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Abstract—The paper deals with a methodology for the deriva-
tion of PI(D) type fixed structure controllers commonly embedded
in motion control loops. A collocated control design problem is
formulated, considering two different plant outputs. The goal
is to tune the controller parameters to achieve both robustness
in stability with respect to a feedback variable and optimal
performance with respect to a second penalised output. The pro-
posed method is validated by means of a lift control benchmark
problem.

Index Terms—optimal control, robust control, motion control
systems, collocated control, velocity control, electrical drives, PID
controllers, lift control

I. INTRODUCTION

Modern mechatronic systems rely heavily upon properly
designed and tuned motion control loops [1]. Practising en-
gineers and technicians face the challenging task of setting
up the parameters of motion controllers. The dynamics of
the controlled plant is unique for each machine, requiring
the control tuning to match the specifics of the particular
system. The tuning process is commonly done manually,
requiring a tedious trial-and-error procedure. The results are
often suboptimal and depend on the skills of the persons
involved.

The importance of proper tuning is pronounced with con-
stantly increasing demands on the performance of industrial
manufacturing systems that translate to the control layer
in the form of strict requirements on achievable bandwidth
and tracking precision in the case of motion systems [2].
Stringent performance requirements may introduce problems
with mechanical vibrations once the target bandwidth overlaps
with the resonance modes of the controlled plant. Unwanted
transient and residual oscillations complicate the process of
control system tuning. While automatic tuning methods were
widely developed and successfully employed in practice in
the field of process control [3], there is still a lack of suitable
methods for mechatronic systems. Therefore, the development
of systematic methods providing any support with the com-
missioning process is highly relevant for industrial practice.

This paper extends former results presented in [4]–[7],
tailoring a generic algorithm of so-called H∞ regions to a
specific case of a collocated control setup, which is often
encountered in motion systems. Section 2 formalizes the

Fig. 1: Generic robust/optimal control setup

H
Fig. 2: Collocated control problem in a mechatronic system

collocated control problem. Section 3 revises the previous
results. Section 4 presents a novel framework allowing us to
achieve both robustness and optimality in the resulting closed-
loop system. Section 5 deals with the benchmark problem of
designing a lift velocity control loop.

II. PROBLEM FORMULATION - COLLOCATED CONTROL
SETUP

We start with the generic setup shown in Fig. 1 that is com-
monly used in modern control theory methods to formulate
optimal or robust feedback design problems. The goal is to
derive a controller K that internally stabilizes the generalised
plant P by forming a feedback loop via the measured outputs



y and manipulated variables u. Additionally, a performance
measure quantifying a ”gain” of the closed-loop system H
is defined, often by means of H2 or H∞ system norms.
An optimal K minimising the influence of the generalised
disturbances w to the performance variables z in the sense of
the chosen performance metric is then derived [8].

We assume a particular case of this generic setup shown
in Fig. 2. This structure, often designated as a ”collocated
control setup”, is very common in the field of mechatronics
and motion control systems. The collocated term refers to the
fact that the actuator-sensor pair is installed physically at the
same location of the controlled plant. The measured output y
used to close the velocity or position feedback loop is typically
provided by an optical encoder attached directly to the rotor
shaft of an electrical motor. On the other hand, the goal is
to control another physical variable z; usually the position or
velocity of some reference point at the load-side moving part,
e.g. a robot end-effector or a CNC machine tool spindle. In the
case of an ideally rigid load, the working mechanism and the
attached actuator perform completely synchronous motions.
In this case, the outputs coincide with each other (apart from
potential scaling due to kinematic transform), and the con-
trol topology reduces to a standard single-input-single-output
(SISO) feedback loop. However, the occurrence of mechanical
flexibility in the driven load introduces additional degrees of
freedom. More complex oscillatory behaviour with unwanted
transient and residual oscillations often occurs due to plant
bending modes. The fact that y ̸= z makes the feedback
control design much more difficult. Excellent performance
with respect to feedback variable y does not automatically
guarantee a well-behaved response of the variable of true
interest z.

Standard solutions of the generic optimal control problem
generally lead to high-order controllers of order equal to the
order of the generalised plant P , i.e. the order of the controlled
plant plus additional dynamics of frequency-dependent weight-
ing filters used to formulate user design requirements [9].
High-order controllers are difficult to implement in practice
due to limitations of the target HW/SW platform or inherent
sensitivity to finite precision floating-point calculations in
digital processors. This is especially true for industrial motion
control systems with limited CPU resources and control struc-
ture typically fixed to a low-order PI(D) compensator (plus
optional feedback/reference/control action filters). Therefore,
a direct derivation of a fixed structure low-order controller is
generally more appropriate for such applications.

III. PREVIOUS RESULTS - H∞ REGIONS METHOD

We now briefly revise results achieved at our workplace and
presented in [4] that allow a systematic derivation of simple
controllers with two or three parameters for the simpler 1DoF
case (y = z) using so-called H∞ regions method. This forms
a baseline of the optimisation procedure we propose next for
the collocated setup.

The controlled plant model is assumed in the form of LTI
transfer function P (s) without the poles on the imaginary

Fig. 3: H∞ region and the admissible set K in the parametric
ki − kp plane of the PI controller

axis. We consider a standard PI controller commonly used
in industrial drive systems in the form of

C(s,k) = kp +
ki
s
, (1)

where k
∆
= [kp, ki] denotes the controller gains vector.

An arbitrary number of design constraints can be formulated
in the frequency domain in the form of

||H(s,k)||∞ < γ, (2)

where H corresponds to an arbitrary closed-loop transfer
function, commonly chosen as frequency weighted function

H(s,k)
∆
= W (s)S∗(s), (3)

where S∗(s) denotes one of the closed-loop sensitivity
functions (sensitivity, complementary-, input- and controller-
sensitivity and W (s) introduces arbitrary user-defined
frequency-dependent scaling.

The goal is to find a controller C(s,k) which together for
the given H(s) fulfills the following three conditions

1) C(s,k) internally stabilizes the closed-loop
2) H(s,k) used in the design criterion is stable
3) The H-infinity condition ||H(s,k)||∞ < γ holds
Such a controller is called the H∞ controller. Typically, a

whole set K of the admissible controllers fulfilling the above-
mentioned conditions exists and can be visualised in the para-
metric plane [ki, kp] (Fig. 3). The boundary finding algorithm
defining the set of admissible controllers was presented in [4].

IV. ROBUST AND OPTIMAL DESIGN FOR THE COLLOCATED
CONTROL SETUP

In case a nonempty set is found, one particular parameter
combination has to be chosen. In [4]–[6], the point leading
to the maximum integral gain was proposed that is known to
minimise the integral error criterion

IE =

∫ +∞

0

e(t)dt =
1

ki
. (4)



However, this choice may not be viable for the formulated
collocated control setup because of the following considera-
tions:

• While the minimization of IE criterion proved to be useful
for disturbance rejection in closed-loop systems with the
aperiodic response (commonly encountered in the process
control domain), it may not be a proper performance
measure for oscillatory systems common in mechatronic
applications.

• The user has no clue on how to reduce the controller gains
systematically when only one point in the controller para-
metric space is given. This might be needed for practical
implementation where performance vs robustness/energy
consumption/noise amplification trade-offs appear.

• For the collocated control setup from Fig. 2, actuator side
performance does not automatically guarantee good load-
side behaviour. Multivariable and multi-objective control
problem inherently arises.

To address the above-mentioned issues, we propose a mod-
ification of the previously described H∞ regions method. The
process of robust and optimal design of the fixed structure
feedback controller C can be summarised in the following
steps:

1) Define the model of the controlled plant, optionally
including uncertainty for a robust control design

2) Define feedback and performance variables y and z
for the collocated control setup, forming a single-input-
two-outputs system (the simpler SISO scenario is also
covered by choosing y = z)

3) Find a H∞ region and the corresponding admissible set
K in the parametric space of the controller fulfilling
certain H-infinity loop shaping inequality to enforce
robustness feedback loop formed via the output y

4) From the admissible set K, find an optimal vector of
controller parameters with respect to the defined perfor-
mance variable z and a chosen performance measure

5) (optional) Provide a set of suboptimal reduced-gain con-
trollers allowing in-situ fine-tuning of the controller dur-
ing commissioning to find a suitable performance/cost
trade-off

AD1 - Plant model definition: The model of the controlled
plant can be, in principle, entered in several ways:

• Single deterministic linear-time-invariant (LTI) continu-
ous or discrete-time model in the form of transfer function
or state space representation

• Uncertain model set with a nominal plant plus unstruc-
tured uncertainty [10]

• Uncertain model set with a nominal plant plus a struc-
tured uncertainty, leading to a standard N − ∆ model
structure, with a block-diagonal matrix ∆ defining the
uncertain part [8]

• Uncertain model set defined by a finite count of assumed
LTI plants (e.g. for a nonlinear controlled plant operating
around several working points or along a trajectory)

AD3 - Robust controller set derivation: For this step, we
formulate the following design constraint on the maximum
sensitivity

Ms
∆
= ||Sy(s, k)||∞ =

∣∣∣∣∣∣∣∣ 1

1 + C(s, k)Py(s)

∣∣∣∣∣∣∣∣
∞

< γ, (5)

where Sy is the sensitivity function corresponding to the
feedback loop formed via the measured output y and γ is
a user-specified hyper-parameter. The Ms criterion is a well-
known measure of robustness in stability as it directly affects
the disc stability margin sm = 1/Ms, defined as the minimal
distance of the open-loop frequency response function to the
critical [−1, j0] point in the complex plane, thus giving a
geometric interpretation of allowed gain and phase uncertainty
in the plant model.

In the case of uncertain plant models defined as a represen-
tative set of n LTI systems, the maximum sensitivity can be
enforced for all the members as follows

max
∀i

{Ms,i} < γ, (6)

Ms,i =

∣∣∣∣∣∣∣∣ 1

1 + C(s,k)Py,i(s)

∣∣∣∣∣∣∣∣
∞

, i = 1..n.

In the case of models with unstructured uncertainty, other
loop shaping inequalities arise. For example, when using
a multiplicative uncertainty model

Py(s)
∆
= Pn(s) +Wm(s)∆(s), (7)

where Pn is a nominal model, ∆ is a stable norm-bounded
operator such that ||∆||∞ ≤ 1 and Wm is a frequency-
dependent scaling function, a robust stability condition can
be derived in the form of

||Wm(s)Tn(s)||∞ < 1, (8)

with Tn(s) =
C(s)Pn(s)

1+C(s)Pn(s)
denoting the nominal complemen-

tary sensitivity function. Similar results can be derived for
other uncertainty model structures, see e.g. [10].

For the structured uncertainty model, the robustness in
stability can be evaluated by means of the M −∆ test

µ(M) < 1, (9)

where M is the deterministic part of the system forming a
feedback loop with the block-diagonal ∆ operator and µ is
the structured singular value [8]. For this particular case, the
criterion (9) cannot be simply translated to the boundary in the
controller parameter space as in the previous cases. However,
it can be handled in the next step of controller optimization by
evaluating the inequality (9) sample-wise in terms of a finite
controller set.

AD4 - Performance optimisation: The region of robust
admissible controllers K from step 3 is sampled by means
of a grid with a chosen resolution, forming a finite set

Kg{i}
∆
= ki = [kpi, kii], i = 1..ng : Kg ⊂ K (10)



where ng = n(Kg) is the cardinality of the set formed from
the points on the grid inside the H∞ region derived in step 3
and depends on the chosen sampling resolution.

The main reason for sampling/gridding is that the infinite
number of robust controllers in the set K reduces to the set Kg

with finite members, which allows simple further segmentation
of suitable controllers based on secondary performance criteria
that can be defined in time, algebraic or frequency domain,
e.g.:

• Other classical robustness in stability measures – gain
and phase margins

• Closed-loop bandwidth for the feedback or performance
variable

• Damping of the closed-loop poles or their occurrence in
a specified forbidden region of the complex plane

• Overshoot/settling times for any important closed-loop
transfer function, either considering the feedback or per-
formance variable as output

• Robustness in stability with respect to structured uncer-
tainty evaluated by means of the structured singular value
and criterion (9)

• Robustness in performance with respect to structured
uncertainty evaluated by means of the structured singular
value criterion µ(N) < 1, where N is the deterministic
part of the uncertain system in the standard N − ∆
structure [8]

By performing this secondary segmentation, a new reduced
set is formed

Ks ⊆ Kg, ns = n(Ks) ≤ ng (11)

Subsequently, an optimal controller is found by minimizing
(or maximizing) a chosen cost function. We found that well-
known time-domain integral criteria provide good results in
practical design problems, including e.g.

1) ISE (Integral of squared error)

J(k) =

∫ ∞

0

[e(τ,k)]2dτ (12)

2) IAE (Integral of absolute error)

J(k) =

∫ ∞

0

|e(τ,k)|dτ (13)

3) ITAE (Integral of time-weighted abs. error)

J(k) =

∫ ∞

0

τ |e(τ,k)|dτ (14)

4) Quadratic cost function

J(k) =

∫ ∞

0

αe(τ,k)2 + u(τ,k)2dτ (15)

The performance cost functions are evaluated for the load-
concerned performance variable z, forming another finite set

Js{i}
∆
= J(Ks{i}); n(Js) = ns, (16)

with the entries coupled to the controller set Ks. The error
signal e(t,k) that depends on the controller gains can be

evaluated either from the reference step response to emphasize
tracking performance in servo problems or for disturbance step
response to accentuate the closed-loop disturbance rejection
capability. Any meaningful combination/function of multiple
cost functions can also be evaluated.

The optimal controller is found by minimizing a chosen
performance cost function as

C∗(s,k∗) : k∗ = Ks{argmin
∀i

Js{i}} (17)

The minimum value can simply be found due to the finite
cardinality of the sets Ks,Js. In practice, the true global
minimum with respect to cost functions (12)-(15) and the
infinite set K may lie outside of the sampled data points of
the chosen grid. This true global optimum may optionally
be approached by means of standard numerical optimisation
algorithms, with the result (17) chosen as the initial condition.
However, the difference may be negligible for sufficiently
dense resolution of the grid.

Working with the finite sets of sampled and segmented
controllers offers some key advantages compared to attempts
of direct parametric optimisation:

1) Utilisation of numerical optimisation methods that are
sensitive to initial conditions and can converge to local
minima is avoided, considerably increasing the chance
of finding the truly global optimal solution

2) Multi-objective optimisation is possible by combining
time-, algebraic- and frequency-domain design require-
ments

3) The performance measure can be evaluated for uncertain
plants defined as model sets by forming (weighted)
average or worst-case performance measures from the
cost functions evaluated for the individual plant models

4) Systematic selection of suboptimal controllers with
reduced closed-loop bandwidth is possible, providing
complementary information useful for practical con-
troller implementation and tuning

AD5 - Suboptimal controller set derivation: There might be
cases where the optimal controller from step 4 does not work
well when employed on the real plant. This is typically due to
controller gains that are too high, causing problems with either
stability, noise amplification or insufficient robustness with
respect to unmodelled dynamics. Gain reduction to achieve
a more conservative tuning often helps to alleviate these
problems. However, to avoid the necessity of iterative hand-
tuning the controller again in this phase of commissioning, a
systematic guide is provided in our method.

The admissible controller space is divided into a specified
number of m subsets Sl on the sampled grid based on the
values of the chosen performance cost from the previous step

Sl
∆
= {∀k ∈ Ks : J l

min ≤ Js ≤ J l
max},

⋃
∀l

Sl = Ks, l = 1..m

(18)



Fig. 4: Lift control problem - positioning of the cabin by means
of an electrical drive

Consequently, m suboptimal controllers are derived from
the same number of Sk sets by minimizing the same (or some
other) secondary cost function Jm

kl
sub = Ks{argmin

∀i∈Sl

Jm{i}}, l = 1..m, (19)

where Jm{i} is defined in the same way as for the primary
cost J in (16).

In this way, the controller gains and closed-loop bandwidth
can be systematically reduced while preserving the optimality
of the achieved solution in terms of the cost functions J, Jm
and robustness in stability since the search in the parametric
space is constrained to stay in the admissible robust controller
set K.

V. LIFT CONTROL BENCHMARK PROBLEM

For the experimental validation of the proposed method, the
lift control system defined as one of the Use case applications
of the IMOCO4E project was chosen as a representative
benchmark problem. We consider a lift system depicted in
Fig. (4). A first-principle model can be derived in the form of
a flexible multi-body model consisting of the passenger cabin,
counterweight, driving pulley and motor with gear. Oscillatory
behaviour is observed due to the inherent flexibility of the
rope. Any unwanted transient and residual oscillations can be
dangerous for the machinery and reduce passenger comfort
[11]. They should be mitigated at by proper parameterisation
of the drive motion control system [12].

TABLE I: Parameters of the lift system model

Parameter Value
gear ratio n 15

gravity constant g 9.81 m
s2

counterweight mass m1 1000 kg
cabin mass m2 600 - 1400 kg
pulley mass mk 50 kg

total rope length l0 33m
rope stiffness coefficient k0 5e6 N

m
rope damping coefficient b0 6e4 N.s

m
pulley radius rn 0.3 m
motor inertia Jm 1e-4 kg.m2

pulley inertia Jk 2.25 kg.m2

Fig. 5: Frequency response functions from motor torque to
motor velocity (top) and cabin velocity (bottom) for nine
different combinations of floor position and cabin mass

The multi-body system dynamics is governed by the fol-
lowing equations of motion

ẍ1 = g −
k0

m1(ϕr − πr)
(x1 − ϕr + πr) −

b0

m1(ϕr − πr)
(ẋ1 − ϕ̇r) −

Ff1

m1

ẍ2 = g −
k0

m2(l0 − ϕr)
(x2 − l0 + ϕr) −

b0

m2(l0 − ϕr)
(ẋ2 + ϕ̇r) −

Ff2

m2

ϕ̈ =
T

J
+

k0r

J(ϕr − πr)
(x1 − ϕr + πr) +

b0r

J(ϕr − πr)
(ẋ1 − ϕ̇r) + . . .

. . . −
k0r

J(l0 − ϕr)
(x2 − l0 + ϕr) −

b0r

J(l0 − ϕr)
(ẋ2 + ϕ̇r) − bf

ϕ̇

J
,

J = Jm +
Jk

n2
, r =

rn

n
(20)

where x1, x2, ϕ stand for counterweight, cabin and motor
pulley position, T is the actuator torque, Ff1,2 denote friction
forces, and other physical parameters given in table I.

A specific challenge of the lift system comes from its
position-dependent oscillatory dynamics due to the variable
active length of the rope segments. This is demonstrated for
a specific set of physical parameters given in table I by



observing the frequency response functions computed from
the linearized models, where the cabin mass and position were
varied (Fig. 5). Two dominant resonance/antiresonance pairs
are observed due to the flexibility of the ropes with the hanging
load. Their location varies as a function of cabin mass and
position.

The oscillatory behaviour must be attenuated to ensure safe
and reliable operation. This can be done by the proper design
of the feedback controller. For this moment, we assume that
a fixed parameter PI velocity controller commonly used in
industrial drive systems in the form of

C(s) =
T (s)

e(s)
= kp +

ki
s
, (21)

where kp, ki denote proportional and integral gains, T denotes
the output torque generated by the drive, and e denotes the
actual velocity error. The controller parameters must be tuned
to achieve satisfactory cabin-side performance, while the loop
is typically closed via the motor-side feedback since most
lift installations do not allow simple direct measurement of
cabin position and/or velocity. Therefore, the control topology
matches the collocated control setup formulated in the previous
section (Fig. 2).

STEP 1 - Plant model definition: The uncertain model set
is constructed from 9 samples of representative LTI models
acquired from different combinations of cabin positions (three
different floors in a building, l2 = {3, 15, 30}m) and three
distinct cabin loads (m2 = {600, 1000, 1400}kg). The robust
controller should work well for all the assumed cases of
parametric variations that influence the plant dynamics in
different operating points.

STEP 2 - Collocated control setup: Motor-side velocity is
defined as the feedback variable y, while the cabin velocity
becomes the performance output z, forming a single-input-
two-outputs system from Fig. 2.

STEP 3 - Robust controller design: The loop shaping
inequality defining the robust control set K is formulated in
the form of maximum sensitivity

K ∆
= {k : max

∀i
(Ms,i) ≤ 1.8}, (22)

Ms,i =

∣∣∣∣∣∣∣∣ 1

1 + C(s)Py,i(s)

∣∣∣∣∣∣∣∣
∞

, i = 1..9

which has to be fulfilled for the whole uncertain model set
containing nine representative transfer functions for different
working points and variable load. Fig. 6 shows the resulting
H∞ region K designating the set of admissible controllers
fulfilling the robustness requirement (22).

Step 4 - Performance optimisation: From the admissible set
K, one particular controller has to be chosen for implementa-
tion. While all the controllers provide the desired robustness in
stability, they differ considerably in the achieved closed-loop
performance. One could possibly opt for the solution with the
highest integral gain, according to the IE criterion (4) proposed

Fig. 6: Admissible region K, the dots represent the finite set Kg

(22) with colour corresponding to the maximum achieved Msi

value, red x-marks denote optimal controllers; 1 - IE criterion,
2 - ITAE criterion for y variable, 3 - ITAE criterion for z
variable

in the earlier studies [4], [5], as designated by x-mark Nr. 1
in Fig. 6. This leads to the control gain vector

k1 = [kp, ki] = [4.47, 2330]. (23)

Fig. 7 shows the resulting closed-loop reference step re-
sponses for the set of representative nine plant models. While
a decent performance is observed at the motor side for the
feedback variable y, severe cabin-side vibrations arise. This
is a typical scenario for collocated motion setups, where
a high-gain controller closing the feedback loop at the actuator
side excites an unacceptable level of load-side oscillations.
Changing the performance criterion does not help in this case.
Switching from IE cost (4) to the total/average ITAE (14) cost

Jy
t (k)

∆
=

∑
∀i

∫ ∞

0

τ |eyi (τ,k)|dτ, (24)

eyi (τ,k) = w1 − yi = L−1

{
1

s

1

1 + C(s,k)Py,i(s)

}
, (25)

leads to a controller k2 = [5.2, 2260] (Fig. 6) with a closed-
loop behaviour very close to that of the IE solution from Fig.
7. A load-concerned tuning is necessary, taking the second
output z as the input for the performance optimisation.

When choosing the cabin-side output z as the performance
variable and recomputing the optimization problem for the new
cost function defined using the cabin-side error as follows

Jz
t (k)

∆
=

∑
∀i

∫ ∞

0

τ |ezi (τ,k)|dτ, (26)

ezi (τ,k) = w1 − zi = L−1

{
1

s

1 + C(Py,i − Pz,i)

1 + C(s,k)Py,i(s)

}
. (27)



Fig. 7: Closed-loop performance achieved with IE optimal
controller k1 - motor and cabin-side reference step response

The optimal controller is obtained with the gain vector

k3 = [kp, ki] = [7.1, 9.7]. (28)

Fig. 8 displays the resulting closed-loop performance in
terms of motor and cabin velocity response to step reference
change. The settling time at the motor side is longer than
for the IE controller. However, cabin-side performance is im-
proved considerably, showing much better damped transients
with less overshoot.

Apart from linear analysis using the uncertain model set,
also a full-scale nonlinear simulation was performed, linking
the optimal controller (28) and model (20). Jerk-limited piece-
wise polynomial reference trajectory profile shown in Fig. 9
was generated using the algorithms derived in [13], [14]. It
simulates the scenario of a rest-to-rest manoeuvre used for
positioning the lift cabin between two different floors. Fig.
10 shows the resulting tracking performance. Smooth velocity
and acceleration response is achieved without exhibiting any
cabin-side vibrations. This validates the proper design of the
robust and optimal controller.

Fig. 8: Closed-loop performance achieved with load-concerned
ITAE optimal controller k3 - motor and cabin-side reference
step response
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VI. SUMMARY

The paper describes a methodology suitable for the deriva-
tion of robust and optimal low-order fixed structure controllers.
An emphasis is given to the collocated control setup, which
is commonly used in mechatronic systems with oscillatory
dynamics and motor-mounted sensor used for closing the
feedback loop. Care must be taken in such cases to achieve
satisfactory load-side performance. The advantage of the pre-
sented method is the ability to combine the robustness and
optimality aspects while deriving simple controllers that are
easily implementable in practice. The method can be modified
to other PID-type compensators with two or three parameters.
Multi-objective performance optimisation is possible, com-
bining various time- algebraic- or frequency-domain criteria,
which is achieved by means of sampling and segmenting the
robust admissible controller set. The lift control problem is
studied as a benchmark use case, demonstrating the practical
applicability of the proposed approach.

VII. FUTURE WORK

Our future work will be directed to the development of
a user-friendly supporting software tool suitable for designing
low-order robust and optimal controllers in terms of the formu-
lated collocated control setup. Also, a design of feedforward
controllers supplementing the feedback loop to further improve
performance of a motion system will be a next research
direction.
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[7] V. Žán, K. Kubı́ček, and M. Čech, “Design of robust PI controller by
combining robustness regions with time-domain criteria,” in 2022 IEEE
27th International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2022, pp. 1–8.

[8] S. Skogestad and I. Postlethwaite, Multivariable feedback control:
analysis and design. john Wiley & sons, 2012.

[9] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space
solutions to standard h2 and h-infinity control problems,” in 1988
American Control Conference. IEEE, 1988, pp. 1691–1696.

[10] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control
theory. Courier Corporation, 2013.

[11] B. Z. Knezevic, B. Blanusa, and D. P. Marcetic, “A synergistic method
for vibration suppression of an elevator mechatronic system,” Journal
of Sound and Vibration, vol. 406, pp. 29–50, 2017.

[12] C. Li, J. Lu, J. Lai, J. Yao, and G. Xiao, “Assessment of ride comfort
of traction elevators using iso 18738-1: 2012 and iso 2631-4: 2001
standards,” Journal of Intelligent Manufacturing and Special Equipment,
no. ahead-of-print, 2022.

[13] M. Blejan and R. Blejan, “Mathematics for real-time s-curve profile
generator,” Hidraulica, no. 4, pp. 7–25, 2020.
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