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Iteration Acceleration for Nonlinear Coupled
Parabolic-Hyperbolic System

Xia Cui, Guang-wei Yuan, and Jing-yan Yue

Abstract—A Picard-Newton iteration method is studied to accel-
erate the numerical solution procedure of a class of two-dimensional
nonlinear coupled parabolic-hyperbolic system. The Picard-Newton
iteration is designed by adding higher-order terms of small quantity
to an existing Picard iteration. The discrete functional analysis and
inductive hypothesis reasoning techniques are used to overcome
difficulties coming from nonlinearity and coupling, and theoretical
analysis is made for the convergence and approximation properties
of the iteration scheme. The Picard-Newton iteration has a quadratic
convergent ratio, and its solution has second order spatial approxima-
tion and first order temporal approximation to the exact solution of the
original problem. Numerical tests verify the results of the theoretical
analysis, and show the Picard-Newton iteration is more efficient than
the Picard iteration.

Keywords—nonlinearity, iterative acceleration, coupled parabolic-
hyperbolic system, quadratic convergence, numerical analysis.

I. INTRODUCTION

Coupled parabolic-hyperbolic system often appears in the
study of biological problems, high temperature hydrodynamics
and thermo-elasticity, magneto-elasticity problems [1],[2],[3].
Its numerical simulation is of specific importance [2],[4]. Fully
implicit nonlinear schemes are desirable for nonlinear coupled
problems and applicable for simulating transient problems,
since no rigorous stability restriction on temporal steplength
is needed for them, while it is needed by explicit or operator
splitting schemes. For nonlinear schemes, proper nonlinear
iterative algorithms are very important to fulfil fast and ac-
curate resolving [5]. There is much research on the iteration
techniques [5],[6],[7], but works on nonlinear iterations for
coupled system of different types of equation can be found
seldom [8].

The traditional way for solving nonlinear PDE is to dis-
cretize the PDE first and get a nonlinear algebraic system
which is then linearized to get a linear algebraic system to
be solved. It is very difficult to construct Newton linearization
for complex practical applications in this way. Another way
called LD (linearization-discretization) is suggested in [5] by
first linearizing the origianl PDE and then discretizing the
derived linear PDE to get linear algebraic system. By using
LD approach, it is more convenient to construct new iteration
schemes. Specially, Picard-Newton iteration can be built by
adding higher-order approximation terms in existing Picard
iteration to accelerate the convergence of the latter. Also
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various discrete iteration schemes can be designed by different
discretizations for temporal and spatial operators.

In this paper, iteration acceleration for nonlinear coupled
parabolic-hyperbolic system is studied through LD approach.
By introducing intermediate variables to diminish the discrete
template, and approximating the spatial and temporal operators
with second-order and first-order discretization respectively, a
Picard-Newton iteration scheme with quadratic convergence
ratio is designed to accelerate the Picard iteration (being with
linear convergence ratio) in [8]. Main attention is paid on the
nonlinear coupling property for the two equations both in the
scheme design and numerical analysis procedures. Numerical
results are presented, which show the Picard-Newton iteration
gives the same accuracy as the Picard iteration, while its
computation cost is much less than the latter.

Consider the two-dimensional coupled parabolic-hyperbolic
system as follows:

us — V- (A(X, t,u,v)Vu)
= f(thauavauxvuyavxvvy)a

v — V- (B(X, t,u,v)Vv)

=g(X,t,u, 0, Ug, Uy, Vg, Uy, v), X EQte
u(X,t) =0, v(X,t) =0, X € ot e J
u(X,0) = ug(X),v(X,0) = vo(X),
(X, 0) = vyo(X), X e )]

where uy = 2%, u, = 9%, etc. X = (2,y), Q = (0,L1) x
(0,Ls), J = (0,T); A, B, f,g,up,v0, v are known func-
tions. Consider the problem with the following assumptions:

(1) There exist positive constants A, A*, B,, B*, such that
J, ¢ € R2

(2) The partial derivatives Ay, B; are bounded; A,, A,
B, B, are continuous, and their derivatives with respect to
x,y,t,u and v are bounded; the derivatives of f (and g) with
respect t0 U, v, Uy, Uy, Vg, Vy (and vy) are continuous, and
their derivatives with respect to u,v, Uz, Uy, Vg, Uy (and vy)
are bounded.

(3) Problem (1) is uniquely solvable, and its solution u,v €
C%(Q x J).

II. NOTATIONS AND PREPARATION WORK

By introducing a new variant w = vy, system (1) can be
rewritten as an equivalent form:

ur — V- (A(X, t,u,v)Vu)
= f(X7t7u7v7ul‘Juy7Umavy)7

wy — V- (B(X,t,u,v)Vv)
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= g(X,t, 4,0, Uy, Uy, Vg, Uy, W),

w = v, XeQte
u(X,t) =0,v(X,t) =0,w(X,t) =0, X €0N,tel
u(X,0) = up(X),v(X,0) = vo(X),

w(X,0) = v (X), X eq. 2)

We will start with (2) to design the new iteration scheme.

Divide domain QO x J into Ji X Jo x M equal small intervals,
denote hy = %L, hy = ,—2 and h = max{hl,hg},
T; = ihl,yJ = jhg, Tij = Ti; (%i,9;), T = n7. For
function 1, denote ™ = 1 (7,) and dyp" ! = ;(@Z)”“ -
¥™). For function ¢, denote ¢;; = @(x4;), ¢iy1 ; = (s +
Git1,j)s bijors = 3(ij + biji1)s Sutipy ;= ;%(@'H,j -
Gij)s OyPijy1 = E(¢i,j+1 — Gij), Oxij = %(@‘H,j -
¢i71,j) and 8y¢” = i((ﬁi’jq,l — ¢i,j—1)- For n > 0, for
functions ¢ = U,u; ¢ = V,u;, ¢ = W,w; and & = A, B;
denote

@7, (6.0)

T
T:M’

(b(xi+%,j7Tn7¢?+%’j7¢in+%7j)7

‘I):Lﬁ_ (6, 0) = q’(xi,j+%77'n7¢?j+l7¢?j+l)
(0 Y) = f(xij,Tn,ab?j, 152 0205, 0y b5,
1]7 ’UwU)
9%(@%90) = g(xzjaTm(bijv ij $¢Z]7 y¢”7
Ou i, Oy iy, i)

Let Uﬁ‘-(s) stands for the value for U at (z;,7,) after the
s-th iteration, U’ ) = iU ::EE)J + Uy ™3] etc. Similarly

for functions ¢ = A AmAmB By, By; \I’ fs fus fos funs

Juys foas fo,s © = 95 9u, Guy Guy s Guy s Gu, s 9o, s Gu> denote
Zl(b FUATEES cb(xi#,j,m,U;f;j’m(gj)’
n,(izl(U V) = @(x”_b T“’U;lj(i)“ Zna(i)l)

Z-(S)(U, V) \I/(:zw,rn,U"(s),m?(s) o, U”(s),

8in”j(3)7a Vn(s) ) V”(S)L

ol v,w) = @(J:”J,L,Un(s) v o,ul,

Vg
ainnj(S)7 az‘/i?(S)a ayVi?(s), W;(S)).

Denote

L(f DU, V) e vy

= AT = o W = )
+fn(s)[ w¢n(s+1) w(bn(s)}
:(5)[ n(s+1) y¢?j(8)]

+f1?,(2[ Lwn(aﬂ) ww?j(s)]

+f:7(fj[ n(s+1) 3yw?j(5)}’
and

L(g'"HD(U, v, W) [, 4, ¢])ij

Ot _ O] grO [+ o)
0.0~ 0,61
n(s n(s+1 n(s
ul(,zj[yd)(-‘r) y¢(]
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+gn 10,07 — 0,47 )
+n L0, = 0,0 + gi S lenTY — o),
where [ = (302w, V), gi &) = (301 (W, v, W),
etc. Denote
5(@:(¢,¢)5‘1’”)m

= 7[ it J(¢ '(/1)6 (P:L.t,_ g 1_7](¢7 1/)>5 (1)7_7 ]]
[@’L

ij+% (¢7¢)6y¢2]‘+% - @:L,]_%(vad))ayq)?]_%}

Similar notations with superscripts n(s) instead of n have
analogous meanings.
Define the following discrete spatial norms:

Ji—1J2—1
1
Hd)H = (Z Z |¢ij|2h1h2)2,
i=1 j=1
Jlflszl
61l = (D" D 16ebipy [P
i=0 j=1
Ji—1J>2—1

+> |5y¢i,j+%|2h1h2)%'

i=1 j=0

A nonlinear fully implicit scheme for (1) is given in [8] to
find U/, VI WHT such that

U = §(A™TH (U, V)sU™ Y = fITHUL V),
Wi = §(BMTH U, V)SVIHY)y = gt (UL VW),
dtVZ'?+1 _ Wi7}+1:

i=1,2,, 1 =1 j=1,2,--- o — 1
Ui;-&-l _ Vi?+1 — Wiv;+1 =0,

i=0orJy; j=0,1,---,Jo;

7J1; .j:OOTJZ; n:O,l,"' ’

Uy = uo(zij), Vi) =volxij), Wi = veo(zi5),
i:0717"'7']1;j:0717"':J2' (3)

or i=0,1,--- M —1;

Denote u; = u(wij, 7o), vj; = v(xij, 7o) and wfy =
w(®i;, T, ). The truncation error for the exact solution of (1)

in the fully implicit discretization is:

_R;l;;l = dtu?j+1 _5(An+1(u’v) n+1) ) f"“(u,v)
= Oh*+7),
“REEY = dawstt = 6B (u, 0)50" )
_gZ+1(u7v7w)
= O(h2 + T)
—Ryyt = dwli —wii = 0(r),
i=1,2,---,J1—1; j=1,2,--- , o — 1. (4)
Denote &% = Ut —ull, (f = Vi —ofy, niy = W[k —wi,
then &Y; = ¢ = nf; = 0, and there is (8]

Lemma 1 The nonlinear fully discrete scheme (3) is
unconditionally stable, and has the following approximation

property.
NI+ UM+ Nm™ I+ 16€™1 + Nla¢™ |
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N-1 . N-1 .
7Y lde™ P2 + (Y dede™ %)z

n=0 n=0

(> 16" 2)2 = O(h% + 1),

where N > 1.

ITII. PICARD-NEWTON ITERATION SCHEME

In [8], a simple Picard iteration with linear convergent
ratio is proposed to solve (3). Here, to accelerate the re-
solving procedure, by using LD approach, a Picard-Newton

iteration scheme is given by finding U;;

n+1(s+1) Vn+1 (s+1)

’

WG uch that

)

Uﬂ+1 (s+1) Un

) 5(An+l (s)(U V)(SU”+1 (s+1))

T

—06({A T O V)[UTH D gt )]
LA (@, VY[V Dy Gyt (),
_ fn+1(s)(U V) + 0L(f U VU, V]G, (5)

n+1(s+1) n
Wz] Wij N (S(Bn+1 (s) (U, V)5Vn+1 (S+1))ij

T

_95({B;n+1 (8)(U, V)[Un+1 (s+1) _ Un+1 (s)}

+B/n+1 (s) (U V) [Vn+1 (s+1) _ yntl (S)]}6V7L+1 (S))ij
_ n+1 (s)(U V W)

+9L<g’"+l W,V W)UV, W)y, (©)

V"?‘f’l (S+1) . Vn
2 ij +1 (9—0—1)
2 LW

-
i=1,2, i —1; j=1,2,,Jp — )

Unjtl (s+1) _ Vn+l (s+1) _ VnJrl (s+l) 07

17 17 17
i=0orJy; j=0,1,---,Jo;
or 1 =0,1,--- Jy; j=00rJy; s=0,1,2---; (8)

U?}+1( —yUn V@+1 0) —yn W@.Jrl( ) —Wn

ij iy Vij ij ij ijo
i:Oala' 7<]17j20717 7J7
n=0,1,---,M—1, C))

where 6 = 1. If § = 0, then the system (5)-(9) is the original
Picard iteration.

For each time step from 7, — 7,41, the calculation
proceeds as follows:

otep 1.

Step 2.

Step 3.

Give initial values with (9), UZ}, V2, Wit — USHH )
n+1(0) n+1 (0)

vt wr

Execute 1terat10n from stos+1(s=0,1,2,---) with

(5)-(8), where

2.1 replace WZH 1 in (6) with (7),

2.2 with (5), (6), 8), UL, Vi, W, U &yt (),
+1 st ot (3
WZ N - U::rl((il)) V? (S+1z +1)
n S n S
2.3 with (7), V1V, — W .
Check for convergence — if the control tolerance
satisfies, then U7 (5 yntt (st W"‘H(SH) —
ij " Vig

Un+1 Vn+1 W”Jrl exit; otherwise, s <— s+ 1 and go

to Step 2
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IV. ERROR ESTIMATE FOR ITERATION SCHEME
Denote az(s) = U (&) _ uzl, ﬁg(s) = Vi (#) - vl
A = ) _yn one has

Theorem 1 The solution of the Picard-Newton iteration
scheme (5)-(9) has first order temporal and second order L2
and H'! norm spatial approximation to the exact solution of

problem (1), and such approximation is uniform in s, i.e.,
oL EHD]| g D] gt (D)
+||50z"+1(5+1)|| + “5ﬂn+1(s+1)|‘ _ O(h2 + 7_)'

Proof: Denote

ijj = —7dyu?

and

U’Y21J = Tdt’UU,Yg” = deth-.
Subtracting (4) from (5)-(9), one has the following error
equation.

QL) e

A 5(An+1 (9)(U’ V)(;Oén+1 (s+1))ij

= 6([A”+1T(S) (U, V) — A" (u,0)]0u™ 1),
_,’_5({[14;7%&-1 (S)(U, V)[an-H (s+1) _ ot (s)}
+A;n+1 (s) (U7 V) [ﬁn+1 (s+1) _ 6n+1 (s)]}
5[an+1 (s) + un-&-l})‘j
HAT WYY = £ )]

LU, V) o By + BRI (10)
?’L-‘rl (s+1) 7]"n‘
[ L) -5 Bn+1 (s) 5 n+1(s+1) i
T T (U, v)ae ),

_ 5([Bn+1 (S)(U, V) _ B"+1(u, U)](SUnJrl)ij
FO{B (U, V) [an L+ gntt ()]
FBH UV 4 gt (]
S[BT ) um ),
n+1(s) n+1
Hoi T UVW) = gii (w0, w))]
+L(g T U,V W) [, B,9))i5 + Rat, (1)
gt _en +1(s+1)
ij ij __ n S n+1
% = fyij + Rgij )
i=12- Ji-1j=12 -1 (12
QL) = gL (H) _ gD _ g
i =0orJy; j=0,1,---,Jo;
01"2':0,1," s Jis J = 0or Ja; 3:0’1’2 -{(13)

a?j—H © = Yﬁjla ﬁ?j+1(0) = Yz?jlv
’yl‘nj-,—l (0) :77 Y—{gjlv

i:O715' 7J17.7_O71"'a‘]2;

n=01,-- M—1. (14)

Multiplying formulas (10) and (1) with

nt+l(s+1) " on
%7511;1 hor and y”“(”l)h hoT  respectively,

summ1ngf0r2712 Jlflandjfl,2,~~,J271,
after a complex derivation procedure, one gets
(s+1) _ En
« S S
=1 + [la V] + (|52
HA DI+ [loa T 4 ot
< Eflla® oo + 189 llos + 16 [loo + 156 |oc]
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[ D)2 B2 + 620|124 ||ap¢etD 7]
+ Ko [l |o + 18 oo + 600 + 168 [[oo
Ha 2+ 18D 1% + V115 + 1515
HEBDNZIN D + 18917 + [V + [l6at]?
HSBZ + 116" 1 + 115¢™ 1 + 6 R; |7
FEG([IE° P+ 1K+ lln™ [ + 106717 + [lo¢™ |12
HIRTFPT + IRy TP + | Ry P
+HSRy 72,

where ¢(*t1) is the abbreviation for ¢" 1! (*+1)_ Then by using

Lemma 1 and inductive hypothesis reasoning, Theorem 1 is
proved.

V. CONVERGENCE RATE FOR ITERATION SCHEME
Now consider th(e)conver%e)nce propert )of the(i§erative
n (s n(s n (s n(s
scheme& ’?enote 5(1 =U; " U5 Gy =V =V
and Nij = = Wij - W[]L
Theorem 2 The solution of the Picard-Newton iteration (5)-

(9) converges to the solution of the nonlinear fully implicit
scheme (3) in L? and H! norm
§— 00

. 1 n s 1 n s n s
tim [ O 42 O 4 )

HIoE O+ ls¢mH O] =0,

and the convergence rate is quadratic, i.e., there exists a
positive constant C' independent of h and 7 such that

n+1(s+1) n+1(s+1) n+1(s+1)
n Il + 116¢ Il + 116¢ I o
[ TP+ o P + g T O =
Proof: Subtracting (3) from (5)-(9), one has the following
relation.
gn—b—l (s+1)
(%] _ 5(An+1 (S)(U, V)6§n+1 (S+1))ij
T
= J([AMTLON(U, V) =AM U, V)|sU™Y),;
+5({A;n+1 (s) (U, V)[fn—H (s+1) _ £n+1 (s)]
_._A(l)njtl (S)(U, V)[Cn+1 (s+1) _ CnJrl (s)]}éUn+1 (S))ij
n+1(s+1) n+1
+[fz] (Ua V) - fz‘j (Uv V)]

lim sup
§—00

FL(fHEEVUV)E g, (15)
n+1(s+1)
ij o 5(Bn+1 (s) (U, V)5C7z+1 (s+1))ij
T

= §([B"T (U, V) - B U, V)]sV,
+6({B;ﬂ+1 (s) (U, V) [£7L+1 (s+1) €’n+1 (s)]
+B;n+1 (s)(U7 V)[<n+1 (s+1) _ CnJrl (S)]}(Sanrl (S))ij
Hol O, VW) = g UV W)

J

+L(g/n+1(s+1)(U7 Va W)[gagvn])lj7 (16)
<n+1 (s+1)

i _ . n+1(s+1)

- = M4 ,
i:1727"'7‘]1_1;j:172»"'7<]2_1; (17)
g;?—l (s+1) _ C;}+1 (s+1) _ 77?;_1 (s+1) _ 07
iZOOT'Jl; .7:0717 :JQ;

ori=0,1,---,J1; j=00rJy; s=0,1,2,---; (18)
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fzzj+1(0) _ —TdtUile'+1, C;Lj+1(0) _ —Tdt‘/;:?+1,

ni O = —rd Wi,
i:0517"' 7J17.7:071 aJQ;
n=0,1,---,M—1. (19)

Multiply (15) and (16) with €57 "V h by and ¢ Y
h1ho respectively, and sum up the products over 1 < ¢ < J;—1
and 1 < j < Jy — 1. By using discrete inverse inequality and

Lemma 1, after a long deduction procedure, one can obtain
1
;Hf‘””HQ + D 4 (oD 4 lagtt 2

< K@t + 16" + 11614
[L+ DI + D12,
Noticing that with Lemma 1, one has ||n(®]| + [|6¢© | +

6¢©|| = O(h? + 7). Hence, by inductive hypothesis rea-
soning, Theorem 2 is proved.

VI. NUMERICAL EXPERIMENTS
In this section, some numerical experiments are presented
to demonstrate the good accuracy and high efficiency of
the Picard-Newton iteration. Consider the nonlinear coupled
system (1) in Q@ x J = (0, 1) x (0, 1) x (0, 2] with the following
coefficients and functions:
A(z,y,t,u,v)
= 0.4sin[0.5 + e " sin(7z) sin(ry) + u — 2.00] + 0.5,
B(z,y,t,u,v)
= 0.4sin[0.5 + e~ " sin(7rz) sin(ry) — 2.0u + v] + 0.5,
flx,y,t, u, v, Ug, Uy, Vg, Vy)
= 0.57%(0.5 + e~ ") sin(nx) sin(ry) + 0.57%u — v
+0.5sin(7z) sin(7y) + sin(7zx) cos(my) (uz + vz)
— cos(mx) sin(my) (uy + vy),
(@, Y, 1, U, 0, Uy, Uy, Ug, Uy, Vt)
= 0.57%(0.5 4 e~ ") sin(nz) sin(7y) 4+ u + 0.57%v
—(0.5+ e ") sin(mz) sin(7y)
—sin(mz) cos(my) (uy — vy)
+ cos(mx) sin(my) (uy — vy) — Vt.

The boundary conditions and initial values are as follows:

U(l‘,y,t) = v(x,y,t) =0, (I,y) S aQ,t € J,

u(z,y,0) = L.5sin(nx) sin(my), (x,y) € Q
v(z,y,0) = L.5sin(rz) sin(nwy), (z,y) € Q,
ve(z,y,0) = —sin(rz) sin(ry), (z,y) € Q

The exact solution of this system can by expressed as:

u(z,y,t) = (0.5 + e ) sin(mx) sin(7y),

v(z,y,t) = (0.5 + e ") sin(rx) sin(ry).
Four groups of spatial and temporary step lengths are used
in the tests, which are J; X Jo x M = 6 X6 x 18, 12x 12 x 72,

24 x 24 x 288, 48 x 48 x 1152,; hence their corresponding
expected error bounds hf +h3 47 are 1.6667¢ — 1, 4.1667¢ —
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TABLE I
APPROXIMATION ERRORS OF THE PICARD-NEWTON ITERATION

TABLE II
COMPARISON OF ACCURACY AND EFFICIENCY OF DIFFERENT ITERATIONS

6 x6 12 x 12 24x 24 | 48 x 48 | ord h=1/24 h =1/48
ue 2.1318e-2 | 4.9865e-3 | 1.2749¢-3 | 4.2145e-5 | 2.99 Picard Picard-Newton Picard Picard-Newton
ve 2.6487e-2 | 6.0132e-3 | 1.5757e-3 | 8.7774e-5 | 2.75 outtotal 1727 866 5115 3403
uhe 9.4234e-2 | 2.2218e-2 | 5.6975e-3 | 2.8454e-4 | 2.79 intotal 4317 2350 11889 9104
vhe 1.1640e-1 | 2.6665e-2 | 7.0010e-3 | 4.0948e-4 | 2.72 outave 6.0 3.0 4.4 3.0
we 2.4300e-2 | 7.6719e-3 | 2.1520e-3 | 7.6021e-4 | 1.67 inave 15.0 8.2 10.3 7.9
uem 2.8081e-2 | 7.2240e-3 | 1.8807e-3 | 1.9413e-4 | 2.39 estop 3.2523e-9 1.6009e-11 2.8519¢-9 2.8857e-10
vem 3.6077e-2 | 9.5224e-3 | 2.5247e-3 | 6.2539e-4 | 1.95 time 80.375 60.610 5076.547 3624.750
uhem | 1.2475e-1 3.2450e-2 | 8.4751e-3 | 1.2135e-3 | 2.23 ue 1.2198e-3 1.2749e-3 3.0273e-4 4.2145e-5
vhem | 1.5862e-1 | 4.2198e-2 | 1.1231e-2 | 2.7971e-3 | 1.94 ve 1.4541e-3 1.5757e-3 3.5953e-4 8.7774e-5
utet 3.3095e-2 | 9.0572e-3 | 2.3860e-3 | 6.4035e-4 | 1.90 uhe 5.4436e-3 5.6975e-3 1.3514e-3 2.8454e-4
vtem 4.0094e-2 1.1337e-2 | 3.0456e-3 1.0232¢-3 1.76 vhe 6.4612¢-3 7.0010e-3 1.5998e-3 4.0948e-4
wem 2.4300e-2 | 7.7522e-3 | 2.1828e-3 1.2515e-3 1.43 we 2.0818e-3 2.1520e-3 5.3325e-4 7.6021e-4
uem 1.8356e-3 1.8807e-3 4.6051e-4 1.9413e-4
vem 2.4225e-3 2.5247e-3 6.0667e-4 6.2539e-4
. . uhem 8.2619¢-3 8.4751e-3 2.0732e-3 1.2135e-3
2, 2.6042¢ — 3 and 2.6042e — 3. Take the iterative control vhem 1.0775e-2 1.1231e2 2.7032¢-3 2.77971e-3
tolerance as 1 x 1078, and take 100 as the maximum iterative utet 2.3722e-3 2.3860e-3 6.0265¢-4 6.4035¢-4
number between two adjoining temporal steps. vtem 3.0004e-3 3.0456e-3 7.6127e-4 1.0232e-3
wem 2.1275e-3 2.1828¢-3 5.4920e-4 1.2515e-3
Use uem, vem, uhem, vhem, utet, vtem, wem to express
the errors in different forms between the approximation solu-
tion obtained by the iterative procedure and that of the original
problem (1), where uem = max |U") — u™||, vem = onE
0<n<N E
max ||[V*) — v?|, uhem = max |6U™®) — su?, 00025
0<n<N 0<n<N s
N 0002
vhem = max [|[6V"G) — §un||, utet = [ [|d U™ ) — r
0<n<N =1 s
n 1 n(s) n 00015
du™||7])Z, vtem = max ||d,V — dp™|| and wem = ,
1<n<N s
max_[|[W") —w™|, N < M. e
0<n<N E -
For Picard-Newton iteration (5)-(9) with the four group step 0.0005 ———
lengths, those errors in the above seven norms are up bounded —
T 1
by 1.5862¢ — 1, 4.2198¢ — 2, 1.1231e — 2 and 2.7971e — 3 1 15
respectively, which are accordant with the theoretical expected
error bounds. Fig. 1. Error development for Picard iteration with a 48 x 48 mesh

Table I gives the data and order of the approximation
errors of the Picard-Newton iteration. Herein we, ve, uhe,
vhe and we stand for the errors at the end of the compu-

tation, i.e., ue = [|[UME) — M| ve = [VME) — M,
uhe = ||SUMG) — suM||, vhe = |6VM ) — §oM| and
we = |[[WME) — wM|. ord, the approximation order, is

calculated as the average of three prediction orders obtained
with applying formula loga(en/e %) on error data in two
neighbor columns, and is shown around 2.

Table II compares the accuracy and efficiency of the Picard-
Newton iteration and the Picard iteration scheme in [8].
Herein, outtotal, intotal and time respectively stand for
the total numbers of outer iterations and inner iterations
carried out and the total computation time needed. outave and
inave are respectively the average outer and inner iteration
numbers in each time step. estop is the average error bound
at each iterative stopping moment. It shows that less outer
and inner iterations and time cost are needed to get similar
accurate results for the Picard-Newton iteration than for Picard
iteration. Hence the Picard-Newton iteration is more efficient
than the latter.

Figures 1 and 2 illustrate the error development as time
advances with a 48 x 48 spatial mesh for the Picard and Picard-
Newton iteration respectively, and show they have similar ac-
curacy. Herein UERR = ||U" ) —o"|, VERR = |[V"(®) —
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Fig. 2. Error development for Picard-Newton iteration with a 48 X 48 mesh

v"||, UHERR = ||6U") — §v™||, VHERR = ||sV"(5) —
sv"||, UTERR = |d,U"®) — dyu”| and WERR =
W) —wn.

Figures 3 and 4 present the iteration number with a 48 x
48 spatial mesh for the Picard and Picard-Newton iteration
respectively. Figures 5 and 6 respectively give the error bound
at the iterative stopping moment in each time step for these
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Fig. 4. Iteration number for Picard-Newton iteration with a 48 X 48 mesh
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Fig. 5. Error bound at the iterative stopping moment in each time step for

Picard iteration with a 48 X 48 mesh

two iteration schemes. Again it shows the good accuracy and
better efficiency of the Picard-Newton iteration.

VII. CONCLUSION

In this paper, a Picard-Newton iteration is proposed to ac-
celerate the resolving of a two-dimensional nonlinear coupled
parabolic-hyperbolic system. It is constructed by adding some
higher-order terms of small quantity on an existing Picard
iteration through a linearization-discretization approach. The-
oretical analysis is given on the approximation and conver-
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Fig. 6. Error bound at the iterative stopping moment in each time step for
Picard-newton iteration with a 48 x 48 mesh

gence properties of the iteration, which shows its solution has
second order spatial approximation and first order temporal
approximation to the exact solution of the original problem,
and converges to the solution of the nonlinear fully discrete
scheme with a quadratic ratio. Numerical experiments verify
the results of theoretical analysis and show this Picard-Newton
iteration is more efficient than the Picard iteration scheme
with linear convergent ratio. The idea can be extended to
three-dimensional problems. Further works on more efficient
iteration acceleration with second order accuracy both in
spatial and temporal variants are in consideration.
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