.8893 94.4 

KNN(2-Dimensional) 0.8827 93.7 

ABOD(4-Dimensional) 0.8964 94.9 

EIF(4-Dimensional) 0.8997 96.3 

KNN(4-Dimensional) 0.8634 89.6 

 504 

As can be seen from Table 2, the AUC and Accuracy of the four algorithms are basically 505 

consistent, and there is no noticeable difference. The accuracy of EIF and AMOD improved 506 

with the increase of the dataset dimension, while the accuracy of KNN decreased. The 507 

experimental results show that the EIF algorithm can effectively improve the execution 508 

efficiency of anomaly detection with a high-dimensional dataset. Therefore, EIF is suitable for 509 

anomaly detection on large-scale monitoring data. 510 

 511 
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4.5  Monitoring Data De-noising 512 

We select a dataset containing 1000 monitoring points based on the period and frequency of 513 

data collection for denoising sample data. Some studies found that the decomposition number 514 

K significantly influences the decomposition results (Xia et al. 2021; Wang et al. 2019). When 515 

the number of decomposition modes (K) is too low, under-decomposition will occur, and some 516 

‘modes’ cannot be recognized effectively (Xia et al. 2021; Wang et al. 2019). When K is too 517 

large, a particular ‘mode' in the signal may be ‘pulled’ into multiple IMF components, resulting 518 

in excessive decomposition (Li et al., 2019). In this study, the number of decompositions 519 

includes 1 to 9 in advance to choose the best K. The waveforms of the nine IMFs decomposed 520 

by the VMD are presented in Figure 12. K is the number of modes. In the original EMD 521 

description, a mode is defined as a signal whose number of local extrema and zero-crossings 522 

differ at most by one. In later related works, the definition is slightly changed into so-called 523 

Intrinsic Mode Functions (IMF); through the decomposition of different K ensemble members, 524 

the correlation coefficient between each IMF component and the sample data is calculated, 525 

with the results being presented in Table 3. 526 

 527 

From Table 3, we can conclude that when K is 2 and 3, the decomposed IMF components are 528 

valid according to the threshold value. It indicates that the dataset is underpinning, and the 529 

high-frequency noise is not isolated. So, these two modes are not analyzed later. We set the 530 

threshold as 0.1 of the value, which is the largest of all correlation coefficients. When the value 531 

of IMF is less than the threshold, we define the value as a failure. (Yu 2008) When K is 4~9, 532 

the effective IMFs are all 3. The first three IMF components are reconstructed. The 533 

reconstructed signal and the original data signal are calculated by the root mean square error 534 

(RMSE) and the signal-to-noise ratio (SNR). The RMSE and SNR are defined by Eq. [6] and 535 

Eq. [7]: 536 
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𝑅𝑀𝑆𝐸 = q!
*
∑ (𝑓F(𝑛) − 𝑓!(𝑛))"*      Eq. [6] 537 

 538 

𝑆𝑁𝑅 = 10 × log!F(
-
)
∑ 710(*))

-
)
∑ (71(*)-7-(*))0)

)    Eq. [7] 539 

 540 

Where, 𝑓F is the original signal data, 𝑓! is the reconstructed signal data. 541 

We can conclude that when K is 4, the RMSE is the smallest, and the signal-to-noise ratio SNR 542 

is the largest, so the denoising effect is the best, and the optimal K value should be selected as 543 

4. 544 

 545 

 546 

Figure 12. Waveforms of the nine IMFs decomposed by the VMD 547 

 548 

 549 

 550 

 551 

 552 

 553 
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Table 3. Correlation coefficients between IMF and original signal data under different K 554 

ensemble members 555 

 556 

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 

2 0.987 0.156        

3 0.982 0.179 0.119       

4 0.981 0.181 0.115 0.090      

5 0.980 0.181 0.111 0.085 0.075     

6 0.980 0.183 0.108 0.083 0.076 0.065    

7 0.980 0.184 0.107 0.081 0.074 0.065 0.047   

8 0.980 0.185 0.106 0.077 0.067 0.067 0.058 0.044  

9 0.980 0.185 0.106 0.077 0.065 0.063 0.059 0.046 0.038 

 557 

Table 4. RMSE and signal-to-noise ratio under different K values 558 

 559 

K 4 5 6 7 8 9 

RMSE 0.0389 0.0413 0.0438 0.0442 0.0453 0.0455 

SNR 24.09 23.58 23.07 22.98 22.77 22.74 

 560 

We use the same dataset to verify the effectiveness of the VMD algorithm compared with the 561 

EMD algorithm and the EEMD (ensemble EMD) algorithm. The evaluation measures are 562 

RMSE and SNR. The decomposition result of the EMD and EEMD for the signal is presented 563 

in Figure 13, and the results are shown in Table 5. As can be seen from the results, EEMD 564 

denoising is superior to EMD, and VMD denoising is better than EEMD, which has high SNR 565 

and low RMSE. 566 

 567 
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(a) (b) 

Figure 13. Decomposition result by EMD(a) and EEMD(b) 568 

 569 

Table 5. RMSE and signal-to-noise ratio of different algorithm 570 

 VMD EMD EEMD 

SNR 24.09 14.26 15.91 

RMSE 0.0389 0.1573 0.1479 

 571 

5.0   Discussion 572 

It has been suggested that big data analytics provides the basis to identify patterns and derive 573 

insights about safety issues in construction (Guo et al., 2016; Fang et al., 2020; Fang et al., 574 

2021; Liu et al., 2023). However, despite the espoused benefits of big data and there has been 575 

an increasing drive for construction organizations to embrace and apply its dimensions in their 576 

respective projects (Ngo et al., 2020), its adoption should be treated with a degree of skepticism 577 

“as big data is not always better data” (Ghasemaghaei and Calic, 108: p.147). Many 578 

construction organizations remain unprepared to effectively utilize big data derived from 579 

sensors for assessing geotechnical safety risks (Matthews et al., 2022).  580 

 581 

We suggest that the outcomes of our research can support decision-making in identifying 582 
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unsafe conditions based on big data. Our employed EIF, an anomaly detection method, is used 583 

to effectively identify anomalous data and retain the normal fluctuation characteristics within 584 

its time series. It can be helpful for subsequent data processing and provide high-quality data 585 

sources for subsequent data analysis. In addition, the denoise processing of monitoring data 586 

significantly reduces data errors and improves the accuracy of identifying unsafe conditions. 587 

Hence, the motivation to develop our hybrid smart data approach is to use monitoring data 588 

extracted from sensors to help construction organizations assess geotechnical safety risks.  589 

 590 

One of the challenges is that a significant amount of data collected from sensors used to detect 591 

geotechnical conditions contains noise, rendering it challenging to determine the correct 592 

information needed to train algorithms and undertake risk analysis. In addressing this void, we 593 

have developed a hybrid smart data approach that can detect noise and de-noise data extracted 594 

from sensors monitoring a building’s geotechnical conditions, impacting its structural safety. 595 

The contributions of our research are twofold.  596 

 597 

Firstly, we have developed an EIF approach to detect noise in monitoring data. Existing 598 

anomaly detection algorithms detect anomalies by understanding the distribution of their 599 

properties and isolating them from a normal data sample. Our employed EIF uses a model-free 600 

algorithm that does not rely on building a profile for data to find non-conforming samples. 601 

Instead, it utilizes anomalous data with various characteristics compared with normal data 602 

samples. In this instance, our employed EIF has computationally efficient and high accuracy 603 

without a profile of normal instances demonstrated in this case.  604 

 605 

Secondly, a VMD approach and dynamic threshold processing are used to de-noise the 606 

monitoring data to improve its validity. The value of the K has an important influence on 607 
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decomposing the data, as shown in Tables 2 and 3, which can prevent under-decomposition 608 

and over-decomposition problems of VMD (Dragomiretskiy and Zosso, 2013). Reconstructing 609 

the IMF components can effectively decompose the original data. By calculating the RMSE 610 

and SNR of the original data and the reconstructed signal, we get the optimal mode number of 611 

VMD. This means that when we reuse VMD for new applications, we need to pay attention to 612 

the setting of the K value to improve the effectiveness of data noise reduction. 613 

 614 

5.1 Limitations 615 

Despite the novelty of our research, it needs to be acknowledged that several limitations exist. 616 

The study was limited to a single project in the Wuhan subway and two types of monitoring 617 

geotechnical data (i.e., building settlement and steel support axial forces). Future research, 618 

therefore, is required to examine the generalisability of our approach in different projects and 619 

a broader range of activities that use sensors to monitor the geotechnical conditions that 620 

influence structural components. In addition, the experimental results demonstrate that the 621 

proposed method performs satisfactorily (i.e., RMSE and SNR are 0.0389 and 24.09, 622 

respectively). However, we did not conduct comparative experiments to evaluate our hybrid 623 

smart data approach’s performance (i.e., accuracy and computational efficiency) with other 624 

state-of-the-art measurement methods (e.g., deep learning-based). We suggest this limitation 625 

can be addressed by conducting additional experiments in our future work.  626 

 627 

6.0  Conclusion 628 

Anomaly identification and denoising are necessary tasks to improve the quality of monitoring 629 

data extracted from sensors in construction. Our research aims to develop a novel smart data 630 

approach that can effectively detect anomalies and de-noise monitoring data to improve its 631 

quality to assess geotechnical safety risks. Our smart data approach consists of an:  632 
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• Extended Isolation Forest algorithm, which extracts features from each monitoring 633 

dataset and is used to identify abnormal points; and  634 

• Variational Mode Decomposition to remove harmonic noise, thus improving data quality.  635 

 636 

A case of the Wuhan subway project is used to validate the effectiveness and feasibility of our 637 

proposed approach. The results demonstrated that by applying EIF and VMD, a high degree of 638 

accuracy could be achieved in detecting anomalies and denoising data. Our results show that 639 

our new method can detect anomalies with an RMSE and SNR are 0.0389 and 24.09, 640 

respectively. It was revealed that the EIF and VMD could accurately detect anomalies and de-641 

noise monitoring data. 642 

 643 

Even though our approach could not recognize all anomalies, our hybrid smart data approach 644 

can provide site management to improve their ability to assess geotechnical safety risks. 645 

Furthermore, we suggest that our approach can improve the quality of data extracted from 646 

sensors in deep foundation pits with minimal error. Thus, our proposed novel smart data 647 

approach effectively reduces noise from monitoring data extracted from sensors. 648 

 649 
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