
Project Title Expanding FAIR solutions across EOSC

Project Acronym FAIR-IMPACT

Grant Agreement No. 101057344

Start Date of Project 2022-06-01

Duration of Project 36 months

Project Website https://fair-impact.eu/

D4.4 - Guidelines for recommended metadata standard
for research software within EOSC

Work Package WP 4, Metadata and Ontologies

Lead Author (Org) Morane Gruenpeter (INRIA)

Contributing
Author(s) (Org)

Sabrina Granger (INRIA), Alain Monteil (INRIA), Neil Chue Hong
(UEDIN-SSI), Elena Breitmoser (UEDIN-SSI), Mario Antonioletti
(UEDIN-SSI), Daniel Garijo (UPM), Esteban González Guardia (UPM),
Alejandra Gonzalez Beltran (UKRI-STFC), Carole Goble (UNIMAN), Stian
Soiland-Reyes (UNIMAN), Nick Juty (UNIMAN), Gabriela Mejias
(DataCite)

Due Date 2023-06-30

Date 2023-06-30

Version V1.0

Dissemination Level

X PU: Public

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)

Versioning and contribution history

Version Date Author Notes

0.1 2023.04.06 Morane Gruenpeter
(INRIA)

Main structure

0.2 2023.04.21 Morane Gruenpeter
(INRIA) and all co-authors

Revision of structure, metadata
analysis and landscape added
use cases , tools template &
audience definition in
introduction

0.3 2023.05.17 Morane Gruenpeter
(INRIA) and all co-authors

First proposal of the RSMD
recommendations

0.4 2023.05.23 Morane Gruenpeter
(INRIA) and all co-authors

Draft for webinar review

0.5 2023.05.26 Morane Gruenpeter
(INRIA) , all co-authors
and community

Consolidated feedback

0.6 2023.05.31 Morane Gruenpeter
(INRIA) and all co-authors
and community

Submission to PCO and internal
FAIR-IMPACT review

1.0 2023.06.30 Morane Gruenpeter
(INRIA) and all co-authors
and community

Submission to EC

Disclaimer

FAIR-IMPACT has received funding from the European Commission’s Horizon Europe funding
programme for research and innovation programme under the Grant Agreement no.
101057344. The content of this document does not represent the opinion of the European
Commission, and the European Commission is not responsible for any use that might be made
of such content.

2 | Page

Table of Contents
Table of Contents... 3

Terminology...5

Executive Summary..6

1 Introduction..7

1.1 Scope and goals.. 8

1.1.1 Why are we here?... 8

1.1.2 Who is the intended audience of this document?.. 9

1.2 Methodology.. 9

1.2.1 Articulation of T4.3 with other initiatives... 9

1.2.2 Methods used in T4.3 to create the guidelines...9

1.3 Use cases overview...10

2 State of The Art of Best Practices and Guidelines...11

2.1 Software development platforms and version control systems..................................... 11

2.2 Accessibility and preservation.. 12

2.3 Reference and identification...13

2.4 Description and classification: to search and find software... 13

2.4.1 Registries, catalogs and aggregators... 14

2.4.2 SciCodes Consortium and guidelines.. 15

2.5 Credit and attribution... 15

2.5.1 Software citation... 16

2.5.2 The case of the collective author.. 16

2.6 Reuse, licensing and legal aspect..16

2.7 Re-executability: dependencies and execution environment...18

3 Metadata Analysis...19

3.1 Where is the metadata available: Intrinsic vs. extrinsic metadata................................. 19

3.2 The landscape of metadata vocabularies and ontologies...19

3.3 CodeMeta: Creating a Community Around a Software Vocabulary................................20

3.4 Tools For Metadata Creation and Curation...21

4 The RSMD Guidelines Proposal for End-Users..22

4.1 Why do we need the RSMD guidelines?...22

4.2 Who is it for?.. 22

4.3 What is the scope?... 22

4.4 The recommendations..23

4.4.1 General Metadata Recommendations.. 24

4.4.2 Accessibility and preservation...25

4.4.3 Reference and identification... 26

4.4.4 Description & classification... 27

4.4.5 Credit & attribution...28

4.4.6 Reuse, licensing and legal aspects...29

3 | Page

4.4.7 Re-execute: dependencies and execution environment....................................... 30

5 Making it Possible: Scholarly Infrastructures' Role...31

6 Conclusion and Next Steps.. 32

References... 33

Appendices.. 37

Appendix A: Task 4.3 description of work as submitted in the project proposal.................37

Appendix B: RSMD Checklist...38

Appendix C: Metadata Use Case Collection..41

Appendix D: The Difference Between Intrinsic And Extrinsic Identifiers.............................. 43

Appendix E: Metadata Types.. 43

Appendix F: Description of Infrastructures Types...45

Appendix G: Status of CodeMeta Adoption In Various Infrastructures................................ 46

Appendix H: The Metadata Landscape: Software Ontologies and Vocabularies.................. 47

Appendix I: Domain Specific & Community Driven Related Efforts...................................... 49

Appendix J: Community contributions from the FAIR-IMPACT webinar...............................52

List of Figures

Figure 1: Three pillars of Open Science Software Heritage CC-By 4.0 2019 (Software Heritage,
2019)... 7

Figure 2: Architecture of interconnected scholarly infrastructures (EOSC Executive Board &
EOSC Secretariat, 2020).. 11

Figure 3: The “Save Code Now” feature, developed by Software Heritage................................ 12

Figure 4: The granularity levels for software identifiers..13

Figure 5: The metadata landscape from (Gruenpeter & Thornton, 2018).................................. 20

List of Tables

Table I - Explanation of the actions required by the different stakeholders............................... 42

Table II - Overview of the main differences between intrinsic and extrinsic identifiers............. 44

Table III - Overview of the core specificities of intrinsic and extrinsic metadata........................ 46

Table IV - Definition and examples of existing infrastructures and platform types.....................47

Table V – Existing Infrastructures using CodeMeta or engaged in development to provide
CodeMeta import, export or interoperability functionalities... 48

Table VI - List of contributors that have participated in the Developing Guidelines for Metadata
Collection and Curation for Research Software on May 23rd 2023.. 54

4 | Page

Terminology

Terminology/Acronym Description

ARDC Archival, Reference, Description and Credit

ADMS.SW Asset Description Metadata Schema for Software

CFF Citation File Format

CURE Curating for Reproducibility

DOAP Description of a Project

EC European Commission
EOSC European Open Science Cloud
FAIR Findable, Accessible, Interoperable, Reusable
FAIR4RS Findable, Accessible, Interoperable, Reusable for Research Software
FOSS Free and Open Source Software

FSFE Free Software Foundation Europe

IPOL Image Processing Online

PID Persistent Identifier
PURL Persistent uniform resource locator
RDA Research Data Alliance

ReSA Research Software Alliance

RSMD Research Software MetaData

SCID WG Software Source Code Identification Working Group (RDA & FORCE11)

SCI WG Software Citation Implementation Working Group (FORCE11)

SEON Software Evolution ONtology
SIRS Scholarly Infrastructure of Research Software
SIRS report Refers to the Scholarly Infrastructure of Research Software report:

EOSC Executive Board & EOSC Secretariat. (2020).

SPDX Software Package Data Exchange

SSC IG Software Source Code Interest Group

SWHID Software Heritage Identifier
SWH Software Heritage
T4.3 Task 4.3 in Work Package 4: Standard metadata for research software

VCS Version control System

WP4 Work Package 4 in the FAIR-IMPACT project:Metadata and ontologies

5 | Page

Executive Summary

The FAIR-IMPACT Guidelines for recommended metadata standards for research
software within the EOSC present the first proposal of the Research Software
MetaData (RSMD) Guidelines, developed by Task 4.3 (T4.3), Standard metadata for
research software, as part of Work Package 4, Metadata and ontologies, in the
FAIR-IMPACT project. FAIR-IMPACT aims to realize a FAIR (Findable, Accessible,
Interoperable, and Reusable) European Open Science Cloud (EOSC) by leveraging
community guidelines and existing infrastructures in the scholarly ecosystem.

The growing recognition of software's crucial role in research has led to initiatives,
infrastructures and research institutions to address the challenges of software
findability, accessibility, attribution and reuse. One of these initiatives, the Scholarly
Infrastructures for Research Software (SIRS) Task Force (TF), identified in its report
(EOSC Executive Board & EOSC Secretariat, 2020) the general need for actionable,
standardized guidelines for researchers/developers that self-archive software or
submit software for publication.

The FAIR-IMPACT project acknowledged the rising need for establishing software
metadata guidelines to effectively collect and curate metadata. In response, T4.3’s
deliverable provides a comprehensive set of Research Software MetaData (RSMD)
Guidelines that offer flexible and adaptable recommendations for end-users that can
be used in different disciplines and different software development contexts.

This deliverable summarizes a large review and analysis including: a thorough
introduction of the goals, methodology and use cases; the state of the art of existing
practices and guidelines and the metadata landscape. Following the first introduction
and state of the art, T4.3 introduces the RSMD guidelines proposal to collect and
curate research software metadata. These guidelines are directly addressed to end
users, including software creators and curators in their quest to improve the FAIRness
of their software.

Lastly, T4.3 will continue its efforts to make the RSMD guidelines normative within the
academic community. This includes engaging with stakeholders, gathering feedback,
and incorporating best practices and advancements in metadata management within
existing infrastructures. By establishing these guidelines as a norm, the aim is to
promote widespread adoption and adherence, leading to greater standardization and
harmonization of metadata practices across research domains. The ongoing
commitment of T4.3 to refining and promoting the RSMD guidelines will contribute to
the overall advancement of open and FAIR research practices in the research software
community. The purpose of this deliverable in general and of the RSMD guidelines in
particular is to provide a concrete and practical resource to support researchers in
their endeavors to share and publish their research software creations.

6 | Page

1 Introduction

Software plays a crucial role in academic research, not only as a tool for data analysis
but also as a research outcome or result, or even the object of research itself (EOSC
Executive Board & EOSC Secretariat, 2020). Therefore, in an Open Science ecosystem,
software should receive the same level
of attention and recognition as
publications and datasets. However,
the lack of standardized guidelines and
best practices for software
development and curation has resulted
in challenges for researchers,
developers, and other stakeholders in
finding, reusing, and reproducing
research results.

Figure 1: Three pillars of Open Science Software
Heritage CC-By 4.0 2019 (Software Heritage, 2019)

“Sometimes, if you don’t have the software, you don’t have the data”
Christine Borgman (Turello, 2019)

As such, it is essential to ensure that software is described and shared in the same
manner that researchers do with publications. The Scholarly Infrastructure for
Research Software (SIRS) report (EOSC Executive Board & EOSC Secretariat, 2020)
identified four major challenges that need to be addressed as ARDC:

● A for Archiving to ensure availability and accessibility
● R for Referencing to ensure precise identification for reuse and reproducibility
● D for Describing to ensure software can be found and understood
● C for Crediting to ensure proper acknowledgement of contributions and

authorship
These challenges should be addressed at different levels (Nosek, 2019). At the
infrastructure level, it is necessary to provide access to services that enable archival,
referencing, description, and citation. Infrastructure changes require appropriate tools
and user interfaces to facilitate the transition. These changes should be accompanied
by new or improved community standards to establish norms. At a higher level, the
proposed changes should be incentivized, and ultimately, policies can mandate their
implementation.
In FAIR-IMPACT and on this specific deliverable we will address the community
standard for research software metadata collection and curation.

To establish a FAIR EOSC, software should be part of this goal following the high level
FAIR for Research Software (FAIR4RS) principles specified in (Chue Hong et al., 2022)
where artifacts should be at least findable, accessible, interoperable, and reusable
(FAIR). However “FAIR isn’t the end goal, it’s just one part of the solution.” (D. Katz,

7 | Page

2021). Other criteria should be met for software: open, archived, of high-quality,
robust, citable, sustainable, and reproducible.

Task 4.3 (T4.3), Standard metadata for research software, is part of Work Package 4,
Metadata and ontologies, in the FAIR-IMPACT. Its primary objective is to develop
guidelines for metadata collection and curation of research software, presented in this
document. The description of work available in Appendix A: T4.3 will also contribute to
normalization efforts such as CodeMeta and explore synergies with initiatives like FAIR
Computational Workflow principles and Bioschemas.

1.1 Scope and goals

Currently, there is a lack of readily available user-friendly tools for applying and
maintaining metadata across various types of software artifacts, the FAIR-IMPACT
Guidelines for recommended metadata standards for research software within the
EOSC presented in this document aim to provide actionable, standardized guidelines
that will facilitate the adoption of existing and upcoming processes and tools in the
scholarly ecosystem. Task 4.3 will ensure that the guidelines developed will ease the
collection and curation of metadata for research software.
Therefore, the guidelines are designed for research communities, institutions, research
teams, researchers and developers who create software and self-archive software by
submitting the code or/and metadata to a scholarly infrastructure.

We use the Research Software definition from the FAIR4RS output:

Research Software includes source code files, algorithms, scripts, computational workflows
and executables that were created during the research process or for a research purpose.
Software components (e.g., operating systems, libraries, dependencies, packages, scripts,
etc.) that are used for research but were not created during or specifically for research should
be considered software in research and not Research Software. This differentiation may vary
between disciplines. The minimal requirement for achieving computational reproducibility is
that all the computational components (Research Software, software used in research, and
hardware) used during the research are identified, described, and made accessible to the
extent that is possible.

(Gruenpeter et al., 2021)

1.1.1 Why are we here?

Ultimately, this deliverable, FAIR-IMPACT Guidelines for recommended metadata
standards for research software within the EOSC aim to: (1) create a cohesive and
standardized approach to research software metadata collection and curation that
benefits all stakeholders involved; (2) help the target audience identifying key
requirements and best practices that can improve the quality and reproducibility of
their research software.
To do so, the approach is to compare, test and analyze the existing practices in the
software development communities and in the scholarly ecosystem.

8 | Page

1.1.2 Who is the intended audience of this document?

The full document, including state of the art, metadata analysis, metadata curation
workflows and the FAIR-IMPACT Research Software Metadata guidelines (RSMD
Guidelines) proposal, is intended for the EOSC community and metadata specialists.
The RSMD guidelines are designed to be easily adapted to national communities,
specialized disciplines or software-driven communities to support efforts from
research communities, research institutions and scholarly infrastructures to address
their researchers or users needs.
To assist software creators in self-archiving their software and self-curating their
software metadata, an RSMD checklist is included in Appendix B of this document. By
using the checklist, software creators can ensure that their software is available in a
suitable repository and has the necessary metadata to be easily discoverable and
reusable.
The RSMD guidelines and checklist are self-contained resources that can be published
independently as community-maintained documents. This approach will ensure the
long-term sustainability of these resources and enhance their ability to support
stakeholders in the scholarly ecosystem.

1.2 Methodology

1.2.1 Articulation of T4.3 with other initiatives

One challenge of T4.3 is seeking coordination and collaboration with various relevant
projects and organizations, such as the EOSC TF "Infrastructure for Quality Research
Software," the CodeMeta Initiative, the FORCE11 Software Implementation WG, the
joint FORCE11, Research Data Alliance (RDA) & Research Software Alliance (ReSA) FAIR
for Research Software WG (FAIR4RS WG), the RDA Software Source Code Interest
Group (SSC IG), the ESFRI initiative (European Strategy Forum on Research
Infrastructures, n.d.) and the FAIRCORE4EOSC EU project, which is expected to develop
coordinated services and tools to archive, reference, describe and cite research
software. Moreover, we will strive for alignment of the metrics developed by the task
T5.2 in FAIR-impact.

In addition to these stakeholders, collaboration with publishers is critical, as it must be
ensured that mainstream citation formats used by publishers, such as JATS, support all
relevant software metadata items. A JATS4R recommendation for software citations
(NISO JATS4R Working Group, Software Citations Subgroup, n.d.) is already available.

1.2.2 Methods used in T4.3 to create the guidelines

In order to establish practical and consistent guidelines for metadata collection and
curation of research software, we adopted the following methodology:

1. Expert subgroups in collaboration with Task 5.2 within the FAIR-IMPACT
project: These subgroups consisted of experts from different domains to review
and provide feedback on the FAIR4RS principles and the ARDC (Archive,
Reference, Describe, Cite) pillars from the SIRS report.

9 | Page

https://jats4r.org/software-citations/

2. Existing practices analysis with the identified seven aspects for the RSMD.
3. Workshop (FAIR-IMPACT, 2023): we have organized a workshop with the

FAIRCORE4EOSC project to gather input and suggestions from stakeholders in
the research community. The workshop focused on discussing the challenges
and opportunities for metadata collection and curation of research software,
and identifying the requirements and best practices that would be useful for
their research software. 80 participants onsite and online have participated
actively during the three hours workshop (Chue Hong, Neil, 2023; Gruenpeter,
Morane, 2023).

4. Writing sprints: three writing sprints were organized within the T4.3 to analyze
the materials and inputs from the workshop. The result of the sprints is this
document.

5. Webinar: to review and validate the RSMD guidelines proposal, we have
organized a community webinar on May 23rd 2023 which launched a
community review period. The webinar was open to the research community
to provide feedback and suggestions on the proposal. In Appendix I, we have
captured the full list of contributors during the webinar.

The next steps to complete the open and transparent methodology:

1. Finalization: sharing online in an open repository the RSMD guidelines &
checklist in CC-BY-4.0 to get community input and continuous improvement.

2. Maintenance: The document will be maintained by the RDA SSC IG.
3. Dissemination: T4.3 will disseminate the resources in the academic community

through various channels, including promotion on mailing lists, presentations,
and hands-on workshops.

1.3 Use cases overview

The stakeholders involved in metadata collection and curation for research software
include researchers, research software engineers, and developers who serve as the
creators and contributors of the software, laboratories/teams responsible for software
development and maintenance, curators and librarians who play a crucial role in digital
archiving and metadata management, as well as the users of the research software
who rely on accurate and comprehensive metadata for discovery, evaluation, and
utilization purposes.

Appendix D provides an overview of use cases for each of the above stakeholders.
These use cases were collected during the Research Software workshop in March 2023
(Gruenpeter et al., 2023), with contributions from various stakeholders. The workshop
highlighted the collaborative efforts of the research software community in recognizing
the significance of metadata for software discovery, reproducibility, archival, and
decision-making.

10 | Page

2 State of The Art of Best Practices and Guidelines

Software is essential for academia, yet the majority of software is developed outside of
academia in industry and developer communities (Research Data Alliance/FORCE11
Software Source Code Identification WG et al., 2020). Best practices, community
standards and guidelines emerged in different domains and development
communities. In this section, we will cover the main themes that are part of the
prominent practices and guidelines both within and outside academia. We will divide
this analysis thematically, covering:

● Software development platforms and version control systems
● Accessibility and preservation (A = Archive)
● Reference and identification (R = Reference)
● Reuse, licensing and legal aspects
● Description and classification (D = Describe)
● Credit and attribution (C = Cite)
● Re-executability: dependencies and execution environment

In the diagram below, taken from the SIRS report (EOSC Executive Board & EOSC
Secretariat, 2020), the universal source code archive caters the scholarly ecosystem
and its infrastructures while catering other parallel ecosystems; industry, public
administration and cultural heritage.

Figure 2: Architecture of interconnected scholarly infrastructures (EOSC Executive

Board & EOSC Secretariat, 2020)

In this section, we will review the landscape of existing guidelines in each of the
categories identified above.

2.1 Software development platforms and version control systems

The history of version control systems (VCS) dates back several decades and has
evolved through different generations, transitioning from local VCS systems like
Revision Control Systems to today's widely adopted distributed VCS systems like Git.
Git repositories can be hosted on various platforms like GitHub, Bitbucket, and GitLab,
which provide additional features like issue tracking, code review, collaboration and

11 | Page

project management tools. The usage of version control systems allows to easily track
changes in the software and to collaborate within a team or even in a large community.
Using a VCS is strongly recommended in (Martinez-Ortiz et al., 2020) and (Chue Hong
et al., 2022). Creating a code repository for the code on an online platform will
generate a metadata property that should be collected: the code repository URL.

2.2 Accessibility and preservation

In the FAIR4RS principles (Chue Hong et al., 2022), the “A principle” stands for
Accessibility: “Software, and its metadata, is retrievable via standardized protocols.”
Accessibility to the software cannot be guaranteed without software archival, because
software artifacts are fragile. In addition, metadata should be properly archived
alongside the software artifacts. It is important to note that proprietary software,
which is not publicly available and cannot be publicly archived on self-archive
platforms, should be archived in local instances (e.g an institutional archive).
The SIRS report (EOSC Executive Board & EOSC Secretariat, 2020) states that software
archival plays a crucial role in the scholarly ecosystem and recommends connecting
different scholarly infrastructures into a universal source code archive, such as
Software Heritage.
GitHub or any public industrial forge is not a permanent archival solution, as many
have been discontinued or closed. Scholarly repositories and the unique universal
source code archive serve as separate entities dedicated to source code archival.

Figure 3: The “Save Code Now1” feature, developed by Software Heritage

In summary, the software preservation best practices are to archive the valuable
code and development history which is key to its understanding and knowledge for
long-term accessibility and future innovation.
By ensuring long-term access to the source code, we capture and preserve the
knowledge embedded within it, serving as a valuable resource for future
generations.

1 https://www.softwareheritage.org/howto-archive-and-reference-your-code/

12 | Page

https://www.softwareheritage.org/howto-archive-and-reference-your-code/

2.3 Reference and identification

When it comes to software, identifying is not straightforward as one could imagine.
Software is complex, it evolves over time and projects may last decades. A software
project isn’t a digital artifact, it is an entity that developed and produced the digital
artifacts. The digital artifacts may be in source code form or executables and may be
constructed from millions lines of code and may even be part of a large web of
dependencies. The software projects and artifacts should be identifiable, therefore
different types of Persistent Identifiers (PIDs) are required to fully meet the end-users
needs (Research Data Alliance/FORCE11 Software Source Code Identification WG et al.,
2020). Intrinsic identifiers, which are computed from the artifact itself are the best
mechanism to reference the granularities of folder, files and code fragments.
Intrinsic identifiers, such as hashes, serve as unique signatures within the software
realm. Unlike registered extrinsic identifiers, which function like passport numbers,
hashes act more like fingerprints or DNA sequences for humans, providing an internal
and distinct identification method.

On the other hand the intrinsic identifiers can’t help identifying the projects with their
metadata records, for that we need extrinsic identifiers. The analysis available in
Appendix D showcases the differences between the two types of identifiers and the
way to use them. In this context, using both identifiers in a citation is best, the extrinsic
identifier serves to identify the metadata and attribution of the research product,
while the intrinsic identifier is used to reference the precise version of the software
source code associated with a deposit (Di Cosmo, Gruenpeter, Marmol, et al., 2020)

Figure 4: The granularity levels for software identifiers
from (Research Data Alliance/FORCE11 Software Source Code Identification WG et
al., 2020)

In summary, implementing robust software referencing and identification practices
ensures accurate and efficient retrieval of software resources for future use and
collaboration.

2.4 Description and classification: to search and find software

13 | Page

This section focuses on the thematic description for two primary use cases: (1) to
understand the software better, (2) to search and find the software projects and
artifacts in appropriate infrastructures. Software can only be understood and found if it
contains appropriate description and metadata properties.
However, existing infrastructures utilize diverse vocabularies and ontologies to store
software metadata, in Appendix G you can find the infrastructures using the CodeMeta
vocabulary. A software vocabulary/ontology provides a standardized classification
system for describing software artifacts, including explicit specifications of entities and
relationships within a specific domain of use.

In software engineering best practices, a README file is suggested to capture general
information about the software. It is also the location to note the software name and
description. The README file is a human readable file and isn’t machine actionable.
Best practices for providing a good README help capture essential information,
facilitate understanding, and enhance the usability of the software project. For further
guidance, you can refer to the resources mentioned, such as the Awesome README
repository2 and the Software Release Practice HOWTO (Raymond, 2000). It includes
but isn’t limited to:

1. Brief project description
2. Project website reference (if applicable)
3. Developer's build environment and potential portability issues
4. Roadmap highlighting important files and subdirectories
5. Build/installation instructions (or reference to an INSTALL file)

The descriptive information should be also captured in a machine actionable format,
see metadata analysis section for intrinsic metadata files, including codemeta.json,
CITATION.cff and different package managers metadata file.

2.4.1 Registries, catalogs and aggregators

Descriptive metadata about software projects include key information such as project
title, description, authors/creators, contributors, keywords/subjects, and versions. The
descriptive metadata can be captured in scholarly infrastructures, such as aggregators
and registries, providing a concise summary of the software project, aiding in its
discoverability and understanding for potential users and collaborators. By capturing
and maintaining accurate and comprehensive descriptive metadata, aggregators and
registries play a vital role in facilitating the visibility and accessibility of software
projects within the scholarly ecosystem. Notable infrastructures in the scholarly
ecosystem that handle research software are: swMATH, OpenAire, eScience center
RDM, Datacite, ASCL and more. Most of these infrastructures put in place curation
mechanisms to ensure metadata quality and are part of the SciCodes Consortium
described in the next section.

2

swh:1:dir:e2bff20c3bc71e81143456cad53ed599a3f2b1c3;origin=https://github.com/matiassingers/awe
some-readme

14 | Page

https://github.com/matiassingers/awesome-readme
https://github.com/matiassingers/awesome-readme
https://www.tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/
https://archive.softwareheritage.org/swh:1:dir:e2bff20c3bc71e81143456cad53ed599a3f2b1c3;origin=https://github.com/matiassingers/awesome-readme;visit=swh:1:snp:5bf20a9587e3ee9007e3d6cf50df9917f92cc7b8;anchor=swh:1:rev:35513ac820e15df5b57946bf51bc1bf54ed512f6
https://archive.softwareheritage.org/swh:1:dir:e2bff20c3bc71e81143456cad53ed599a3f2b1c3;origin=https://github.com/matiassingers/awesome-readme;visit=swh:1:snp:5bf20a9587e3ee9007e3d6cf50df9917f92cc7b8;anchor=swh:1:rev:35513ac820e15df5b57946bf51bc1bf54ed512f6

2.4.2 SciCodes Consortium and guidelines

The SciCodes Consortium is a collaborative platform for editors and maintainers of
academic discipline and institutional software registries and repositories. It aims to
facilitate the sharing of work methods, marketing ideas, and communication practices,
as well as address challenges and find solutions in managing software resources. The
Consortium focuses on promoting the adoption of standards such as CodeMeta and
CFF to enhance software citation, recognition, and dissemination. Additionally, it
strives to establish a virtual registry standard to enable efficient searching across
multiple software registries. The consortium has developed under the FORCE 11
Software Citation Implementation WG the Best Practices for Software Registries and
Repositories (Task Force on Best Practices for Software Registries et al., 2020). These
guidelines are aimed at infrastructures to enhance the cataloging of scientific software,
improve software discoverability, enable software citation, and promote long-term
preservation and reuse of computational methods.

2.5 Credit and attribution

Software citations should aim to provide scholarly credit and normative, legal
attribution to all contributors involved in the development of the software. It is
important to acknowledge that different software may require varying styles or
mechanisms of attribution, as a one-size-fits-all approach may not be suitable (Alliez et
al., 2020). In The science code manifesto, Credit is specifically identified with the
following guidance: “Software contributions must be included in systems of scientific
assessment, credit, and recognition.”(The science code manifesto).
Addressing Credit is challenging even if a citation can be easily formatted, the
definition of “contribution” is still very vast, as seen in (Clément-Fontaine et al., 2019)’s
Recommendation n° 4 there is still the need to construct a wide and consensual
definition of a "contribution" to research software. As stated in Recommendation n° 5
by Clément-Fontaine et al. (2019), it is recommended to develop tools that incorporate
the concept of contribution to ensure effective crediting of authors and designers for
their software contributions.
New initiatives are emerging to define a richer taxonomy for software contributions in
Academia, these can be found in the software credit ontology v0.0.13 from 2016, in
(Alliez et al., 2020) where the following software specific roles have been identified:

● Architecture
● Design
● Documentation

● Coding
● Debugging
● Maintenance

● Testing
● Support
● Management

During the Collab workshop 2023, the SORTÆD4 Taxonomy was created for authorship
definition. While the first version lacks detailed distinctions for software engineering
activities, efforts in the Free and Open Source Software (FOSS) community (see the all

4 https://github.com/sdruskat/software-authorship

3 https://w3id.org/softwareCredit#

15 | Page

https://w3id.org/softwareCredit#
https://sdruskat.net/software-authorship/
https://allcontributors.org/docs/en/specification

contributors specifications5). emphasize the importance of crediting contributors.
When defining a software roles taxonomy, drawing inspiration from industry
engineering roles ensures alignment with established practices and enhances
relevance to the software ecosystem.

2.5.1 Software citation

It is crucial to acknowledge that software has gained significant recognition, but there
is still a long way to go. To elevate the status of software, institutional policies should
emphasize the importance of treating software source code on par with publications
and data. This can be achieved by including dedicated entries for software in
bibliographies.

One important aspect of software citation is its complexity, as it requires both proper
credit and identification. One recommendation is to enhance bibliographic entries by
including a Software Heritage Identifier (SWHID) as an intrinsic identifier. The SWHID
would resolve to the specific version of the source code archived in Software Heritage.
Additionally, a persistent extrinsic identifier, such as a DOI, Hal-ID, or PURL
PURL (“Persistent Uniform Resource Locator,” 2023), should be included in the citation
that resolves to the metadata record on a scholarly platform.

For further guidance on software citations, resources such as the "biblatex-software"
package (https://ctan.org/pkg/biblatex-software) and the Software Citation
Implementation Working Group (https://jats4r.org/software-citations/) can provide
valuable insights and recommendations.

2.5.2 The case of the collective author

The problem arises when it is challenging to list all the authors of a software project,
especially in cases where an exhaustive list is difficult or impossible to obtain. This can
be the case for older software that has been taken over or when there are numerous
contributors involved. In such situations, using a collective author, such as a group
name, may be an option. However, it is important to ensure clarity and avoid confusion
by identifying the main contributors who can be contacted for questions or further
information. The recommendation in RSMD-5.4 suggests considering the inclusion of
respective roles for authors to provide additional context and understanding of their
contributions. See the Givaro software example (The Givaro Group, 2019),
hal-02130729v16 as an existing example that should be improved to provide proper
credit.

2.6 Reuse, licensing and legal aspect

Firstly, the software license should be as open as possible, promoting accessibility and
allowing for widespread reuse. It is important to include a clear license that is both

6 https://hal.univ-lorraine.fr/LJK-MAD-CASC/hal-02130729v1

5 https://allcontributors.org/docs/en/specification

16 | Page

https://allcontributors.org/docs/en/specification
https://hal.univ-lorraine.fr/LJK-MAD-CASC/hal-02130729v1

human and machine-readable, ensuring easy understanding and interpretation. The
use of standards like the Software Package Data Exchange (SPDX) can facilitate the
licensing process and improve interoperability. These recommendations can be found
in the HAL deposit guide and on Joinup7, the platform of the European Commission's.
As stated in the “The science code manifesto”(“Science Code Manifesto,” 2013), the
copyright ownership and license of any released source code must be clearly stated.”
By doing so, it becomes easier for users and collaborators to understand the
permissions and restrictions associated with the software.
Additionally, it is crucial to ensure that the licenses of software components used
within a project are compatible with each other. This compatibility ensures that the
software can be integrated and used effectively without any conflicting licensing terms.

To facilitate the long-term preservation of free software resulting from research, the
creation of "legal toolboxes" is encouraged. These toolboxes may provide guidance and
resources to support compliance with licenses and intellectual property laws, ensuring
the continued availability and accessibility of the software. (Clément-Fontaine et al.,
2019). This includes support materials such as guides, training, and assessment tools
aimed at helping researchers understand the impact of their license choices and the
requirement to be compliant with the dependencies they are using. By providing these
resources, researchers can make informed decisions and effectively navigate legal
considerations in their software development and distribution processes.

It is worth noting that even when software is available on platforms like GitHub, it is
still protected by copyright, and explicit permission is required for its use. Software
licenses define the rules and conditions for usage, granting permissions to users. These
licenses are essential for promoting the fair and lawful use of software (Boline et al.,
2021).

However, if no license is provided for a piece of software, challenges can arise in
determining the rights holder, resulting in an "orphan works" problem similar to other
published materials. In such cases, it may be difficult to identify and contact the rights
holder (Morrissey, 2020). This issue emphasizes the importance of clear licensing and
documentation to ensure the long-term preservation and proper management of
software.

In summary, addressing reuse, licensing, and legal aspects of research software
involves adopting open licenses, ensuring compatibility between software
components, clearly stating copyright ownership and licenses, creating legal toolboxes
for long-term preservation, and recognizing the challenges of identifying rights holders
in some cases. By addressing these aspects, researchers can promote the reuse,
accessibility, and legal compliance of their software contributions.

7 https://joinup.ec.europa.eu/

17 | Page

2.7 Re-executability: dependencies and execution environment

To ensure the ability to re-execute research software, it is important to document
software dependencies in a formal, accessible, and machine-readable manner
(Lamprecht et al., 2020). This involves providing precise references to the correct
versions of the software source code and utilizing stable and specialized identifiers for
reproducibility. By addressing these issues, researchers may facilitate the re-execution
of software and improve the overall reproducibility of their work.
Links to these elements can easily break, making it difficult to maintain the stack trace.
Additionally, hardware-specific software may pose challenges in terms of finding or
emulating the required hardware (Gruenpeter et al. 2020). Obsolete or restricted
access to operating systems can further hinder software reuse and experiment
reproduction. Increasing portability through environment and hardware emulation
across platforms can offer a potential solution (Software Heritage, 2023). By emulating
the necessary software environments and hardware configurations, it becomes
possible to run and maintain software on modern systems, ensuring continued access
and usability.

The re-executability of software can be compromised when the source code becomes
inaccessible or modified, especially when dependencies disappear. GNU Guix8 came up
with a solution: integrating its extensive package definitions, relying not only on
source code URLs and hashes to ensure reproducibility, but also on the Software
Heritage archive. SWH serves as a stable source code repository, allowing Guix to
fallback and retrieve source code from the archive when the original location is
unavailable.

To ensure re-executability, another aspect is proper documentation which includes the
full technical requirements, including operating system, hardware, dependencies and
build-instructions. The software readme.so9, developed on github with more than
3,000 stars is providing an hosted online tool10 to create better README including
installation, running tests and more.
Even if the README is not machine actionable, it is crucial to consider the
human-readable aspect of the README in guidelines, making the recommendation to
provide a README file highly relevant.

10 https://readme.so/editor

9

https://archive.softwareheritage.org/swh:1:dir:d83acbe91ea4946807f6a2aa8a011780d65af151;origin=
https://github.com/octokatherine/readme.so;visit=swh:1:snp:6fece9559fa5f0892c5ac63ad4f440274e7f
21d9;anchor=swh:1:rev:450a6b66ecd7e645a98620dd6975b9e616156656

8

https://guix.gnu.org/en/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-ar
chive/

18 | Page

https://archive.softwareheritage.org/swh:1:dir:d83acbe91ea4946807f6a2aa8a011780d65af151;origin=https://github.com/octokatherine/readme.so;visit=swh:1:snp:6fece9559fa5f0892c5ac63ad4f440274e7f21d9;anchor=swh:1:rev:450a6b66ecd7e645a98620dd6975b9e616156656
https://readme.so/editor

3 Metadata Analysis

In this section we explore and analyze the roles and types of metadata in software
collection, curation, preservation, and usage, distinguishing between intrinsic and
extrinsic metadata. We base the analysis on the diverse landscape of software
metadata vocabularies and ontologies in Appendix H, including dedicated software
ontologies, linked data schemes, scholarly ecosystem metadata, digital preservation
schemes, and package management vocabularies. The section also introduces the
CodeMeta initiative and its commitment to creating a comprehensive software
vocabulary, along with tools such as the Codemeta-generator for creating and curating
software metadata. Intrinsic and extrinsic metadata is defined as follows:

Intrinsic metadata
Refers to the information that is
inherently embedded within a software
source code artifact. It includes metadata
files that are captured in the main source
code directory (such as README file,
codemeta.json file, etc.)

Extrinsic metadata
Refers to the information that is external
to the software source code artifact. It
includes metadata elements that provide
context, provenance, and additional
information about the software.

3.1 Where is the metadata available: Intrinsic vs. extrinsic metadata

Intrinsic and extrinsic metadata have distinct roles in metadata management, curation,
preservation, and usage. Intrinsic metadata is often critical for ensuring the long-term
preservation and usability of software, while extrinsic metadata can provide important
context and provenance information that can help users find the software, understand
the software, the community using it and its relation to other research outputs. For an
extensive explanation of each metadata type, see Appendix E.
Intrinsic metadata are saved and indexed in the Software Heritage archive alongside
the code and the full development history. Any code can be saved with the “Save code
now” feature that requires no technical skills to be used. It is good practice to save all
dependencies that are available even if these dependencies are not research software.

3.2 The landscape of metadata vocabularies and ontologies

The landscape of software metadata vocabularies and ontologies is diverse and
includes dedicated software ontologies, linked data schemes, scholarly ecosystem
metadata, digital preservation schemes, and package management vocabularies. Each
approach offers a unique perspective on defining software in an engineering context
and is linked to its own ecosystem (Gruenpeter et al., 2020).

The landscape is divided into two larger categories: software specific schemes, and
general schemes. Vocabularies that are in both represent instances that specifically
describe software in the context of a general scheme. This is the case of the
SoftwareSourceCode class which is part of the schema.org schema.

19 | Page

Figure 5: The metadata landscape from (Gruenpeter & Thornton, 2018)

The figure above is a non-exhaustive view of the software metadata landscape which is
detailed in Appendix H. The figure’s legend:

3.3 CodeMeta: Creating a Community Around a Software Vocabulary

The CodeMeta initiative was launched in 2016 with the software citation principles
(Smith et al., 2016) as a result of the FORCE11 Software Citation WG. Its goal was to
create a rosetta stone for the software vocabularies & ontologies landscape and
resulted with the CodeMeta vocabulary, crosswalk table and tools. The vocabulary is
built over the schema.org classes SoftwareApplication and SoftwareSourceCode which
links the data for semantic web discovery.

Figure 5 presents a non exhaustive software vocabularies landscape (Gruenpeter &
Thornton, 2018). In this figure, the CodeMeta vocabulary is connected to different
metadata categories due to its innovative approach of providing mappings translating
different software vocabularies into the CodeMeta vocabulary. These mappings, which
are part of the CodeMeta repository11are semantic artifacts and are maintained by the
CodeMeta community. In April 2023, CodeMeta v2.112 was released with new
mappings. The CodeMeta initiative provides guidance for research software

12 Source code available:
https://archive.softwareheritage.org/swh:1:rel:03a5f4b652598aadbc59ee3cc5bf566068a44b69;origin=h
ttps://github.com/codemeta/codemeta;visit=swh:1:snp:9d85c1fdcf6fcc7d07a04022ce8ef8dea163a346
swh:1:rel:03a5f4b652598aadbc59ee3cc5bf566068a44b69;origin=https://github.com/codemeta/codem
eta;visit=swh:1:snp:9d85c1fdcf6fcc7d07a04022ce8ef8dea163a346

11 https://github.com/codemeta/codemeta

20 | Page

https://github.com/codemeta/codemeta

developers to use an intrinsic metadata file, named coedemta.json, to facilitate
software metadata collection in json format.
CodeMeta is governed by the project management committee (PMC). The PMC
includes eight members, in 2023. The governance model is defined by statuses which
are provided via a dedicated github repository13. These statuses are based on a
meritocratic governance model14, by Ross Gardler and Gabriel Hanganu is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License. The
community is open and can contribute directly to the CodeMeta repository, by
opening issues and submitting PRs. There are more than 30 contributors to CodeMeta.

As part of the WP4 activities, we will propose to the CodeMeta community the
adoption of the Simple Standard for Sharing Ontology Mappings (SSSOM) in order to
make the existing CodeMeta mappings15 machine-readable and enriched with
descriptive information of the mapping (e.g., who created the mapping, when, for
which schema version). By adopting the SSSOM format, the mappings themselves will
adhere to the FAIR principles. Furthermore, this change will allow the expression of
metadata correspondence, whether two metadata properties are equivalent or just
loosely related (with `narrower than`, `broader than` operators).

3.4 Tools For Metadata Creation and Curation

Tools for creating, managing, and curating software metadata play a crucial role in
ensuring effective organization and discoverability of software assets. Conducting a
thorough tool analysis is essential to identify and leverage the most suitable tools. In
this deliverable we will describe only the codemeta-generator and call for a community
effort to produce a document that will cover a large range of tools, including:
codemetar16, Bolognese17, Codemeta-generator18, schema.org editor19, cffinit20,
somef21 and cffconvert22.

The Codemeta-generator is a web application contributed by Software Heritage during
the FORCE11 2019 Research Software Hackathon. It aims to facilitate the creation of
CodeMeta files (codemeta.json) by providing a user-friendly interface. The tool offers
features such as form completion assistance, including a reference list of SPDX licenses,
validation mechanisms, and the ability to use both CodeMeta and schema.org terms.
Additionally, users can correct the output after validation as part of the creation
process. The tool's purpose is to help researchers generate complete codemeta.json

22 https://pypi.org/project/cffconvert/

21 https://github.com/KnowledgeCaptureAndDiscovery/somef/

20 https://citation-file-format.github.io/cff-initializer-javascript/

19 https://schema.pythonanywhere.com/SoftwareSourceCode

18 https://codemeta.github.io/create/

17 https://github.com/datacite/bolognese

16 https://ropensci.github.io/codemetar

15 https://archive.softwareheritage.org/swh:1:dir:26ee9cc95ffd9a3da9e1392cbd3d31946faa1fc6;

14 http://oss-watch.ac.uk/resources/meritocraticgovernancemodel

13 https://codemeta.github.io/governance/

21 | Page

https://codemeta.github.io/governance/
https://github.com/codemeta/codemeta
https://archive.softwareheritage.org/swh:1:dir:26ee9cc95ffd9a3da9e1392cbd3d31946faa1fc6;origin=https://github.com/codemeta/codemeta;visit=swh:1:snp:870d62919f16970ccfc42c8da188c88d220d6f3a;anchor=swh:1:rev:32cf366e273931723097709d81c767727b0afc3c;path=/crosswalks/
https://ropensci.github.io/codemetar
https://github.com/datacite/bolognese
https://codemeta.github.io/create/
https://schema.pythonanywhere.com/SoftwareSourceCode
https://citation-file-format.github.io/cff-initializer-javascript/
https://github.com/KnowledgeCaptureAndDiscovery/somef/
https://pypi.org/project/cffconvert/
https://codemeta.github.io/create/
https://archive.softwareheritage.org/swh:1:dir:26ee9cc95ffd9a3da9e1392cbd3d31946faa1fc6;origin=https://github.com/codemeta/codemeta;visit=swh:1:snp:870d62919f16970ccfc42c8da188c88d220d6f3a;anchor=swh:1:rev:32cf366e273931723097709d81c767727b0afc3c;path=/crosswalks/

files either from scratch or by aggregating existing information and adding
complementary details. The target audience for this tool is researchers.
Codemeta-generator is distributed under the AGPL-3.0 license and is currently in active
development. You can find more information and access the tool through the GitHub
repository23 or the hosted instance on Codemeta's website24.

4 The RSMD Guidelines Proposal for End-Users

4.1 Why do we need the RSMD guidelines?

The RSMD guidelines are a cross-disciplinary community driven effort to provide
standardized and actionable guidance for the metadata collection and curation of
research software. With the increasing importance of research software in academic
research, it is necessary to ensure that software is archived, referenced, described and
cited (ARDC) and that its metadata is findable, accessible, interoperable, and reusable
(FAIR). The RSMD guidelines provide a framework for achieving these goals and
facilitating the quality and sustainability of research software. Additionally, the
guidelines can help stakeholders in the research community, such as researchers,
software developers, research institutions, publishers, and infrastructure managers,
identify requirements and best practices that are useful for their software.

4.2 Who is it for?

The RSMD guidelines are designed to be easily adapted to national communities,
specialized disciplines or software driven communities to support efforts from research
communities, research institutions and scholarly infrastructures to address their
researchers or users needs. To assist software creators in self-archiving and
self-metadata curation, an RSMD checklist is included in the Appendix B25 of this
document. By using the checklist, software creators can ensure that their software has
the necessary metadata to be easily discoverable and reusable.

4.3 What is the scope?

The RSMD guidelines provide a standardized community based requirements and
recommendations to end users in the following areas:

● General metadata requirements
● Accessibility and preservation (A = Archive)
● Reference and identification (R = Reference)
● Description and classification (D = Describe)
● Credit and attribution (C = Cite)
● Reuse, licensing and legal aspects
● Re-executability: dependencies and execution environment

25

https://docs.google.com/document/d/1A4toAOJI5CJx-S2KrA6-BpWavaPS_MMayuWPJi73l78/edit#headi
ng=h.25aaoqkhwc6a

24 https://codemeta.github.io/codemeta-generator/)

23 https://github.com/codemeta/codemeta-generator

22 | Page

https://github.com/codemeta/codemeta-generator
https://github.com/codemeta/codemeta-generator
https://codemeta.github.io/codemeta-generator/)

While the guidelines cover a broad range of aspects, they primarily focus on metadata
collection, management, and curation, and do not address software engineering
practices such as software quality, testing, performance optimization, or collaboration.

The following elements are considered out of scope for this document:
1. Skills: While important, the discussion of end-users skills and training falls beyond
the scope of this document.
2. Homogeneity between disciplines and user profiles: Addressing the heterogeneity of
disciplines and user profiles is beyond the scope of this document.
3. Documentation: Although essential for comprehensive software, the specific
guidance and best practices on documenting code fall outside the perimeter of this
document.

4.4 The recommendations

The RSMD guidelines are organized into seven distinct aspects, each with a clear
high-level objective and a set of actionable and detailed recommendations. Each
recommendation is uniquely identified using the semantic identifier `RSMD-X.Y`, where
X represents the aspect number and Y represents the recommendation number.
Priorities are assigned to each recommendation, categorized into three levels:
essential (highest priority), important, and useful (lowest priority). This prioritization
helps to emphasize the critical recommendations and ensure that the guidelines
address key areas effectively.

23 | Page

4.4.1 General Metadata Recommendations

Objective

To ensure the collection, curation, and maintenance of research software metadata, the following general
recommendations are suggested for end users, including researchers, software engineers, curators, and
institution staff.

ID Recommendation Priority

RSMD-1.1 Provide embedded information about software in the code itself as a
metadata file (intrinsic metadata) to ensure it is kept and maintained
alongside the software. Can be applied to open and proprietary software.

Definition:

● Intrinsic metadata refers to information that is embedded within the
content or object itself, in a metadata file that can be human readable
(e.g README) or machine-actionable (e.g pom.xml, codemeta.json)

Essential
☆☆☆
☆☆☆

RSMD-1.2 Issue a metadata record (extrinsic metadata) about the source code in a
publicly available infrastructure to benefit from the infrastructure metadata
service (such as citation exports and search functionalities):

● scholarly repository (e.g HAL, Zenodo, etc.)
● publisher (e.g IPOL, eLife, Dagstuhl26, etc.)
● registry/ aggregator (e.g ASCL, swMath, WikiData, DataCite, bio.tools,

etc.)

Definition:
● Extrinsic metadata is the record describing the software externally to

the source code.

Essential
☆☆☆

RSMD-1.3 Use a version control system to track changes in the source code
development and facilitate archival. If an online platform is used, capture the
URL in a CodeRepository property.

Important
☆☆

RSMD-1.4 Follow community standards when developing software: An example can be
language-specific standards and best practices (e.g. DESCRIPTION file in R, see
also
https://swcarpentry.github.io/r-novice-inflammation/08-making-packages-R.h
tml).

Useful
☆

RSMD-1.5 Keep the machine readable intrinsic metadata information in a single source
file, and automatically generate other file formats, to avoid misalignment and
duplication (e.g. generate citation.cff from codemeta.json) wherever possible.

Useful
☆

26 https://www.dagstuhl.de/

24 | Page

https://www.dagstuhl.de/
https://swcarpentry.github.io/r-novice-inflammation/08-making-packages-R.html
https://swcarpentry.github.io/r-novice-inflammation/08-making-packages-R.html

4.4.2 Accessibility and preservation

Objective

To ensure accessibility and preservation, researchers and software engineers are strongly recommended
to follow the archival and sharing recommendations below.

ID Recommendation Priority

RSMD-2.1 Archive the source code repository in the universal source code archive,
Software Heritage27, using the save code now,28 to ensure long-term access
to the full development history.

● This method can be used for software at any level of maturity when
software is publicly available.

Essential
☆☆☆
☆☆☆

RSMD-2.2 Archive software source code in a scholarly repository (e.g Zenodo29, HAL30)
to ensure that software can be found and accessed in a scholarly context.

Note: Proprietary software can be deposited in an institutional repository.

● This method should be used when a software object is ready to be
reported and shared. Some repositories offer the possibility to
create a software record with the archived copy in RSMD-2.1 (e.g
HAL31).

Essential
☆☆☆

RSMD-2.3 Register software projects in a disciplinary or community registry (e.g
ascl.net32, bio.tools33, swMath34, RRID portal35, RSD36, WikiData37,
DataCite38) to ensure that software can be found and accessed.

To answer this recommendation, semi-automatic tools should be provided
by infrastructures to reduce duplication of effort done by researchers or
software creators.

Note: Proprietary software can be registered in an institutional catalog (e.g
the INRIA BIL).

Important
☆☆

38 https://datacite.org/

37 https://www.wikidata.org/wiki/Wikidata:Main_Page

36 https://research-software-directory.org/

35 https://scicrunch.org/resources/about/resource

34 https://zbmath.org/software/

33 https://bio.tools/

32 https://ascl.net/

31 https://www.softwareheritage.org/2023/04/04/swhid-deposit-hal/

30 https://hal.science/

29 https://zenodo.org/

28 save.softwareheritage.org

27 https://archive.softwareheritage.org/

25 | Page

https://archive.softwareheritage.org/
http://save.softwareheritage.org
https://zenodo.org/
https://hal.science/
https://ascl.net/
https://bio.tools/
https://zbmath.org/software/
https://scicrunch.org/resources/about/resource
https://research-software-directory.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://datacite.org/

4.4.3 Reference and identification

Objective

To ensure that research software projects, modules, versions and source code artifacts can be precisely
identified and referenced.

ID Recommendation Priority

RSMD-3.1 Versioning – provide information about software versions to ensure clear
identification when referencing or citing software.
The usage of a version control system facilitates tracking versions.

Essential
☆☆☆

RSMD-3.2 Intrinsic identifiers – use existing well-established intrinsic identifiers (e.g
SWHID39) to specifically identify software artifacts (e.g code-fragment, file,
directory, revision, release) and dependencies.

Essential
☆☆☆

RSMD-3.3 Extrinsic identifiers – use existing well-established extrinsic identifiers (e.g
DOI, HAL-ID, Wikidata entity) to identify software version, software module
or software project.

Definitions:

● software version: A specific version of a software refers to a distinct
release or iteration of a software application or program.

● software module: A specific module of a larger software project
refers to a self-contained unit or component within a software
system.

● software project: A computer software project is an organized effort
to develop software.

Essential
☆☆☆

RSMD-3.4 If applicable, use a versioning scheme that is accepted in the relevant
community (semantic versioning, calendar versioning, git tags, etc.).

Useful
☆

RSMD-3.5 Granularity level – when identifying software artifacts use appropriate
granularity level, as shown in figure 4, depending on the use case (see
Appendix C: Metadata use case collection40).

Important
☆☆

40

https://docs.google.com/document/d/1A4toAOJI5CJx-S2KrA6-BpWavaPS_MMayuWPJi73l78/edit#headi
ng=h.6qo8c2t40npo

39 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

26 | Page

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

4.4.4 Description & classification

Objective

To ensure software findability and comprehensibility, provide descriptive metadata (software's name,
purpose, functionalities, programming language, domain, etc.). These metadata facilitate accurate
representation of the software and enable users to easily discover and understand its capabilities.

ID Recommendation Priority

RSMD-4.1 Add software name and description of the software's functionality and
purpose, using a README file in the root directory of the source code or
other intrinsic metadata file (e.g codemeta.json with the properties name
and description) and on the metadata record (extrinsic metadata).

● Name
● Description

Note: Divergences should be avoided as much as possible.

Essential
☆☆☆
☆☆☆

RSMD-4.2 Add descriptive metadata for classification purposes embedded in the code
(intrinsic metadata) or/and on metadata record (extrinsic metadata). This
includes, but is not limited to: domain, programming language, date
created, date of first publication, keywords, related links, etc.

Note: There are existing infrastructures that can read a codemeta.json file or
other metadata file as input to create the software record automatically (see
Appendix G).

Important
☆☆

RSMD-4.3 Cite related resources (e.g journal articles) describing the software with a
persistent identifier or stable URL in README file or in other intrinsic
metadata files (e.g codemeta.json with the property referencePublication).

Important
☆☆

RSMD-4.4 Add descriptive metadata of the software in a machine readable format, for
example codemeta.json or a package manager metadata file. To avoid
duplication of information refer to RSMD-1.5.

Important
☆☆

RSMD-4.5 Add descriptive information in README file or other intrinsic metadata file
as proposed in community standards (e.g Software Release Practice HOWTO
and Make a README)

○ Website
○ Link to the documentation
○ Contact & support
○ List of functionalities
○ Development status, e.g. Active, inactive, suspended. See

repostatus.org

Useful
☆

27 | Page

https://www.tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/
https://www.makeareadme.com/
http://www.repostatus.org/

4.4.5 Credit & attribution

Objective

To ensure proper crediting and acknowledgment of software creators, authors, and contributors, it is
important to follow citation recommendations.

ID Recommendation Priority

RSMD-5.1 Add intrinsic metadata about authors, this information can be
captured in a human readable format(AUTHORS file, as a section in
README, CONTRIBUTORS.md etc.) or in an author's property in a
machine-readable format (e.g codemeta.json, package management
file, etc.).

Essential
☆☆☆
☆☆☆

RSMD-5.2 Add authors and contributors to the metadata record. Essential
☆☆☆

RSMD-5.3 Use people identifiers for non-ambiguous attribution (ORCID, ID-HAL,
ID-REF, GPG key, VIAF, ISNI etc.)

Important
☆☆

RSMD-5.4 Use roles for software actors (authors & contributors). Refer to
existing contributor roles if possible:

- https://allcontributors.org/
- CRediT – Contributor Roles Taxonomy (niso.org)
- SORTÆD: Software Role Taxonomy and Authorship Definition
- https://w3id.org/softwareCredit#

Important
☆☆

RSMD-5.5 Provide citation preference (CITATION.cff file, Citation section in
README, .bib file, etc.)

Important
☆☆

RSMD-5.6 Where applicable, use appropriate citation granularity level (software,
software-module, software-version, code-fragment) by referring to the
BibLaTeX41 software package specifications.

Useful
☆

RSMD-5.7 In case of plurality of authors, identify all the owners : the authors list
should be exhaustive to ensure credit.
Note: in some cases it might be impossible to have an exhaustive list
of authors, in this case a collective author may be used.

Useful
☆

41 https://ctan.org/pkg/biblatex-software ;
https://fr.overleaf.com/learn/latex/Bibliography_management_with_biblatex

28 | Page

https://allcontributors.org/docs/en/emoji-key
https://credit.niso.org/
https://sdruskat.net/software-authorship/
https://w3id.org/softwareCredit#
https://ctan.org/pkg/biblatex-software
https://fr.overleaf.com/learn/latex/Bibliography_management_with_biblatex

4.4.6 Reuse, licensing and legal aspects

Objective

To ensure proper software reuse and license compliance, it is essential to accurately describe software
licensing and legal aspects. This includes providing clear guidance on proper usage and distribution
rights, clarifying the terms and conditions under which the software can be used and shared.

ID Recommendation Priority

RSMD-6.1 Authors of the software SHOULD/MUST determine the right holders
and check their institution’s policy before choosing a license. It is
important to note that researchers are bound to their institution's
policy regarding software licensing.

Essential
☆☆☆
☆☆☆

RSMD-6.2 Add a License to the software source code as intrinsic metadata,
following established best practices (e.g. SPDX license identifiers in
file: headers, copy of the chosen license in a LICENSE* or in a LICENSES
folder, see REUSE specification). file, README.

Essential
☆☆☆

RSMD-6.3 Add extrinsic metadata about the software license, copyright holders,
and embargo end date on the metadata record.

Essential
☆☆☆

RSMD-6.4 Identify external software modules used, their authors (right holders)
and their licenses. For compliance purposes, it is necessary to verify
licenses compatibility.

Important
☆☆

RSMD-6.5 Add file headers the name of the software, year, copyright holder,
contact information (email), license identifier (e.g. SPDX42), authors
(and information related to modification of authors ; e.g. author BB –
Date WW, Author DD – Date UU) as specified in REUSE specifications43:

Useful
☆

43 https://reuse.software/spec/

42 https://spdx.org/licenses/

29 | Page

https://spdx.org/licenses/
https://reuse.software/tutorial/
https://spdx.org/licenses/
https://reuse.software/spec/

4.4.7 Re-execute: dependencies and execution environment

Objective

To ensure the usability of software and the ability to reproduce the same results in experiments, it is
important that the software can be easily rebuilt and executed. This ensures that others can use the
software effectively and achieve consistent outcomes.

ID Recommendation Priority

RSMD-7.1 Dependencies – describe software dependencies.

If possible, provide a machine readable description (e.g. for a package
manager or build system used in the specific ecosystem).

Essential
☆☆☆

RSMD-7.2 Operating system – describe the technical requirements of the
environment to use the software following community practices of
the specific ecosystem.

Essential
☆☆☆

RSMD-7.3 Hardware – describe technical requirements of the hardware
platform, following community practices of the specific ecosystem.

Important
☆☆

RSMD-7.4 Build instructions – provide build instructions to ensure compilation
and execution. Whenever possible, provide the appropriate build
configuration files for the specific ecosystem (Makefile, Ant files,
Dockerfile, etc.), and appropriate test cases. Following the ecosystem
community standards.

Important
☆☆

RSMD-7.5 User documentation – Provide documentation for the user, including
e.g. input/output formats, examples etc. Add a link to the
documentation in descriptive metadata.

Important
☆☆

RSMD-7.6 Data – provide information on how the data used and/or produced by
the software is handled.

If applicable or available, add a sample provenance trace/log of an
execution, including pointers to input data and expected results, so
that potential reusers can compare and check if the obtained results
are correct. This particularly applies to computational workflows &
pipelines, an important subclass of research software.

Useful
☆

30 | Page

5 Making it Possible: Scholarly Infrastructures' Role

While analyzing the state of the art and creating the RSMD guidelines, we encountered
actions, recommendations and requirements that are not in scope for the RSMD
guidelines but are needed to make metadata curation a reality.
Scholarly infrastructures, listed in Appendix F, should provide platforms that support
the community practices and the RSMD guidelines.

“Policy describes what is required, desired, and incentivised;
infrastructure determines what is possible;
but the community determines how things are done in practice.”

(Brinkman et al., 2020)

In the list below we have collected actions and requirements that should be executed
by scholarly infrastructures (e.g scholarly repositories, aggregators and publishers)
using the RSMD thematics, note that this list isn’t exhaustive:

➔ General requirements:

◆ Ensure metadata records are licensed under CC0
◆ Provide mechanisms to moderate and curate metadata to ensure

curation quality of software records in the infrastructure collection
◆ Provide specific guidance on how to use the infrastructure services

to ensure metadata is collected and preserved
➔ Accessibility & preservation:

◆ Follow scholarly best practices identified by the scicodes
consortium44 to ensure quality service, this includes but is not
limited to: Providing a public scope statement, disclosing
infrastructure end-of-life policy and stipulating conditions of use

➔ Reference and identification:

◆ Provide tools to track the software in other scholarly outputs:

aggregating information about entities and the relationships

between them enables strategic analysis (Fenner, 2020)

◆ Publish policies for research products including PIDs for software

◆ Provide guidance to article authors to identify which PID should be

used to identify software projects or artifacts: extrinsic and intrinsic

identifiers

◆ Implement platforms and services with better and consistent PID

integrations and help grow the PID Graph to track connections.

◆ Cross-link a plurality of academic outputs at the infrastructure level

by providing adapted metadata properties

44 https://scicodes.net/

31 | Page

https://scicodes.net/
https://scicodes.net/

➔ Description & classification

◆ Share the metadata schema, taxonomy, vocabulary or ontology used
by the infrastructure to store the metadata

◆ Provide import and export metadata features using the
codemeta.json format

➔ Attribution & credit

◆ Provide citation export formats to facilitate credit (e.g BibTeX export
format)

◆ Establish clear authorship policy acceptable by the infrastructure
(most relevant to publishers)

◆ Provide mechanisms to cite collective author

➔ Reuse, licensing and legal aspects:

◆ Provide standardized method for display copyright and licensing

information between projects and people; e.g.: SPDX licenses list

◆ Require license information using a controlled list (SPDX licenses list)

◆ Support software authors by providing guidance on license use, etc.

➔ Re-execute: dependencies and execution environment

◆ Provide metadata properties to store information about operating
system, hardware and dependencies

◆ Provide guidance, if possible, on how to ensure better sustainability
of dull software stack (e.g GUIX)

In Appendix G, we have outlined the progress of CodeMeta adoption within prominent
scholarly repositories and outlined their future plans to achieve CodeMeta
compatibility.

6 Conclusion and Next Steps

With this deliverable, T4.3 presents the initial proposal of the FAIR-IMPACT Research

Software MetaData (RSMD) Guidelines to the EOSC community and the wider scholarly

ecosystem. These guidelines focus on end-users, including researchers, software

creators, and curators, during the process of collecting, curating, and managing

software metadata. However, they are also applicable to various stakeholders, such as

infrastructures that offer the required platforms, services, and tools to adhere to these

guidelines.

The RSMD guidelines were first introduced in the FAIR-IMPACT webinar, on May 23rd

2023. The community comments following the webinar were integrated in this version.

The RSMD guidelines and checklist will be made available as standalone resources on

32 | Page

https://spdx.org/licenses/
https://spdx.org/licenses/

an open and collaborative platform with CC-BY-4.0 license. These resources will be

maintained by the community, through the RDA Software Source Code Interest Group

(SSC IG) to ensure sustainability and foster widespread adoption across research

domains.

Recognizing the significance of research software, these guidelines provide

comprehensive recommendations for the collection and curation of metadata. They

address challenges related to archiving, referencing, describing, and citing software, as

well as guidance for ensuring the findability, accessibility, interoperability, and

reusability of software within the scholarly ecosystem. The ultimate goal of these

guidelines is to establish a FAIR EOSC that treats software on an equal footing with

publications and data.

References

APA 7th ed. ; https://www.zotero.org/groups/5018631/fair-impact_t4.3/library

Alliez, P., Cosmo, R. D., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N. P. (2019).
Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria. Computing
in Science and Engineering, 1. https://doi.org/10.1109/MCSE.2019.2949413

American Geophysical Union. (n.d.). Data and Software for Authors. American Geophysical Union.
Retrieved April 6, 2023, from
https://www.agu.org/Publish-with-AGU/Publish/Author-Resources/Data-and-Software-for-Authors

Artaza, H., Chue Hong, N. P., Corpas, M., Corpuz, A., Hooft, R. W. W., Jiménez, R. C., Leskošek, B.,
Olivier, B. G., Stourac, J., Vařeková, R. S., Parys, T. V., & Vaughan, D. (2016). Top 10 metrics for life
science software good practices (5:2000). F1000Research.
https://doi.org/10.12688/f1000research.9206.1

Association for Computing Machinery. (2018). Artifact Review and Badging.
https://www.acm.org/publications/policies/artifact-review-badging

Boline, J., Das, S., Faye, I., Goscinski, W., Hellgren-Kotaleski, J., Hicks, R., Kennedy, D., Leergaard, T.,
Martone, M., Mouček, R., Venugopal, S., Wachtler, T., & Abrams, M. (2021). Best practices review
of five recommendations for FAIR software. F1000Research, 10(195), Article 195.
https://doi.org/10.7490/f1000research.1118518.1

Bouquin, D. R., Chivvis, D. A., Henneken, E., Lockhart, K., Muench, A., & Koch, J. (2020). Credit Lost:
Two Decades of Software Citation in Astronomy. The Astrophysical Journal Supplement Series,
249(1), 8. https://doi.org/10.3847/1538-4365/ab7be6

Brack, P., Crowther, P., Soiland-Reyes, S., Owen, S., Lowe, D., Williams, A. R., Groom, Q., Dillen, M.,
Coppens, F., Grüning, B., Eguinoa, I., Ewels, P., & Goble, C. (2022). Ten simple rules for making a
software tool workflow-ready. PLOS Computational Biology, 18(3), e1009823.
https://doi.org/10.1371/journal.pcbi.1009823

Brinkman, L., Schettino, A., Zurita-Milla, R., Eerland, A., Imming, M., Zormpa, E., Schwamm, H.,
Heininga, V. E., Tsang, E., & van ‘t Veer, A. (2020). Open Science Community Starter Kit (A.
Blanchard, Trans.). International Network of Open Science & Scholarship Communities (INOSC).
https://osf.io/7vez3

Canteaut, A., Fernández, M. A., Maranget, L., Perin, S., Ricchiuto, M., Serrano, M., & Thomé, E. (2021).
Software Evaluation [Report]. Inria. https://hal.inria.fr/hal-03110728

Chue Hong, N. P., Allen, A., Gonzalez-Beltran, A., de Waard, A., Smith, A. M., Robinson, C., Jones, C.,
Bouquin, D., Katz, D. S., Kennedy, D., Ryder, G., Hausman, J., Hwang, L., Jones, M. B., Harrison, M.,
Crosas, M., Wu, M., Löwe, P., Haines, R.,… Pollard, T. (2019). Software Citation Checklist for

33 | Page

https://www.zotero.org/groups/5018631/fair-impact_t4.3/library
https://doi.org/10.1109/MCSE.2019.2949413
https://www.agu.org/Publish-with-AGU/Publish/Author-Resources/Data-and-Software-for-Authors
https://www.agu.org/Publish-with-AGU/Publish/Author-Resources/Data-and-Software-for-Authors
https://doi.org/10.12688/f1000research.9206.1
https://doi.org/10.12688/f1000research.9206.1
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.7490/f1000research.1118518.1
https://doi.org/10.7490/f1000research.1118518.1
https://doi.org/10.3847/1538-4365/ab7be6
https://doi.org/10.1371/journal.pcbi.1009823
https://doi.org/10.1371/journal.pcbi.1009823
https://osf.io/7vez3
https://osf.io/7vez3
https://hal.inria.fr/hal-03110728

Authors (0.9.0). FORCE11 Software Citation Implementation Working Group.
https://doi.org/10.5281/zenodo.3479199

Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J.,
Castro, L. J., Gruenpeter, M., Martinez, P. A., Honeyman, T., Struck, A., Lee, A., Loewe, A., van
Werkhoven, B., Jones, C., Garijo, D., Plomp, E., Genova, F.,…WG, R. F. (2022). FAIR Principles for
Research Software (FAIR4RS Principles) (1.0). https://doi.org/10.15497/RDA00068

Chue Hong, Neil. (2023, March 24). An overview of FAIR4RS and existing tools to assess FAIRness of
software. Research Data Alliance Plenary Session, Gothenburg.
Zenodo.https://doi.org/10.5281/zenodo.7805608

Clément-Fontaine, M., Di Cosmo, R., Guerry, B., Moreau, P., & Pellegrini, F. (2019). Encouraging a wider
usage of software derived from research. Note the from Committee for Open Science’s Free
Software and Open Source Project Group. French Committee for Open Science.
https://hal-lara.archives-ouvertes.fr/OUVRIR-LA-SCIENCE/hal-02545142

CodeRefinery. (n.d.). CodeRefinery: Training and e-Infrastructure for Research Software Development.
CodeRefinery. Retrieved April 6, 2023, from https://coderefinery.org/

Crusoe, M. R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., Tijanić, N., Ménager, H., Soiland-Reyes, S.,
Gavrilović, B., Goble, C., & Community, T. C. (2022). Methods included: Standardizing
computational reuse and portability with the Common Workflow Language. Communications of the
ACM, 65(6), 54–63. https://doi.org/10.1145/3486897

Crusoe, M. R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., Tijanić, N., Ménager, H., Soiland-Reyes, S.,
Gavrilović, B., Goble, C., & The CWL Community. (2022). Common Workflow Language User Guide.
https://www.commonwl.org/user_guide/

CURE Consortium. (2021, 2022). Curating research artifacts to support scientific integrity. CUrating for
REproducibility. https://curating4reproducibility.org/

D4.4_FAIR-IMPACT_Guidelines_research_software_2023-04-21_v0.3. (n.d.). Google Docs. Retrieved
May 17, 2023, from
https://docs.google.com/document/d/1A4toAOJI5CJx-S2KrA6-BpWavaPS_MMayuWPJi73l78/edit?
usp=share_link&usp=embed_facebook

Davidson, J., Grootveld, M., Verburg, M., van Horik, R., O’Connor, R., Engelhardt, C., Garbuglia, F.,
Vieira, A., Newbold, E., Proudman, V., & Horton, L. (2022). FAIR-enabling Data Policy Checklist.
Zenodo. https://doi.org/10.5281/zenodo.6225775

Di Cosmo, R. (2019). How to use Software Heritage for archiving and referencing your source code:
Guidelines and walkthrough. https://hal.archives-ouvertes.fr/hal-02263344

Di Cosmo, R., & Gruenpeter, M. (2020, January 29). The SWH-ID: A digital fingerprint identifying
software source code. Zenodo.https://doi.org/10.5281/zenodo.3630124

Di Cosmo, R., Gruenpeter, M., Marmol, B., Monteil, A., Romary, L., & Sadowska, J. (2020). Curated
Archiving of Research Software Artifacts: Lessons Learned from the French Open Archive (HAL).
International Journal of Digital Curation, 15(1), 16. https://doi.org/10.2218/ijdc.v15i1.698

Di Cosmo, R., Gruenpeter, M., & Zacchiroli, S. (2020). Referencing Source Code Artifacts: A Separate
Concern in Software Citation. Computing in Science & Engineering, 22(2), 33–43.
https://doi.org/10.1109/MCSE.2019.2963148

Druskat, S. (n.d.). SORTÆD: Software Role Taxonomy and Authorship Definition. Retrieved May 10,
2023, from https://sdruskat.net/software-authorship/#roles

Earth Science Information Partners (ESIP) Software and Services Citation Cluster, Hausman, J., Stall, S.,
Gallagher, J., & Wu, M. (2019). Software and Services Citation Guidelines and Examples. ESIP.
https://doi.org/10.6084/m9.figshare.7640426.v4

EarthCube OntoSoft project. (n.d.). The Geoscience Paper of the Future Initiative. Retrieved April 6,
2023, from https://www.scientificpaperofthefuture.org/gpf/

EOSC Executive Board & EOSC Secretariat. (2020). Scholarly infrastructures for research software.
Report from the EOSC Executive Board Working Group (WG) Architecture Task Force (TF) SIRS.
European Commission. Directorate General for Research and Innovation.
https://data.europa.eu/doi/10.2777/28598

European Strategy Forum on Research Infrastructures. (n.d.). RI Initiatives. European Strategy Forum
on Research Infrastructures. Retrieved May 31, 2023, from https://www.esfri.eu/ri-initiatives

34 | Page

https://doi.org/10.5281/zenodo.3479199
https://doi.org/10.5281/zenodo.3479199
https://doi.org/10.15497/RDA00068
https://doi.org/10.5281/zenodo.7805608
https://hal-lara.archives-ouvertes.fr/OUVRIR-LA-SCIENCE/hal-02545142
https://hal-lara.archives-ouvertes.fr/OUVRIR-LA-SCIENCE/hal-02545142
https://coderefinery.org/
https://doi.org/10.1145/3486897
https://www.commonwl.org/user_guide/
https://www.commonwl.org/user_guide/
https://curating4reproducibility.org/
https://docs.google.com/document/d/1A4toAOJI5CJx-S2KrA6-BpWavaPS_MMayuWPJi73l78/edit?usp=share_link&usp=embed_facebook
https://docs.google.com/document/d/1A4toAOJI5CJx-S2KrA6-BpWavaPS_MMayuWPJi73l78/edit?usp=share_link&usp=embed_facebook
https://docs.google.com/document/d/1A4toAOJI5CJx-S2KrA6-BpWavaPS_MMayuWPJi73l78/edit?usp=share_link&usp=embed_facebook
https://doi.org/10.5281/zenodo.6225775
https://hal.archives-ouvertes.fr/hal-02263344
https://doi.org/10.5281/zenodo.3630124
https://doi.org/10.2218/ijdc.v15i1.698
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://sdruskat.net/software-authorship/#roles
https://doi.org/10.6084/m9.figshare.7640426.v4
https://doi.org/10.6084/m9.figshare.7640426.v4
https://www.scientificpaperofthefuture.org/gpf/
https://data.europa.eu/doi/10.2777/28598
https://data.europa.eu/doi/10.2777/28598
https://www.esfri.eu/ri-initiatives

FAIR-IMPACT. (2023, May 23). Developing Guidelines for Metadata Collection and Curation for Research
Software. FAIR-IMPACT.
https://fair-impact.eu/events/fairimpact-events/developing-guidelines-metadata-collection-and-cu
ration-research-software

Fenner, M. (2020, August 27). DataCite Commons – Exploiting the Power of PIDs and the PID Graph.
DataCite Blog. https://blog.datacite.org/power-of-pids/

Garijo, D., Ménager, H., Hwang, L., Trisovic, A., Hucka, M., Morrell, T., & Allen, A. (2022). Nine best
practices for research software registries and repositories. PeerJ Computer Science, 8, e1023.
https://doi.org/10.7717/peerj-cs.1023

Gil, Y., Ratnakar, V., & Garijo, D. (2015). OntoSoft: Capturing Scientific Software Metadata. Proceedings
of the 8th International Conference on Knowledge Capture, 1–4.
https://doi.org/10.1145/2815833.2816955

Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M. R., Peters, K., & Schober,
D. (2020). FAIR Computational Workflows. Data Intelligence, 2(1–2), 108–121.
https://doi.org/10.1162/dint_a_00033

Gruenpeter, M. (2023, May 23). Developing Guidelines for Metadata Collection and Curation for
Research Software. FAIR-IMPACT webinar, Online. https://doi.org/10.5281/zenodo.7962734

Gruenpeter, M., Chue Hong, N., Granger, S., Breitmoser, E., Priddy, M., Antonioletti, M., Martinez, P. A.,
Honeyman, T., Collins, J. A., & Meneses, R. (2023). Research Software Workshop: Guidelines and
Metrics for Metadata Curation. https://doi.org/10.5281/zenodo.8075097

Gruenpeter, M., Sadowska, J., Nivault, E., & Monteil, A. (2022). Create software deposit in HAL
[Technical Report]. Inria ; CCSD ; Software Heritage. https://hal.inria.fr/hal-01872189

Gruenpeter, M., & Thornton, K. (2018, March 25). Pathways for Discovery of Free Softwares. Wikidata
for Digital Preservation, Cambridge. https://en.wikipedia.org/wiki/File:Pathways-discovery-free.pdf

Gruenpeter, Morane. (2023, March 24). An overview of the metadata landscape & descriptive
metadata curation. Research Data Alliance Plenary Session, Gothenburg.
Zenodo.https://doi.org/10.5281/zenodo.7771642

Gruenpeter, Morane, Katz, Daniel S., Lamprecht, Anna-Lena, Honeyman, Tom, Garijo, Daniel, Struck,
Alexander, Niehues, Anna, Martinez, Paula Andrea, Castro, Leyla Jael, Rabemanantsoa, Tovo, Chue
Hong, Neil P., Martinez-Ortiz, Carlos, Sesink, Laurents, Liffers, Matthias, Fouilloux, Anne Claire,
Erdmann, Chris, Peroni, Silvio, Martinez Lavanchy, Paula, Todorov, Ilian, & Sinha, Manodeep. (2021).
Defining Research Software: A controversial discussion (Version 1). Zenodo.
https://doi.org/10.5281/ZENODO.5504016

Hendricks, G. (n.d.). Data and software citation deposit guide [Website]. Crossref. Retrieved April 6,
2023, from
https://www.crossref.org/documentation/reference-linking/data-and-software-citation-deposit-gui
de/

International Neuroinformatics Coordinating Facility (INCF). (n.d.). Evaluation Criteria Checklist for
Repositories and Scientific gateways. International Neuroinformatics Coordinating Facility (INCF).
Retrieved November 28, 2022, from https://www.incf.org/criteria-checklist

Ison, J., Kalaš, M., Jonassen, I., Bolser, D., Uludag, M., McWilliam, H., Malone, J., Lopez, R., Pettifer, S.,
& Rice, P. (2013). EDAM: An ontology of bioinformatics operations, types of data and identifiers,
topics and formats. Bioinformatics, 29(10), 1325–1332.
https://doi.org/10.1093/bioinformatics/btt113

Jisc. (2018, March 30). Research data management toolkit. Research Data Management Toolkit.
https://www.jisc.ac.uk/guides/rdm-toolkit

Katz, D. (2021, June 28). FAIR is not the end goal. Daniel S. Katz’s Blog.
https://danielskatzblog.wordpress.com/2021/06/28/fair-is-not-the-end-goal/

Katz, D. S., Gruenpeter, M., & Honeyman, T. (2021). Taking a fresh look at FAIR for research software.
Patterns, 2(3), 100222. https://doi.org/10.1016/j.patter.2021.100222

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E., Dominguez Del
Angel, V., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J.,
Psomopoulos, F., Gelpi, J. L., Chue Hong, N., Goble, C., & Capella-Gutierrez, S. (2020). Towards FAIR
principles for research softwares. Data Science, 3(1), 37–59. https://doi.org/10.3233/DS-190026

35 | Page

https://fair-impact.eu/events/fairimpact-events/developing-guidelines-metadata-collection-and-curation-research-software
https://fair-impact.eu/events/fairimpact-events/developing-guidelines-metadata-collection-and-curation-research-software
https://fair-impact.eu/events/fairimpact-events/developing-guidelines-metadata-collection-and-curation-research-software
https://blog.datacite.org/power-of-pids/
https://doi.org/10.7717/peerj-cs.1023
https://doi.org/10.7717/peerj-cs.1023
https://doi.org/10.1145/2815833.2816955
https://doi.org/10.1145/2815833.2816955
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.5281/zenodo.7962734
https://doi.org/10.5281/zenodo.8075097
https://hal.inria.fr/hal-01872189
https://en.wikipedia.org/wiki/File:Pathways-discovery-free.pdf
https://doi.org/10.5281/zenodo.7771642
https://doi.org/10.5281/ZENODO.5504016
https://doi.org/10.5281/ZENODO.5504016
https://www.crossref.org/documentation/reference-linking/data-and-software-citation-deposit-guide/
https://www.crossref.org/documentation/reference-linking/data-and-software-citation-deposit-guide/
https://www.crossref.org/documentation/reference-linking/data-and-software-citation-deposit-guide/
https://www.incf.org/criteria-checklist
https://doi.org/10.1093/bioinformatics/btt113
https://doi.org/10.1093/bioinformatics/btt113
https://www.jisc.ac.uk/guides/rdm-toolkit
https://www.jisc.ac.uk/guides/rdm-toolkit
https://danielskatzblog.wordpress.com/2021/06/28/fair-is-not-the-end-goal/
https://danielskatzblog.wordpress.com/2021/06/28/fair-is-not-the-end-goal/
https://doi.org/10.1016/j.patter.2021.100222
https://doi.org/10.3233/DS-190026

Martinez-Ortiz, C., Kuzak, M., Spaaks, J. H., Maassen, J., & Bakker, T. (2020). Five recommendations for
“FAIR software.” https://doi.org/10.5281/zenodo.4310217

Martinez-Ortiz, C., Martinez Lavanchy, P., Sesink, L., Olivier, B. G., Meakin, J., de Jong, M., & Cruz, M.
(2023). Practical guide to Software Management Plans (1.1). Zenodo.
https://doi.org/10.5281/zenodo.7589725

Möller, S., Prescott, S. W., Wirzenius, L., Reinholdtsen, P., Chapman, B., Prins, P., Soiland-Reyes, S.,
Klötzl, F., Bagnacani, A., Kalaš, M., Tille, A., & Crusoe, M. R. (2017). Robust Cross-Platform
Workflows: How Technical and Scientific Communities Collaborate to Develop, Test and Share Best
Practices for Data Analysis. Data Science and Engineering, 2(3), 232–244.
https://doi.org/10.1007/s41019-017-0050-4

Moltó, G., Campos, I., Hardt, M., Blanquer, I., Caballer, M., Orviz, P., David, M., Gomes, J., &
EOSC-SYNERGY. (2020). State of the art regarding digital badge issuing technologies.
https://doi.org/10.13039/501100000780

Morrissey, S. M. (2020). Preserving Software: Motivations, Challenges and Approaches. Digital
Preservation Coalition. https://doi.org/10.7207/twgn20-02

NISO JATS4R Working Group, Software Citations Subgroup. (n.d.). NISO JATS4R Software Citations v1.0.
NISO. https://doi.org/10.3789/niso-rp-40-2021

Nosek, B. (2019, June 11). Strategy for Culture Change. Center for Open Science Blog.
https://www.cos.io/blog/strategy-for-culture-change

Oddou, A., & Henicz, M. (2023, April). Protection of software under intellectual property law. Inria
training session, Lyon.

OpenAIRE, Baglioni, M., Bardi, A., Manghi, P., & Mack, L. (n.d.). OpenAIRE Guidelines for Software
Repository Managers—OpenAIRE Guidelines for Software Repository Managers 1.0 alpha
documentation. OpenAIRE. Retrieved April 6, 2023, from
https://software-guidelines.readthedocs.io/en/latest/

Patel, B., Soundarajan, S., & Hu, Z. (2022). Making Biomedical Research Software FAIR: Actionable
Step-by-step Guidelines with a User-support Tool (p. 2022.04.18.488694). bioRxiv.
https://doi.org/10.1101/2022.04.18.488694

Peer, L., Green, A., & Stephenson, E. (2014). Committing to Data Quality Review. International Journal
of Digital Curation, 9(1), 263–291. https://doi.org/10.2218/ijdc.v9i1.317

Persistent uniform resource locator. (2023). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Persistent_uniform_resource_locator&oldid=1154787
937

Raymond, E. S. (2000). Software Release Practice HOWTO. The Linux Documentation Project.
https://tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/

Research Data Alliance/FORCE11 Software Source Code Identification WG, Allen, A., Bandrowski, A.,
Chan, P., Cosmo, R. D., Fenner, M., Garcia, L., Gruenpeter, M., Jones, C. M., Katz, D. S., Kunze, J.,
Schubotz, M., & Todorov, I. T. (2020). Software Source Code Identification. Use cases and identifier
schemes for persistent software source code identification (V1.0).
https://doi.org/10.15497/RDA00053

Romano, J. D., & Moore, J. H. (2020). Ten simple rules for writing a paper about scientific software.
PLOS Computational Biology, 16(11), e1008390. https://doi.org/10.1371/journal.pcbi.1008390

Science Code Manifesto. (2013). Science Code Manifesto.
https://web.archive.org/web/20130502005551/http://sciencecodemanifesto.org/

Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. PeerJ Computer Science,
2, e86. https://doi.org/10.7717/peerj-cs.86

Software Heritage. (2019). Save and reference research software. Software Heritage.
https://www.softwareheritage.org/save-and-reference-research-software/

Software Heritage. (2020a, March 18). Software Heritage contributes CodeMeta generator to the
community. Software Heritage.
https://www.softwareheritage.org/2020/03/18/codemeta-community/

Software Heritage (Director). (2020b, July 7). Tutorial: Citing software using biblatex-software.
Software Heritage. https://www.youtube.com/watch?v=UhQCeAj9yKM

Software Heritage (Director). (2022, January 27). EOSC Software Infrastructures for Research Software:
J. B. Gonzalez Lopez (CERN). https://www.youtube.com/watch?v=dc1fbSStYBw

36 | Page

https://doi.org/10.5281/zenodo.4310217
https://doi.org/10.5281/zenodo.7589725
https://doi.org/10.5281/zenodo.7589725
https://doi.org/10.1007/s41019-017-0050-4
https://doi.org/10.1007/s41019-017-0050-4
https://doi.org/10.13039/501100000780
https://doi.org/10.13039/501100000780
https://doi.org/10.7207/twgn20-02
https://doi.org/10.3789/niso-rp-40-2021
https://www.cos.io/blog/strategy-for-culture-change
https://www.cos.io/blog/strategy-for-culture-change
https://software-guidelines.readthedocs.io/en/latest/
https://software-guidelines.readthedocs.io/en/latest/
https://doi.org/10.1101/2022.04.18.488694
https://doi.org/10.1101/2022.04.18.488694
https://doi.org/10.2218/ijdc.v9i1.317
https://en.wikipedia.org/w/index.php?title=Persistent_uniform_resource_locator&oldid=1154787937
https://en.wikipedia.org/w/index.php?title=Persistent_uniform_resource_locator&oldid=1154787937
https://en.wikipedia.org/w/index.php?title=Persistent_uniform_resource_locator&oldid=1154787937
https://tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/
https://tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/
https://doi.org/10.15497/RDA00053
https://doi.org/10.15497/RDA00053
https://doi.org/10.1371/journal.pcbi.1008390
https://web.archive.org/web/20130502005551/http://sciencecodemanifesto.org/
https://web.archive.org/web/20130502005551/http://sciencecodemanifesto.org/
https://doi.org/10.7717/peerj-cs.86
https://www.softwareheritage.org/save-and-reference-research-software/
https://www.softwareheritage.org/save-and-reference-research-software/
https://www.softwareheritage.org/2020/03/18/codemeta-community/?lang=fr
https://www.softwareheritage.org/2020/03/18/codemeta-community/?lang=fr
https://www.youtube.com/watch?v=UhQCeAj9yKM
https://www.youtube.com/watch?v=dc1fbSStYBw

Software Heritage (Director). (2023, February 6). Ethan Gates - EaaSI Access to Legacy Software:
Designing Emulation Services for the Future. https://www.youtube.com/watch?v=f6deYP9fvJU

Soiland-Reyes, S., Sefton, P., Crosas, M., Castro, L. J., Coppens, F., Fernández, J. M., Garijo, D., Grüning,
B., La Rosa, M., Leo, S., Ó Carragáin, E., Portier, M., Trisovic, A., RO-Crate Community, Groth, P., &
Goble, C. (2022). Packaging research artefacts with RO-Crate. Data Science, 5(2), 97–138.
https://doi.org/10.3233/DS-210053

Task Force on Best Practices for Software Registries, Monteil, A., Gonzalez-Beltran, A., Ioannidis, A.,
Allen, A., Lee, A., Bandrowski, A., Wilson, B. E., Mecum, B., Du, C. F., Robinson, C., Garijo, D., Katz,
D. S., Long, D., Milliken, G., Ménager, H., Hausman, J., Spaaks, J. H., Fenlon, K.,…Morrell, T. (2020).
Nine Best Practices for Research Software Registries and Repositories: A Concise Guide
(arXiv:2012.13117). arXiv. https://doi.org/10.48550/arXiv.2012.13117

The Carpentries. (n.d.). Introduction to Workflows with Common Workflow Language. The Carpentries.
Retrieved April 6, 2023, from https://carpentries-incubator.github.io/cwl-novice-tutorial/

The Givaro Group. (2019). Givaro (4.1.1).
https://archive.softwareheritage.org/swh:1:dir:df65912bd1e5ea4b96b935de95f6638eb6d9472d;o
rigin=https://hal.archives-ouvertes.fr/hal-02130729;visit=swh:1:snp:da818bf8900aa772999896546
db83b8e9cbe9f6f;anchor=swh:1:rev:5a63bd17a83030740eb27a980fe14a7a37f47efe;path=/.
https://hal.science/hal-02130729

The Research Software Alliance. (2021, April 28). Guidelines. The Research Software Alliance.
https://www.researchsoft.org/guidelines/

The Software Sustainability Institute. (2018). Software Deposit Guidance for Researchers.
https://softwaresaved.github.io/software-deposit-guidance/

The Turing Way Community. (2022). The Turing Way: A handbook for reproducible, ethical and
collaborative research. Zenodo. https://doi.org/10.5281/ZENODO.3233853

Turello, D. (2019, February 7). How to Think About Data: A Conversation with Christine Borgman
[Webpage]. Insights. Scholarly Work at the John W. Kluge Center.
https://blogs.loc.gov/kluge/2019/02/how-to-think-about-data-a-conversation-with-christine-borg
man/

Vrandečić, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase. Communications
of the ACM, 57(10), 78–85. https://doi.org/10.1145/2629489

Würsch, M., Ghezzi, G., Hert, M., Reif, G., & Gall, H. C. (2012). SEON: A pyramid of ontologies for
software evolution and its applications. Computing, 94(11), 857–885.
https://doi.org/10.1007/s00607-012-0204-1

Appendices

Appendix A: Task 4.3 description of work as submitted in the project

proposal

T4.3 Standard metadata for research software [M1-M28] INRIA(12), UEDIN-SSI(4),
UPM(2), DataCite (2), UKRI-STFC(2), UNIMAN(2). This task will develop guidelines for
the collection and curation of metadata to archive, reference, describe and cite research
software. We will survey the ecosystem of scholarly infrastructures and review existing
guidelines in this area. We will follow recommendations from the EOSC SIRS report and
actions from FAIR4RS, and evaluate how standard metadata impacts software
reproducibility. With T4.4, this task will contribute to the normalisation efforts of CodeMeta
and its crosswalk table to extend interoperability, as well as exploring possible synergies
with initiatives such as FAIR Computational Workflow principles and community efforts like
Bioschemas. Liasing with the EOSC 01-03 project, our guidelines will ease adoption of
existing and new processes and tools in the scholarly ecosystem. With T5.2, we will feed into

37 | Page

https://www.youtube.com/watch?v=f6deYP9fvJU
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.48550/arXiv.2012.13117
https://carpentries-incubator.github.io/cwl-novice-tutorial/
https://hal.science/hal-02130729
https://hal.science/hal-02130729
https://www.researchsoft.org/guidelines/
https://www.researchsoft.org/guidelines/
https://softwaresaved.github.io/software-deposit-guidance/
https://softwaresaved.github.io/software-deposit-guidance/
https://doi.org/10.5281/ZENODO.3233853
https://blogs.loc.gov/kluge/2019/02/how-to-think-about-data-a-conversation-with-christine-borgman/
https://blogs.loc.gov/kluge/2019/02/how-to-think-about-data-a-conversation-with-christine-borgman/
https://blogs.loc.gov/kluge/2019/02/how-to-think-about-data-a-conversation-with-christine-borgman/
https://doi.org/10.1145/2629489
https://doi.org/10.1007/s00607-012-0204-1
https://doi.org/10.1007/s00607-012-0204-1

"FAIR metrics" for research software. With WP3 we will contribute to ISO standardization
efforts of software identification using the SoftWare Heritage IDentifier (SWHID).

Appendix B: RSMD Checklist

The Research Software MetaData (RSMD) guidelines are a cross-disciplinary community driven effort to
provide standardized and actionable guidance for the metadata collection and curation of research
software. To assist software creators in self-archiving and self-metadata curation, FAIR-IMPACT has
created the RSMD checklist as a self contained questionnaire. The RSMD checklist which is addressing all
the RSMD guidelines recommendations as a set of questions that can be used by the software creator or
the software curator. By using the checklist, software creators can ensure that their software has the
necessary metadata to be accessible, discoverable and reusable.

General Metadata Requirements

Does the software have metadata that is embedded in the source code (intrinsic metadata)?

(RSMD-1.1)

Does the software project have a metadata record (extrinsic metadata) which is publicly

available on an online scholarly platform? (RSMD-1.2)

Is the metadata record licensed as CC0?

Is the software also available in a version control system (VCS)? (RSMD-1.3)

if it is available online, is the url available in a code repository property in the intrinsic

or/and extrinsic metadata?

Does the software follow language specific community standards? (RSMD-1.4)

Is the machine readable metadata information in a single file? (RSMD-1.5)

Accessibility and preservation

Is the software record or/and are the software artifacts accessible and preserved?

Is the software source code preserved in the SWH universal source code archive,
Software Heritage? (RSMD-2.1)

Is the software archived in a scholarly repository (e.g Zenodo, HAL)? (RSMD-2.2)

Can it be accessed and downloaded?

Is the software registered in a disciplinary or community registry (e.g ascl.net, bio.tools,
swMath, RRID portal, RSD, WikiData, DataCite)

Can it be found in a search engine?

Reference and identification

Are the software versions clearly identified? Are the versions and contributions tracked? Using
a VCS is preferable (RSMD-3.1)

Are intrinsic identifiers available:

Can specific algorithms or code fragments be identified? (RSMD-3.2)

Can a file or directory be identified? (RSMD-3.2)

Can different revisions or releases be identified? (RSMD-3.2)

Are extrinsic identifiers available:

Can different releases be specifically identified? (RSMD-3.3)

Can the project be identified? (RSMD-3.3)

If applicable, can a module be identified? (RSMD-3.3)

Is a versioning scheme used? (RSMD-3.4)

Is it possible to identify different levels of granularity? (RSMD-3.5)

38 | Page

https://archive.softwareheritage.org/
https://zenodo.org/
https://hal.science/
https://ascl.net/
https://bio.tools/
https://zbmath.org/software/
https://scicrunch.org/resources/about/resource
https://research-software-directory.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://datacite.org/

Description & classification

Is the information about the software name and description available (on README file or other

intrinsic metadata file)? (RSMD 4.1)

Does the metadata record contain descriptive metadata? (RSMD 4.2)

Name

Description

Domain

Programming language

Date created

Date of first publication

Keywords

Related links

Version

Is it possible to access articles describing the software via a persistent identifier, or at least, a

stable URL? (RSMD 4.3)

Is the intrinsic metadata of the software description available in a machine readable file?
(RSMD 4.4)

Is additional information (e.g. provenance information, functionalities, development status,
etc.) on the software available in the README file? (RSMD 4.5)

Attribution & credit

Are the authors & contributors identified and acknowledged?

Is the author's information available in the source code as intrinsic metadata?

(RSMD-5.1)

Is the author's information available on the metadata record as extrinsic metadata?

(RSMD-5.2)

Is the list of authors exhaustive or is a collective author used? (RSMD-5.8)

Are people identifiers used? (ORCID, ID-HAL, ID-REF, etc.) (RSMD-5.3)

Are the roles of the authors and contributors specified? (RSMD-5.4)

Is a citation preference provided? (RSMD-5.5)

If applicable, in the article citing the software, is the appropriate granularity used? (RSMD-5.6)

Reuse, licensing and legal aspects

Before choosing a license, did you verify who is the rights holder of the software? (RSMD-6.1)

Is the license information available in the source code (intrinsic metadata file)? (RSMD-6.2)

If there are several licenses, are all defined in the software source code?

In the source code are the following attributes available alongside the license: name of
the software, year, copyright holder, contact information (email), license identifier (e.g.
SPDX45) (RSMD-6.6)

Is the license information available on the metadata record? (RSMD-6.3)

Is the license information in the code the same as the property on the metadata
record?

45 https://spdx.org/licenses/

39 | Page

https://spdx.org/licenses/

Are external software modules used identified with their authors and license? for compliance
purposes, it is necessary to verify licenses compatibility (RSMD-6.4)

Re-execute: Dependencies and execution environment

Are the software dependencies described (RSMD-7.1)

Is the dependencies description available in a machine-actionable format?

Is the operating system and relevant environment requirements described? (RSMD-7.2)

Is the hardware and relevant hardware platform requirements described? (RSMD-7.3)

Are the build instructions available (RSMD-7.4)

If applicable, are the build configuration files for the specific ecosystem (Makefile, Ant
files, Dockerfile, etc.) and appropriate test cases provided?

Is the user documentation available? (RSMD-7.5)

Are the input/output formats specified?

Are there examples available?

Is the data used and/or produced by the software described or linked? (RSMD-7.6)

If applicable, is there a sample provenance trace/log of an execution, including
pointers to input data and expected results available?

40 | Page

Appendix C: Metadata Use Case Collection

Table I - Explanation of the actions required by the different stakeholders

Stakeholder Action Needed Goal of the Action

Researcher / Research
Engineer / Developer (as
creators of the software)

Archive software artifacts
Ensure long term accessibility and
availability

Reference software in
articles

Ensure transparency and
reproducibility of research

Contribute and improve
existing software

Collaborate with other developers
and enhance software
functionality

Get credit for developed
software

Facilitate career advancement and
collaboration opportunities

Identify copyright holders (of
dependencies)

Ensure compliance with licensing
and intellectual property rights

Cite software and curate
citation entries

Properly reference and
acknowledge software
contributions

Verify/reproduce/improve
results

Track software versions and
dependencies for result
replication and improvement

Ensure compatibility with
environment

Prevent incompatibilities with
software dependencies

Compare performance of
different operating systems

Make informed decisions
regarding software
implementation

Laboratory/team
Track software contributions

Document and collaborate on
software development within the
organization

Produce reports on software
Showcase technological
capabilities and achievements

Maintain web
page/repository

Provide easy access and visibility
to software assets

41 | Page

Stakeholder Action Needed Goal of the Action

Curators and librarians,
digital archivists Curate software metadata

Ensure accurate and
comprehensive software
descriptions

Provide documentation on
software preservation

Disseminate good practices for
long-term software sustainability

Monitor research teams'
production

Capture and organize software
outputs effectively

Users Search for relevant software
Find tools that assist in data
analysis or other research
activities

Cite creator of the code
Provide proper attribution in
citations and acknowledgments

Refer to a specific software
version

Accurately cite software when
reproducing older research

Determine permissible use
for research

Assess the software's suitability
for research purposes

Illustrate problem-solving
using specific software

Enhance educational experiences
with practical examples

Check the modified date
Determine if the software is up to
date and actively maintained

Compile and execute
research software

To utilize functionalities and
obtain meaningful results

42 | Page

Appendix D: The Difference Between Intrinsic And Extrinsic Identifiers

Table II - Overview of the main differences between intrinsic and extrinsic identifiers

Intrinsic identifiers Extrinsic identifiers

Goal The focus is on reproducibility: Reuse a
software | Verify, Improve results linked
to the software

Describe a software - including attribute
credit to the authors or creators

Use case Retrieve byte-identical copies of source
code artifacts

Refer to a given software in a catalog, a
citation | Track the software produced by
an institution

Research object
type46

Software artifacts =
digital objects produced during the
development stages, such as a repository,
a release, a directory, a single file, a
commit, etc. but also, executables

Software project =
a concept, an abstract entity.
“an endeavor to develop and maintain
software artifacts” (Di Cosmo et al., 2020)

Example of object Excerpt of source code47 Parmap, Scikit-Learn, Coq, etc.

Type of PID Identifiers for Digital Objects Digital Identifiers of Objects

Technical
challenges

Granularity of the object | Software
lifecycle | Economic sustainability48

Traceability, identification of all the
contributors: the list of authors and their
specific role during the different stages of
the development may evolve regularly.
(Alliez et al., 2019; Canteaut et al., 2021)
Multiple vocabularies to describe
softwares (see MD Analysis: Software
vocabularies and ontologies landscape)

Challenges faced
by end-users

Identify which PID fits to which need |
Adopt the use of forges for software
development

Lack of standardized citation practices for
software | Understanding the different
types of contributions (e.g. architecture,
design, test, documentation, etc.)

Stakeholders Depends on the use case, but mainly for:
● Researchers
● Software developers
● Research teams

Depends on the use case, but mainly for:
● Research institutions
● Scholarly repositories
● Publishers
● Aggregators

48 “In the case of digital resources that need to be created or modified frequently, and especially when their amount
is very large, charging as per identifier fee is problematic.”

47 swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe

46 For further information, see the diagram below : (Research Data Alliance/FORCE11 Software Source Code
Identification WG)

43 | Page

https://archive.softwareheritage.org/swh:1:cnt:bb0faf6919fc60636b2696f32ec9b3c2adb247fe;origin=https://github.com/id-Software/Quake-III-Arena;visit=swh:1:snp:1e52000162cc618616856eafe1b6e906a6eb9156;anchor=swh:1:rev:dbe4ddb10315479fc00086f08e25d968b4b43c49;path=/;lines=549-572

Appendix E: Metadata Types

Table III - Overview of the core specificities of intrinsic and extrinsic metadata

Intrinsic Metadata (MD) Extrinsic Metadata (MD)

What is this type
of MD?

Embedded within the content or
object itself, which can be
automatically extracted or
inferred from the content

As opposed to intrinsic MD, it is the MD
record describing the software externally
to the source code.

Where is the MD
found?

In text files inside the source
code directory, using standard
name scheme depending on the
metadata type.

On a platform separately from the code:
- Development platform (e.g

forge),
- Scholarly repository
- Registry,
- Publishers interface
- Package manager record.
- Website page

Who
provides/curates
the MD?

Often created and managed by
the software creators.

Assigned and maintained by external
entities such as aggregators, registries,
publishers, or scholarly repositories.
Can also include descriptive metadata
that is manually created or curated by
humans, such as related research
outputs.

How is MD
managed?

Managed by the software
creators. The content of the MD
files can be automatically
extracted or inferred from the
content.

The software record can be created by
the software authors or by another
stakeholder who needs a MD record. It is
managed by the MD record creator.

Why should we
need to preserve
this MD?
Which type of
information is
provided?

Can be critical for preserving the
content's authenticity and
integrity

Can help to provide additional context or
understanding of the software.
May contain provenance information that
can help users understand the software
and its relation to other research outputs.

How is the MD
preserved?

If the code is preserved then the
metadata is preserved alongside
the code.

MD is preserved only if the platforms
deposit the metadata into an archive.

44 | Page

Appendix F: Description of Infrastructures Types

Table IV - Definition and examples of existing infrastructures and platform types

Infrastructure/
Platform type

Definition/ Why do we focus on this actor/infrastructure? Examples

Scholarly
Repositories

“An organisation called to archive and make available research artifacts, e.g.
articles, datasets, software.”

(EOSC Executive Board & EOSC Secretariat, 2020)

● HAL
● Zenodo
● Dryad

Registries
(catalogs)

“Research software registries are typically indexes or catalogs of software
metadata, without any code stored in them; while in research software
repositories, software is both indexed and stored (Lamprecht et al., 2020).”

(Garijo et al., 2022)

● The DataCite
Metadata
collection

● swMATH
● OpenAire

Publishers “Any organization that prepares submitted research texts, possibly with
associated source code and data, to produce a publication and manage its
dissemination, promotion, and archival process.” (EOSC Executive Board &
EOSC Secretariat, 2020)
“[…] there is an opportunity for publishers to educate authors on the
necessity of sharing software source code and encourage a standard
workflow.” (EOSC Executive Board & EOSC Secretariat, 2020)

● Dagstuhl
● IPol

Aggregators “Aggregators collect, curate, select, present, and aggregate information about
research software from various sources to improve findability in diverse
communities.”(EOSC Executive Board & EOSC Secretariat, 2020)

“Any service that collects information about digital content from a variety of
sources with the primary goal of increasing its discoverability, and possibly
adding value to this information via processes like curation, abstraction, and
classification, and linking.”(EOSC Executive Board & EOSC Secretariat, 2020)

● OpenAIRE
● swMATH.org

Software
development
platform

An online service for developers to collaborate on software development
activities
https://en.wikipedia.org/wiki/Collaborative_development_environment
https://en.wikipedia.org/wiki/Version_control
Note this infrastructure is usually outside the academic realm.

● GitHub
● Bitbucket
● SourceForge

Package
managers

A repository of software tools and libraries that can be installed on a given
base system or for a particular programming language; typically as
intra-dependent packages with pre-compiled binaries or build recipes.
“The foundations of functional workflows are sources for readily usable
software” https://doi.org/10.1007/s41019-017-0050-4

● OS: Debian,
Ubuntu,
WinGet

● OS
independent:
Conda,
Homebrew

● Python: PIP
● R: CRAN

45 | Page

https://hal.science/#
https://about.zenodo.org/
https://datadryad.org/stash/about
https://datacite.org/search.html
https://datacite.org/search.html
https://datacite.org/search.html
https://www.dagstuhl.de/publikationen/darts/
https://www.ipol.im/meta/policy/
https://www.openaire.eu/about
https://zbmath.org/software/
https://en.wikipedia.org/wiki/Collaborative_development_environment
https://en.wikipedia.org/wiki/Version_control
https://doi.org/10.1007/s41019-017-0050-4
https://www.debian.org/distrib/packages
https://packages.ubuntu.com/
https://github.com/microsoft/winget-cli
https://docs.conda.io/en/latest/
https://brew.sh/
https://pypi.org/
https://cran.r-project.org/

Appendix G: Status of CodeMeta Adoption In Various Infrastructures

Table V – Existing Infrastructures using CodeMeta or engaged in development to
provide CodeMeta import, export or interoperability functionalities

Infrastructures type import
format

export
format

interoperabi
lity with
other infra

Planned release
with CodeMeta
support

ASCL; Astrophysics
Source Code Library

aggregator TBC yes supported

swMATH aggregator not planned planned SWH June 2025

OpenAire aggregator planned June 2025

SWH archive yes -
codemeta.js
on indexers
and
translator of
intrinsic
metadata

planned All git, svn,
hg version
control
systems &
many
package
managers

supported

HAL scholarly
repository

yes yes SWH supported

DataVerse scholarly
repository

Zenodo.org with
InvenioRDM

scholarly
repository

zenodo.json planned June 2025

IPOL publisher codemeta planned

eLife publisher

Dagstuhl publisher planned SWH June 2025

Episciences -
JTCAM

publisher planned June 2025

46 | Page

http://zenodo.org

Appendix H: The Metadata Landscape: Software Ontologies and

Vocabularies

The metadata landscape encompasses many software ontologies, vocabularies, and metadata
schemes designed to capture and represent essential information about software artifacts, and
tailored for discovery.
These frameworks provide structured and standardized approaches to capture essential
information about software, ranging from its version and configuration to input/output
specifications and beyond.

Dedicated software ontologies

Description of a Project49 (DOAP), Asset Description Metadata Schema for Software50

(ADMS.SW), and the family of Software Evolution ONtologies (SEON51) (Würsch et al., 2012),
provide detailed definitions of software artifacts with an emphasis on FOSS. Ontologies like
SD52 and SDM53 focus on defining different software versions and configurations and
constraints, while vocabularies like SWO54 define types of inputs and outputs in the biomedical
domain.
DOAP, ADMS.SW and SEON try to tackle the problem of what is software from a different
perspective. The ADMS.SW, a European Commission project started in 2011, is now considered
as deprecated. Nevertheless, it is used on the Adullact forge. Its specifications are exhaustive
and show a detailed definition of software artifacts with an emphasis on FOSS. SEON has a
different point of view on the evolution of software that is rarely found in the metadata
schemes landscape (Würsch et al., 2012). DOAP keeps it simple, while ADMS.SW and SEON are
more complex. One of DOAP advantages is that it aims on offering interoperability with other
popular Web metadata projects (RSS, FOAF, Dublin Core). DOAP is used on Freecode,
SourceForge and other software catalogs and was used as a base to create the ADMS.SW
specification.
The Software Description Ontology builds on Codemeta and Schema.org to represent different
aspects of software (i.e. versions, configurations and input/outputs) to capture execution
details and facilitate interchanging data between different software components. Ontologies
like the Software Description Ontology for Models and SWO focus on specific domains
(Geoscience models and Biomedical domain, respectively). For example, SWO reuses EDAM to
describe the types of inputs and outputs of biomedical software.
The EDAM Ontology (Ison et al., 2013) is used to add bioinformatics-specific metadata, such as

strong typing of inputs and outputs, within Abstract CWL and Bioschemas annotations. EDAM

is also used to describe the overall workflow Topics and Operations (requested by users) to

help find workflows. It is possible to search and filter using these properties. Note that the

approach is not limited to EDAM, e.g. in terms of attribute names. This supports expansion

beyond EDAM in the future to support non-life-sciences - although EDAM themselves are also

currently going in that direction - topics are starting to support ecology, mathematics,

language, physics, chemistry plus many more non life science terms.

54 https://www.ebi.ac.uk/ols/ontologies/swo

53 https://w3id.org/okn/o/sdm/

52 https://w3id.org/okn/o/sd/

51 http://se-on.org/

50

https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/asset-descr
iption-metadata-schema-software/release/v100

49 https://github.com/ewilderj/doap/wiki

47 | Page

https://github.com/ewilderj/doap/wiki
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/asset-description-metadata-schema-software/release/v100
http://se-on.org/
https://w3id.org/okn/o/sd/
https://w3id.org/okn/o/sdm/
https://www.ebi.ac.uk/ols/ontologies/swo
https://edamontology.org/page
https://w3id.org/okn/o/sdm/
https://github.com/ewilderj/doap/wiki

Linked data schemes

From a semantic web point of view, software should be referenced via linked data to facilitate
its discoverability on the web. schema.org and Wikidata, enable rich search results on various
search engines by providing software-related entities. For example, schema.org, sponsored by
search engines, promotes a very pragmatic approach to the semantic web, by providing these
software-related entities: SoftwareApplication and SoftwareSourceCode. Wikidata, the free
and open knowledge base that can be read and edited by both humans and machines
(Vrandečić & Krötzsch, 2014), is a great place to extract or query metadata.

Scholarly ecosystem

OntoSoft is an ontology with many properties adapted to scientific software in the academic
domain (Gil et al., 2015) that supports particular use cases, giving credit via citations. TOTEM
(Trustworthy Online Technical Environment Metadata Database) for digital objects in general
also created in and for the scholarly ecosystem. DataCite’s metadata schema is used by Zenodo
and is specified for research artifacts, including data and software. The Citation File Format55

(CFF) was introduced in 2017 with the first release candidate of the specs. It provides a simple
way to capture research software citation information in a code repository.

Digital preservation schemes

These schemes are used in a variety of domains far from the engineering scene and don’t have
software specific properties. To name a few, we have:
• Dublin Core with 15 standardized properties that can be used with other metadata schemes
(DOAP for example)
• Marc :MAchine-Readable Cataloguing (MIT is using MARC records),
• PRONOM is a technical registry for digital artifacts including software at the UK National
Archives using its own specifications and a unique id called PUID.
• PREMIS- Preservation Metadata Maintenance Activity, also an international standard
developed for the Library of Congress, allows the usage of different vocabulary if the
vocabulary is specified.

Package management metadata management files

These file formats are used mostly in the source code itself as manifest files. Each package
manager system provides a filename and format to share metadata, for example: for
Java-Maven projects, use `pom.xml`; for Ruby gems, use either `.gemspec` or `Rakefile`; for R
packages, use `DESCRIPTION`; for JavaScript npm packages, use `package.json`; for PyPI
packages, use `pyproject.toml` or `setup.cfg`.

55 https://citation-file-format.github.io/

48 | Page

https://citation-file-format.github.io/

Appendix I: Domain Specific & Community Driven Related Efforts

In this appendix, we delve into a range of domain-specific and community-driven efforts that
are dedicated to addressing the challenges and promoting best practices for Research
Software. These initiatives and guidelines aim to improve metadata, workflows, and tool
descriptions within specific domains and communities, ultimately fostering reproducibility,
collaboration, and the adoption of FAIR principles.

FAIR Biomedical Research Software guidelines (FAIR-BioRS)

Effort from the Biomedical community56 to propose actionable guidelines for research
scientists. The guidelines (Patel et al., 2022) include a call for including concrete metadata in a
repository, using a CFF file or the CodeMeta generator:
“Provide, at least, the following fields in the codemeta.json file: Software name (“name”),
Software description/abstract (“description”), Unique identifier ("identifier"), Authors
(“givenName”, “familyName”) with their Organization name (“affiliation”), Keywords
(“keywords”), Programming Language (“programmingLanguage”), First and current release
date (“dataPublished” and “dateModified”), License used (“license”).

Model Cards

With the popularity of Machine Learning, public platforms like HuggingFace57 have been
developed to help the community share and reuse trained models. However, there are no
standard metadata vocabularies to describe Machine Learning models. Model Cards58 have
been proposed as a means to describe the main features of a model, as well as important
features in their training process. Although no metadata fields are formally described, model
cards encourage “language”, “tags”, “license” as well as dataset features used in training
(dataset source links) and validation metrics. HuggingFace implements model cards59 providing
guidelines on how to describe a model .

Computational Workflows in the Bioinformatics Community

Many disciplines have adopted computational workflows as a software framework that handle
the complexity of linking data flows across different codes and executing them on different
computing platforms. There is a drive in the bioinformatics community towards adopting FAIR
practices for workflows, taken up by organizations running tool registries (ELIXIR’s bio.tools)
and workflow services (e.g. ELIXIR’s WorkflowHub60 and workflow managers, DockStore,
KNIMEhub etc) and workflow managers and community specific repositories (e.g. Galaxy and
IWC; Nextflow and nf-core etc). The Workflow Community Initiative61 FAIR Computational
Workflows WG has convened to define best practices and principles for FAIR workflows,
included in WCI’s 2022 roadmap62.
As proposed by Goble et al (Goble et al., 2020) workflows are hybrid processual objects with a
tight coupling with their data; their workflow language description abstraction can be subject
to FAIR data principles but they are also a form of executable compositional objects, as well as
their execution managers being software.

62 https://arxiv.org/abs/2304.00019

61 https://workflows.community/about

60 https://workflowhub.eu/

59 https://huggingface.co/docs/hub/model-cards

58 https://research.google/pubs/pub48120/

57 https://huggingface.co/

56 https://github.com/FAIR-BioRS/Guidelines

49 | Page

https://workflowhub.eu/
https://workflows.community/about
https://arxiv.org/abs/2304.00019

In the EOSC-Life bioscience’s workflow colaboratory, ELIXIR, the research infrastructure for life
science data and BBMRI-ERIC, the research infrastructure for biobanking, led the development
and implementation of a metadata framework for computational workflows.

Bioinformatics Standards

Bioschemas63 schema.org profiles for Computational Tool64, Computational Workflow65 and
Formal Parameter66 provide metadata about a workflow and its tools that are discipline
independent. All include properties @context, @type, @id, and dct:conformsTo used to state
the Bioschemas profile that the markup relates to. The versioned URL of the profile must be
used

○ Computational Workflow67 has 10 mandatory fields (creator, dateCreated, license,
name, url, input, output, programmingLanguage, sdPublisher and version), 15
recommended and 7 optional.

○ Formal Parameter68 has 1 mandatory field (name), 3 recommended and 3 optional.

○ Computational Tool69 has 3 mandatory fields (description, name, url), 7 recommended
and 20 optional. This profile is used to mark up tools in the ELIXIR bio.tools registry.

Despite the prefix “Bio” BioSchemas for tools, workflows and formal parameters has nothing

specific to biology and is domain agnostic. Like Bioschemas, CodeMeta is a list of properties

relevant for research software, but unlike Bioschemas it does not have priority

recommendation (minimum, recommended, optional) or recommendation for entity typing

(SoftwareApplication, SoftwareSourceCode). 73% of Bioschemas’s ComputationalTools

properties are already in CodeMeta.

The Common Workflow Language (Crusoe et al., 2022) is a canonical workflow description to

accompany native workflow definitions – both CWL workflows (which are executable) and

Abstract CWL (non-executable) description variants. This description presents the structure of

workflows, composed of tools and external interface, in an interoperable way across workflow

languages.

RO-Crate (Soiland-Reyes et al., 2022), a community-developed standardized approach for

research output packaging with rich metadata. RO-Crate provides us with the ability to package

executable workflows, their components, such as example and test data, abstract CWL,

diagrams and their documentation. This makes workflows more readily re-usable. RO-Crate is

based on schema.org, and is aligned with CodeMeta, however with a more general focus as

the software description is not required. RO-Crate is the base unit of circulation between

services such as WorkflowHub, LifeMonitor and workflow managers like Galaxy Europe.

Three RO-Crate profiles have been developed for Workflows:

● Workflow-RO-Crate70 which WorkflowHub can register and mint; considers the

workflow as a software element

70 https://about.workflowhub.eu/Workflow-RO-Crate/

69 https://bioschemas.org/profiles/ComputationalTool/1.0-RELEASE

68 https://bioschemas.org/profiles/FormalParameter/1.0-RELEASE

67 https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE

66 https://bioschemas.org/profiles/FormalParameter/1.0-RELEASE

65 https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE

64 https://bioschemas.org/profiles/ComputationalTool/1.0-RELEASE

63 https://bioschemas.org

50 | Page

https://bioschemas.org
https://bioschemas.org/profiles/ComputationalTool/1.0-RELEASE
https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE
https://bioschemas.org/profiles/FormalParameter/1.0-RELEASE
https://www.w3.org/TR/json-ld/#dfn-context
https://www.w3.org/TR/json-ld/#specifying-the-type
https://www.w3.org/TR/json-ld/#node-identifiers
http://purl.org/dc/terms/conformsTo
https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE
http://schema.org/creator
http://schema.org/dateCreated
http://schema.org/license
http://schema.org/name
http://schema.org/url
https://bioschemas.org/profiles/ComputationalWorkflow/FormalParameter
https://bioschemas.org/profiles/ComputationalWorkflow/FormalParameter
http://schema.org/programmingLanguage
http://schema.org/sdPublisher
http://schema.org/version
https://bioschemas.org/profiles/FormalParameter/1.0-RELEASE
http://schema.org/name
https://bioschemas.org/profiles/ComputationalTool/1.0-RELEASE
http://schema.org/description
http://schema.org/name
http://schema.org/url
https://www.commonwl.org/
https://www.researchobject.org/ro-crate/
https://about.workflowhub.eu/Workflow-RO-Crate/

● Workflow-Testing-RO-Crate71 which includes test information for LifeMonitor;

● Workflow-Run-RO-Crate72 which includes provenance information after the execution

of a workflow or other computational tools.

Identifiers for all the components: RO-Crates can be metadata-rich bags of identifiers and can

themselves be assigned permanent identifiers. This enables the full description of a

computational analysis, from input data, over tools and workflows, to final results.

Genomics and Health

The metadata framework and Global Alliance for Genomics and Health APIs enable

interoperability with the services of the Collaboratory. The Tools Registry Service API73

supports the exchange of scientific tools and workflows and enables users to search for and

retrieve metadata about registered tools, including the tool's name, version, description,

author, input and output parameters, and Docker image details. citation.cff74 placed in Git

repositories is harvested by WorkflowHub. A set of recommendations for research software to

be better integrated by workflow systems have been developed (Brack et al., 2022), e.g. Make

your tool parallelizable by not relying on overwriting fixed file paths.

74 https://citation-file-format.github.io/

73 https://ga4gh.github.io/tool-registry-service-schemas/

72 https://www.researchobject.org/workflow-run-crate/

71 https://crs4.github.io/life_monitor/workflow_testing_ro_crate

51 | Page

https://crs4.github.io/life_monitor/workflow_testing_ro_crate
https://www.researchobject.org/workflow-run-crate/
https://ga4gh.github.io/tool-registry-service-schemas/
https://citation-file-format.github.io/

Appendix J: Community contributions from the FAIR-IMPACT webinar

Table VI - List of contributors that have participated in the Developing Guidelines for
Metadata Collection and Curation for Research Software on May 23rd 2023.

During the webinar, the participants were invited to comment v1.0 of the RSMD guidelines.

Your last
name

Your first
name

Orcid Institution Country Job title I want to be
listed as a
contributor

Y/N

Järveläinen Pekka 0000-0003-3
111-1515

CSC Finland Programmer Y

Brinkman Loek https://orcid.
org/0000-00
03-3997-117
3

DANS The
Netherlands

Research Data
Specialist

Y

Fouilloux Anne https://orcid.

org/0000-00

02-1784-292

0

Simula
Research
Laboratory

Norway Research
Engineer

Y

Juty Nick https://orcid.
org/0000-00
02-2036-835
0

The
University of
Manchester

UK Senior
technical
research
manager

y

Löbe Matthias 0000-0002-2
344-0426

IMISE U
Leipzig

DE Researcher Y

Himpe Christian 0000-0003-2
194-6754

University of
Muenster

Germany Data Engineer Y

Davidson Joy 0000-0003-3
484-7675

DCC UK Associate
Director

Y

Lesnikova Angelina https://orcid.
org/0000-00
03-4163-004
4

sci2sci Germany CEO Y

Vials Moore Adam 0000-0002-2
085-1908

Jisc UK Product
Specialist -
PIDs

Y

Solanki Dhwani ZB MED &
Bonn
University

Germany Student
research
assistant

Y

Karatas Tugce https://orcid.
org/0000-00
02-9446-467
9

C2DH / Unilu Luxembour
g

Research Data
Manager

Y

Galkin Anastasia https://orcid.
org/0000-00

AIP Potsdam Germany Research
Infrastructure

Y

52 | Page

https://orcid.org/0000-0003-0131-7491?lang=en
https://orcid.org/0000-0003-0131-7491?lang=en

Your last
name

Your first
name

Orcid Institution Country Job title I want to be
listed as a
contributor

Y/N

03-0131-749
1

Specialist

Streicher Ole https://orcid.
org/0000-00
01-7751-184
3

AIP Potsdam Germany Support
Scientist

Y

Andersen Peter Bruhn Agency for
Digital
Government

Denmark Link Data
Architect

y

Raga Raga Núria 0000-0001-9
643-6826

CSUC Spain Information
Resources
Specialist

Y

Rodani Tommaso 0000-0003-0
570-3509

AREA Science
Park

Italy PhD Student Y

Dhollander Evelien 0000-0001-6
302-2897

Ghent
University

Belgium Data Curator Y

Claudia Fratianni 0000-0002-4
983-4255

INGV Italy Technologist Y

Andreou Panayiotis 0000-0002-6
369-1094

UCLan
Cyprus

Cyprus Associate
Professor

Y

Nivault Estelle 0000-0003-0
630-5633

Inria France Librarian Y

Domhnall Carlin 0000-0002-8
424-2757

Queen’s
University
Belfast

UK Research
Software
Engineering
Fellow

Y

Azzouz-Thude
roz

Maxence 0000-0002-8
710-9548

FIZ Karlsruhe Germany Scientist Y

53 | Page

https://orcid.org/0000-0003-0131-7491?lang=en
https://orcid.org/0000-0003-0131-7491?lang=en
https://orcid.org/0000-0001-6302-2897
https://orcid.org/0000-0001-6302-2897
https://orcid.org/0000-0003-0630-5633
https://orcid.org/0000-0003-0630-5633

