

Software Metadata Extraction from Code Repositories: An overview

Daniel Garijo, Ontology Engineering Group, Universidad Politécnica de Madrid, Spain

Now you are familiar with **Codemeta**

- Community standard extending Schema.org
- JSON-LD
- Metadata is key for FAIR

https://codemeta.github.io/terms/

Metadata is key for Research Software Understanding

Given a software project:

- What is it about?
- Examples?
- Relation to other resources (data, papers)?
- Metadata?

Given two or more tools:

- What are their similarities?
- Differences?
- Main features?

How to quickly:

- run?
- repeat?
- reproduce?
- fix?
- combine?

Manually

- Codemeta generator

https://codemeta.github.io/codemeta-generator/

CodeMeta generator				
Most fields are optional. Mandatory fields will be highlighted	when generating Codemeta.			
The software itself	Discoverability and citation	Development community / tools		
Name	Unique identifier	Code repository		
My Software	10.151.xxxxx	git+https://github.com/You/RepoName.git		
the software title	such as ISBNs, GTIN codes, UUIDs etc <u>http://schema.org/identifier</u>	Continuous integration		
Description	Application category	https://travis-ci.org/You/RepoName		
My Software computes ephemerides and orbit propagation. It has been developed from early '80.	Astronomy Keywords	Issue tracker https://github.com/You/RepoName/issues		
	ephemerides, orbit, astronomy	Palatad links		
Creation date YYYY-MM-DD	Funding PRA_2018_73			
First release date	grant funding software development			
YYYY-MM-DD	Funder			
License(s)	Università di Pisa			
from <u>SPDX licence list</u>	Authors and contributors can be added below			

Automatically

- Software Metadata Extraction Framework (SoMEF)

Text classification: Software Metadata Extraction Framework

https://github.com/KnowledgeCaptureAndDiscovery/somef/

3	dgarijo Merge pull request #174 from KnowledgeCaptureAndDiscovery/dev			
	docs	Туроз		
	experiments	Improved header analysis. Fix #166		
	notebook	Fix #96		
	src	Typos		
Ľ	.gitignore	Fix #147 and working towards automatic corpus v		
۵	.readthedocs.yml	documentation		
D	Dockerfile	Fix #113 creating a Dockerfile		
۵	LICENSE	initial cleanup		
۵	README.md	Typos		
۵	config.json	Provide Fix for issues - 12, 35,36		
D	mkdocs.yml	typos and reorganization		
D	setup.py	Fix #113 creating a Dockerfile		

- Readme Analysis
 - Supervised classification
 - Regular expressions
 - Header analysis
- File exploration
 - o Notebooks
 - o Dockerfiles
 - o Documentation
- GitHub API

Results (Metadata)

+ provenance

Kelley, A., & Garijo, D. (2021). A framework for creating knowledge graphs of scientific software metadata. Quantitative Science Studies, 1-37.

- Paragraph-based text classification
- Four main categories (binary classification):
 - Installation
 - Description
 - Invocation

Truth Value	Category	Apprx. Ratio	Count
True	Description	0.5	275
False	Installation	0.125	68
	Invocation	0.125	68
	Citation	0.125	68
	Treebank	0.125	68
	Total	1.0	547

Classifier	Best pipeline	Precision	Recall	F-Measure
Description	CountVectorizer + LogisticRegression	0.85	0.79	0.82
Installation	TFIDFVectorizer + StochasticGradientDescent	0.92	0.9	0.91
Invocation	CountVectorizer + NaiveBayes	0.88	0.9	0.89
Citation	CountVectorizer + NaiveBayes	0.89	0.98	0.93

Simple classification pipelines yield adequate results

- Extraction based on frequent header analysis
 - Fuzzy matching based on synsets

Installation

Installation through Docker Wordnet	
docker pull uscisii2/kgtk	
To run KGTK in the command line:	Installation instructions
docker run -itrmuser root -e NB_GID=100 -e GEN_CERT=yes -e GRANT_SUDO=yes	uscisii2/kgtk:latest

KGTK: Knowledge Graph Toolkit

DOI 10.5281/zenodo.3828068 build passing coverage 33%

Regular expressions, based on common practices (e.g., DOI, .bib, etc.)

The Knowledge Graph Toolkit (KGTK) is a comprehensive framework for the creation and exploitation of large hyperrelational knowledge graphs (KGs), designed for ease of use, scalability, and speed. KGTK represents KGs in tabseparated (TSV) files with four columns: edge-identifier, head, edge-label, and tail. All KGTK commands consume and produce KGs represented in this simple format, so they can be composed into pipelines to perform complex transformations on KGs. KGTK provides:

SOMEF: Classifying software types based on README files

Using READMEs to **categorize** software

 Creating a methodology to recognize categories based on awesome lists

... and recognize their **nature**:

 Workflow, website, library, tool, ontology...

SOMEF: Recognizing Metadata Categories

- Name (GA)
- Full title (RE)
- Description (SC, HA)
- Citation (SC, RE, HA)
- Installation instructions (SC, HA)
- Invocation (SC)
- Usage examples (HA)
- Documentation (HA, FE)
- Requirements (HA)
- Contributors (HA)
- FAQ (HA)
- Support (HA)
- License (GA, HA, FE)
- Stars (GA)

Method used (provenance):

- Supervised Classification (SC)
- Header Analysis and Synset comparison (HA)
- File Exploration (FE)
- Regular Expressions (RE)
- GitHub API (GA)

- Contact (HA)
- Download URL (HA, GA)
- DOI (RE)
- DockerFile (FE)
- Notebooks (FE)
- Executable notebooks (Binder, Collab) (RE)
- Owner: (GA)
- Keywords (GA)
- Source code (GA)
- Releases (GA)
- Changelog (GA)
- Issue tracker (GA)
- Programming languages (GA)
- Acknowledgements (HA)
- Logos (RE)
- Images (RE)
- Shell scripts (FE)
- Code of conduct (FE)
- Repository status (RE)
- Arxiv links (RE)
- Support channels (RE)
- Software category (SC)
- ...

So what can you achieve once you have **rich metadata**?

Early result: Automated customized software catalogs

Ø	Software Catalog	Search for repositories			?
SOCA SOFTWARE CATALOG CREATOR	≣↓ Title Stars Releases	Last updated 🝸 ক্র 🗇	Num	ber of Repositories per best practice	
Morph-OME 🕞		gtfs-bench 🕞	Repositories with Readme		220
Online Mapping Editor	()	GTFS-Madrid-Bench: A Knowledge Graph Const	Number with Citation		26
	6☆ v.2.1 3⊙		Number with Recent release		14
띠 한 옥 👀 🐨 দ		印 🌵 🐡 🗅 66 #	Number With Licenses		158
pytada-hdt-entity C A python library binding o tada-hdt-entity	f the c++ library	tada-web () This is a web API project entity and the pytada-hdt-	usin entity Search, com	oare, FAIR asse	essment
印 办 🐡 66 🕲 米 :	0☆ v1.8 3℃ E× ⊍	印 Ф 66 🕲 光 🗄 ι	0☆ v1.0 1 ℃	of your ontology. It uses the environment to create partemplate. $\square \Phi \square 66 $	the LODE t of the 0☆ €

Alpha available at: <u>https://software.oeg.fi.upm.es/</u> Github: <u>https://github.com/oeg-upm/soca</u>

A software repository at a glance

A quick reality check...

We still have a long way ahead of us:

- Best practices not widely adopted
- Citation practices are heterogeneous

Zenodo [1]

Software Engineering (Arxiv) [2]

Citation practices	description	Bibtex	CFF	title
# Bidirectional papers	759	307	49	353

My own lab [3] :(

[1] Kelley, A., & Garijo, D. (2021). A framework for creating knowledge graphs of scientific software metadata. Quantitative Science Studies, 1-37.

[2] Garijo, D.; Arroyo, M.; Gonzalez, E.; Treude, C.; and Tarocco, N. Bidirectional Paper-Repository Tracing in Software Engineering. To appear in 21st International Conference on Mining Software Repositories, Cham, 2024. ACM

[3] Iglesias-Molina, A.; and Garijo, D. Towards Assessing FAIR Research Software Best Practices in an Organization Using RDF-star. Semantics 2023 Posters and Demos (CEUR), 3526. 2023.

Research software should become FAIR!

Automated metadata extraction

- Scalable
- Helps fixing issues at the source (maintainable)
- Less effort
- But may contain errors

Next steps: beyond Codemeta

- inputs/ outputs
- models
- workflows
- containers
- How to make the extracted metadata more actionable?

Acknowledgements

Thanks to Yolanda Gil, Varun Ratnakar, Maximiliano Osorio, Hernán Vargas, Deborah Khider, Allen Mao, Aidan Kelley, Haripriya Dharmala, Jiajing Wang, Rosa Filgueira, Pablo Calleja, Oscar Corcho, Laura Camacho, Jhon Toledo, Miguel Angel García, Esteban Gonzalez, Elena Montiel, Elvira Amador & all the students at UPM and USC who participated in the initiatives mentioned in this presentation

This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Politécnica de Madrid in the line Support for R&D projects for Beatriz Galindo researchers, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

Questions?

Let's create machine-actionable software metadata to promote Open Science!