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Abstract—The paper presents a new method for data-driven
feedforward compensation of static and quasi-static forces acting
on a multi-axis medical robotic manipulator. The proposed
approach uses a look-up current calibration table (CCT) and
an adaptive algorithm updating the CCT to ensure that the
manipulator maintains accurate, fast, and safe performance
over time. The key aspect of our control strategy is called
data assimilation step, which involves modelling the CCT using
an approximating function. We use the NURBS (Non-uniform
rational basis spline) technique, which has desirable properties
such as high accuracy and flexibility in approximating and
even interpolating complex functions. The technique allows the
manipulator to compensate for external disturbances such as
gravity, friction and gear or cabling resistance. This can improve
the precision and reduce the downtime of the manipulator due
to periodic feedforward recalibration.

Index Terms—quasi-static forces compensation, data-driven
feedforward control, look-up table adaptation, NURBS approxi-
mation and interpolation

I. INTRODUCTION

Mechatronic systems, such as robotic manipulators, have
become increasingly widespread in various industries, ranging
from manufacturing to healthcare, but they often suffer from
performance limitations due to external disturbances, such as
friction, gravity, gear and cable resistance and other environ-
mental factors. Feedback control techniques have traditionally
been used to compensate for these disturbances, but they intro-
duce inherent design trade-offs regarding stability, robustness,
noise amplification etc. As mechatronic systems become more
complex, their control strategies must also evolve to ensure ef-
ficient and accurate operation. As a result, feedforward control
has emerged as a complementary technique for improving the
performance of mechatronic systems.

Feedforward control is a method that estimates the effect
of external disturbances on a system and applies a control
action to compensate for them, without relying on feedback
signals. The key advantage of feedforward control is that it can
be used to compensate for disturbances that are not directly
observable or cannot be measured with high accuracy. This
can lead to better overall system performance and stability.
This approach can be particularly useful in applications where

feedback control alone is insufficient due to system limitations
or environmental factors.

The development of feedforward control in mechatronics
has been the subject of extensive research over the past
few decades, with contributions from researchers in academia
and industry. The term feedforward systems has its origin in
fields of biology [1] and electronic systems [2]. However, the
concepts of feedforward control were largely developed in the
1980s [3], [4], [5], [6].

One area of application for feedforward control is in robotic
manipulators, where it can be used to compensate for static and
quasi-static forces, such as friction [7], [8] [9], [10], gravity
[11], [12], and other disturbances (gear or cabling resistance,
etc.) [13], [14]. Various methods have been proposed to ad-
dress each of these disturbance sources, including both model-
based [15], [16], [10] and data-driven [17], [18] approaches.
Additionally, some methods use adaptive [19] or learning
algorithms [20] to continuously adjust the compensation based
on the current operating conditions. All these methods are
often combined with feedback control techniques to achieve
better overall system performance.

Another area of application for feedforward control is in
aerospace engineering [19], [21], where it can be used to
compensate for atmospheric disturbances and other external
factors that affect the flight of aircraft and spacecraft. Feedfor-
ward control can also be used in automotive and transportation
systems [22], [23] to compensate for road disturbances and
other external factors that affect vehicle performance.

In this paper we focus on a specific use-case in the
healthcare domain of Image Guided Therapy (IGT) robots
manufactured by Philips Healthcare [24] used for minimally
invasive procedures like coronary catheterization. This requires
a large complex multi-axes robotic arm to position a typically a
C-shaped form carrying the radiography emitter and collector
(see Figure 1) with respect to the patient. This environment
and application require stringent demands on the robotic
performance in for instance accurate positioning and motion
to enable optimal 2D and 3D imaging and at the same time
fulfill high demands on safe operation within a healthcare
environment working near humans. This requires amongst



Fig. 1: Philips Azurion 8DoF medical manipulator

others motion control that can accurately predict the required
robotic actuator currents under all conditions and a feature in
this motion control called Current Calibration Tables (CCT)
and is the topic considered in this paper.

Sections II and III describe a control topology employing
so called Current calibration tables (CCT), essentially a multi-
dimensional lookup tables responsible for providing actuator
feedforward torque for the compensation of external distur-
bances (see Figure 1).

The CCT compensates for the static part of friction and
external torques due to gravity, cabling, gear resistance, and
other factors affecting the manipulator’s movement in a non-
linear and time-varying manner. The current calibration table
is parameterised initially during machine commissioning, but
its periodic recalibration is needed to cope with varying
disturbance characteristics through the machine lifespan. This
requires intensive human assistance, which is inconvenient and
time-consuming. Therefore, the goal of this work, which is
described in more detail in Section IV, is to propose a solution
to minimise the need for periodic recalibrations by means of a
suitable adaptive CCT update algorithm, aiming at increasing
the efficiency and reliability of the manipulator and decreasing
the downtime of the robot.

In particular, a B-spline based interpolator/approximator
is proposed as a unified framework for storing, adapting
and evaluating CCTs. Interpolation and approximation are
fundamental techniques, enabling proper values to be derived
at points between the mesh of sampled data points stored in the
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Fig. 2: Structure of control strategy for two-axes

look-up table. These topics are therefore addressed in Sections
V-VIII, which first describe the general concepts and then the
application of these approaches to the CCT update problem.

The main focus of the paper lies in Section IX, where
CCT update algorithm is introduced together with examples
performed on real data obtained from the medical manipu-
lator. The proposed solutions could significantly improve the
calibration process, ultimately resulting in more reliable and
efficient performance during medical procedures.

The concluding remarks and summary of the work are given
in Section X, while future research directions are outlined in
the last Section XI.

II. STRUCTURE OF MOTION CONTROL LOOPS

The motion control loops of the medical manipulator (see
Figure 2 for two axes controller) are structured to incorporate
various controllers and compensators to ensure accurate, fast
and smooth movement. These include feedback controllers,
feedforward compensators, and a current calibration table
(CCT).

• The feedback controllers are responsible for tracking
the reference position trajectory, which is the desired
path of the manipulator’s movement. These controllers
continuously compare the actual position of the manipu-
lator with the desired trajectory and make any necessary
adjustments to ensure that the manipulator moves along
the desired path as closely as possible.

• To compensate for inertia and partly friction of the ma-
nipulator moving parts, the feedforward compensation is
implemented. It provides additional input to the controller
based on the expected effects of these factors in a model-
based manner, allowing for more precise and responsive
control without any unexpected jerks or delays.

• The current calibration table is used to compensate for
other factors not compensated for by the model-based
feedforward compensation. These include non-linear po-
sition dependent friction and external torques due to
for instance cabling, gear resistance, and other wear
factors that may change over the lifetime of the system.
This table contains calibration values that are used to
complement the current as calculated by the feedforward
compensation and provided to the manipulator’s motors.
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By combining all these controllers and compensators, the mo-
tion control loops of medical manipulator are able to provide
highly precise and responsive control over the manipulator’s
workspace. This allows for a wide range of medical procedures
to be performed with greater accuracy and safety.

III. CURRENT CALIBRATION TABLE

The medical manipulator control system relies on a current
calibration table to achieve accurate joint movements. The
table uses a look-up function to map desired joint positions to
drive torques or currents respectively (as shown on diagram in
Figure 3), which is crucial for precise motion control. In this
particular case, the CCT is a dependence of the required drive
current on the position of the two joints and can therefore be
visualized (Figure 4) as a surface plot. The position axes can
be of arbitrary units of rotation or translation and therefore all
axes in the plot have been normalized to maintain a generic
representation throughout this paper. The look-up table is
initially calculated during the machine commissioning phase,
which is done to ensure that the manipulator is calibrated to
perform optimally. However, due to the natural wear and tear
of the machine, periodic recalibration is required. This is be-
cause factors such as joint and gear friction, as well as cabling
flexibility, can change over time. By regularly recalibrating the
current calibration table, the medical manipulator can maintain
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Fig. 5: CCT adaptation diagram

its accuracy and precision, ensuring reliable and consistent
performance in medical procedures.

IV. THE GOAL AND POSSIBLE SOLUTIONS

The goal is to eliminate or minimize the need for periodic
recalibrations of CCT. By eliminating or reducing the need
for periodic re-calibrations, the medical manipulator would
require less downtime for maintenance and thereby increase
the number of possible patient treatments.

The proposed CCT adaptation process begins by identifying
the appropriate motion states from recorded data, where static
forces/torques are predominant. Then, we calculate calibration
table errors based on known applied torque and update the
calibration table accordingly. The procedure is illustrated
schematically in Figure 5. It is important to note that a
continuous adaptation of the calibration table is not desirable
due to stability concerns. Instead, a single-shot update during
normal machine downtime is preferred to ensure stability and
prevent any potential issues. We ommit a detailed description
of the data-processing step and focus solely on the CCT
adaptation algorithm in this actual work.

V. INTERPOLATION AND APPROXIMATION

The paper often refers to three key types of problems in
data analysis: interpolation, approximation (regression), and
extrapolation. These are fundamental concepts required for the
described approach. They are sometimes used interchangeably
in the literature. Therefore, we define the terminology used
further in the text for the sake of clarity.

• Interpolation is the problem of finding or estimating new
data points within the range of a known set of discrete
data points. The goal is to create an interpolating function
that goes through the known data set. This problem is
often encountered in signal processing, where it is known
as resampling.

• Approximation (or regression) is the process of finding
or estimating new data points within the range of a set of
approximately known data points. This time, the approx-
imating function does not exactly match the known data
set, while accounting for measurement or observation
errors. Metrics of data fitness, such as the sum of squared
errors criterion, are often used to evaluate the quality of
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the approximating function. This problem is common in
statistics and modelling, where it is used to analyze and
understand complex data sets.

• Extrapolation, on the other hand, involves finding or
estimating new data points outside the range of a set of
known or partially known data points. In this case, we
are guessing or predicting new points that lie beyond
the domain of the original data. A practical example
of extrapolation is the prediction of COVID-19 disease
spread.

Visual comparison is given in the form of a simple 1D example
in Figure 6.

VI. RELEVANCE OF THE INTERPOLATION AND
APPROXIMATION TO CCT PROBLEM

Interpolation plays a crucial role in addressing the CCT
problem for the medical manipulator. The discrete set of data
points is stored in the form of a look-up table. However,
to achieve optimal performance, the system needs to derive
accurate values for points that lie between the sampled data
points and that is where interpolation finds its place. To
achieve this, we need to find a static n-dimensional map
between position and current spaces. Mathematically, this can
be expressed as:

IAxisi = f(PAxis1 , . . . , PAxisn). (1)

By finding a suitable function that can interpolate between
these known data points, we can generate accurate current
values for any desired position within the range of motion.

Approximation is another critical aspect of addressing the
CCT update problem. In some cases, new information may
become available from measurements that was not present in
the original look-up table. This means that the stored table
may now be partially known and possibly obsolete. To form
a new table that incorporates the new information, a data
merging step is required. Since both the old calibration table

and the measurements contain some error, this data merging
step is essentially an approximation problem. By introducing
a fitness metric, such as the sum of squared errors criterion,
an approximating function can be found that adequately fits
the available data points. Overall, approximation is essential
for maintaining the accuracy and reliability of the look-up
table, especially when new information becomes available.
By leveraging appropriate approximation techniques, we can
ensure that the medical manipulator performs optimally and
safely in all operating conditions and over time.

VII. CONSTRUCTING THE INTERPOLATING FUNCTION

There are several methods for constructing an interpolating
function. Next, the most commonly used ones will be briefly
introduced.

• The first method, linear interpolation, involves connect-
ing adjacent data points with line segments. This method
is simple to construct and evaluate and can be simply
extended to multi-dimensional spaces. However, sharp
transitions may not be desirable, as they can induce
vibrations in motion trajectories and feedforwards.

• The second method is polynomial interpolation, which
involves finding a polynomial function that goes through
the data points, solving the output smoothness problem.
This method is simple to construct as well. However,
it is more computationally expensive and requires high-
degree polynomials for long datasets, which can lead to
oscillatory artifacts.

• The third method, spline interpolation, fits low-degree
polynomials in each of the intervals, preserving smooth-
ness, avoiding unwanted behavior of high-degree func-
tions, and keeping computational burden low. However,
it is more difficult to construct, and one needs to en-
sure the compatibility of derivatives in the knot points.
Furthermore, spline interpolation can be numerically ill-
conditioned until treated properly. Despite these chal-
lenges, spline interpolation has become a standard in
various fields of science and engineering due to its many
advantages.

A comparison of the above methods is depicted in Figure 7.
The high-order polynomial interpolation is deliberately chosen
to demonstrate the undesired chattering effects.

VIII. BASIS-SPLINE (B-SPLINE) FUNCTIONS

B-spline functions, short for Basis-spline functions, are
piece-wise polynomial functions with several unique proper-
ties. The theory of NURBS and B-splines in general is well
described in [25]. These functions define a polynomial basis
of a chosen degree with a minimal support, making them
numerically robust compared to the power basis. Additionally,
any spline function can be generated from a B-spline, and its
”shape” is obtained from a linear combination of the basis
functions and a ”control polygon” that determines the output
dimension.

Φ(u) =

n∑
i=0

Ni,p(u)Pi. (2)
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The linearity with respect to control points can be exploited in
fitting problems, making B-spline functions highly useful in
many fields, including robotics and motion control systems for
describing motion trajectories and/or feedforwards. B-spline
functions can also be adapted to high-dimensional spaces, such
as for a bivariate case

P (u, v) =

m∑
j=0

n∑
i=0

Pi,jNi,k(u)Nj,k(v). (3)

Because of their robust and reliable data handling, evaluation,
and versatility in interpolation and approximation problems, B-
spline functions have a wide range of applications across many
fields. One of the most common uses of B-spline functions
is in computer graphics and CAD systems, where they are
used to create B-spline surfaces. They are also highly relevant
in other fields such as robotics and motion control systems
for trajectory planning and feedforward design. Overall, the
properties of B-spline functions make them a powerful tool in
a variety of contexts.

IX. CCT UPDATE ALGORITHM

The proposed algorithm for adapting the current calibration
table (CCT) involves following steps:

1) An interpolation function is constructed from the cali-
bration table data and stored. Mathematically, we solve
the following problem. Having a set of n data points

(I1, P11, P21), (I2, P12, P22), . . . , (In, P1n, P2n)
(4)

satisfying

P11 < P12 < · · · < P1n, (5)
P21 < P22 < · · · < P2n (6)

(a) Linear interpolation

(b) Cubic interpolation

Fig. 8: Initialization step - data interpolation

and

I1 =f(P11, P21), (7)
I2 =f(P12, P22), (8)

...
In =f(P1n, P2n), (9)

then
I = f(P1, P2) (10)

is the desired interpolation function we are looking for,
if at the same time

P11 < P1 < P1n, (11)
P21 < P2 < P2n (12)

hold. This is shown in Figure 8 on real CCT data for
linear and cubic interpolation, respectively. For better
clarity, these surfaces are zoomed in Figure 9. This



(a) Linear interpolation

(b) Cubic interpolation

Fig. 9: Initialization step - data interpolation (zoomed)

interpolation function is in the form of a multivariate
spline.

2) The interpolation function from the previous step is used
to generate current feedforwards in the optional second
step. This step has the potential to improve motion
smoothness when compared to (bi)linear interpolation.

3) The third step involves off-line processing of motion
data to extract new data points. This step has not been
carried out yet, but it involves scanning the readings of
the axes positions and commanded currents, identifying
parts suitable for extraction of quasi-static components
covered by the CCT model (preferably low non-zero
constant velocity), and collecting new data points to
merge with the existing table.

4) An approximation problem is formulated and solved
to update the interpolating function, which involves
recomputing the control points of the B-spline. We call
this as a data assimilation step. Mathematically, we
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Fig. 10: Data assimilation step shown on 1D slice of the CCT
data

solve the following problem. Suppose we now have n+p
data points (the original n data points and p new data
points to update the table)

(I1, P11, P21), . . . , (In, P1n, P2n), . . . , (In+p, P1n+p, P2n+p),
(13)

we need to find such a function

I = f(P1, P2) (14)

which minimizes the least-squares criterion

J =

n+p∑
i=1

wi(Ii − f(P1i, P2i))
2 (15)

where wi are the optional weights. For better illustration,
the procedure is first shown in Figure 10 by means of
one-dimensional slice of a real CCT data. Figure 11 then
represent an example using full data set.



(a) Before CCT update

0

0.2

0.4

0

0.6

0.8

1

I a
x
is

1

10.5-0.5

P
axis2

P
axis1

0-0.5-1-1

updated approximating function

new data

(b) After CCT update

Fig. 11: Data assimilation step shown on CCT data

5) In the table update step, the updated interpolating func-
tion is evaluated on the grid of the CCT to update it
with new values. This prepares the machine for the next
run.

6) Finally, the optional step involves storing the difference
to the initial CCT on its grid, which can be used
for detecting machine malfunction through the fault
detection signature step.

X. SUMMARY

The work done so far includes the development of a
mathematical framework that can interpolate, store, generate,
and adaptively update current calibration table (CCT) models.
This framework allows for systematic and automated blending
of ”old” CCT with new data in an optimal manner. Thanks
to the unique properties of the B-spline basis, the resulting
interpolant preserves the consistency of the CCT and only
changes shape locally in the vicinity of new data points.

This approach can be used for an arbitrary number of axes,
from n to m dimensions, and is computationally and data
efficient. It requires only approximately 5-15% more data
storage compared to traditional look-up tables. In addition to
these benefits, the developed framework can serve for fault
detection and diagnostics. All this makes it a powerful tool for
improving machine performance and ensuring that it remains
reliable and robust over time.

XI. FUTURE WORK

There are several next steps that need to be taken in order
to advance this work further. First and foremost, the data
extraction step needs to be designed carefully, with rules de-
fined for finding relevant motion data. This will require some
filtering or averaging techniques in order to obtain meaningful
results. Once the data extraction problem has been optimized,
the next step will involve testing and validating the entire
methodology, preferably using real machine data to ensure
that the approach performs as expected in practice. However,
it may be possible to carry out some of this testing offline,
depending on the specifics of the data available. One potential
avenue for further exploration is the use of a second neural
network-based solution. However, this approach has several
limitations that must be taken into account. For example,
there are many degrees of freedom and hyperparameters to
consider, including the network structure, number of layers,
type of activation functions, and learning/adaptation rates,
which make the solution appear inferior. Standard training
methods do not guarantee convergence, and once trained, it
becomes a complex multivariate nonlinear function, making it
difficult to understand how it works and interpret the results.
Overtraining can also produce unwanted chattering effects that
are comparable to high-degree polynomials. Overall, the next
steps will involve careful optimization of the approach, testing
and validation using real-world data, and continued exploration
of alternative solutions.
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