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Abstract—Motion analysis and tracking often relies on multi-
modal signals, e.g., video, depth map, motion capture (MoCap),
due to the completeness of information they jointly provide. The
joint analysis of multimodal signals requires to know the correct
timing, i.e., the signals to be aligned. In this paper we propose
an approach to automatically estimate the correct matching and
alignment between a video and a MoCap recording acquired from
the same session, based on the multi-dimensional correlation of
velocity-based features extracted from the two recordings. We
validate our approach over a dataset of dance recordings of four
genres, and we achieve promising results for both the alignment
and matching scenarios.

I. INTRODUCTION

Motion tracking and motion analysis have been recently
receiving a great deal of attention, due to their numerous
application scenarios [1], spanning from surveillance to games,
medicine for orthopedic patients or monitoring of athletes [2].
The art of dance might highly benefit from motion analysis
as well [3], e.g., for the automatic annotation of dance perfor-
mances, the definition of similarity metrics among steps, which
would lead to the ultimate goal of assisting dance teachers and
students and provide powerful tools for choreographers [4].

Many approaches for motion analysis are based on video
signals, which are easy to capture and whose analysis has
proved to achieve good results on the task [5][6][7]. However,
the video signals lack information on depth and therefore the
applications based on videos have a limited extent [8][9]. This
is the reason that leads many studies to analyze RGB-D videos,
which also provide the third dimension for depth, and Motion
Capture (MoCap) recordings. The latter, in particular, provide
a high amount of information, given by the 3D positions
and rotations of numerous body joints [8][9], displayed as
a 3D skeleton. While some techniques to extract skeleton
information directly from RGB-D data have been proposed
[81[9], the ad-hoc solutions based on optical markers, such as
Vicon or Qualisys systems, are the state of the art for the task.

In several applications the analysis on different types of
recordings (audio, video, MoCap) of the same performance
(multimodal analysis) allows to achieve better result due
to the variety of information that it is possible to collect
from the signals [2][10][11][12]. In order to perform such
multimodal analysis, it is crucial the signals to be synchronized
[11][13][14][15]. Typically, the alignment of the signals is
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performed either before or after the data acquisition. In the
case the alignment is performed before the acquisition, a com-
mon clock signal is delivered across the involved acquisition
devices in order to have a common time reference [12]. In
the case the alignment is performed after the acquisition, the
recordings are manually annotated with the time offset, based
on some kind of visual or audio cues.

Unfortunately, it is not always possible to take advantage
of a clock signal. This is the case when some of the devices
do not support an external clock. On the other side, the
high number of recordings makes the manual annotation a
cognitively-heavy task, and even the correct matching of the
signals (i.e., which ones were captured from the same session)
might not be available, e.g., due to unstructured recordings.

It is therefore necessary to develop an automatic technique
to perform the matching among multimodal recordings of
the same session and to estimate the correct offset for time
alignment. In this paper we propose a method for matching
and alignment of video and MoCap streams.

Automatic alignment has been successfully adopted for
video/audio and video to video context [16], while audio
matching (identification) is a common task in the Music
Information Retrieval research field [17]. To the best of our
knowledge no automatic method for video/MoCap matching
and alignment has been proposed.

The method we propose is based on the correlation of fea-
tures extracted from video and MoCap signals, which results
in a metric of likelihood of the two signals to belong to the
same session (matching) at a certain time offset (alignment).
This task involves several steps, which are described in the
first Sections of the paper. First, we need to identify the
most feasible descriptors for the representation of the signals
and to be compared across different multimodal signals (Sec.
IT). We use velocity-based features toward the horizontal and
vertical directions, since they are comparable between MoCap
and videos [10][18]. Then, the correlation needs to address
many issues, such as noisy or poorly informative signals (Sec.
IID). Finally, we use the proposed approach for two use-case
scenarios (Sec. IV). In the former scenario, we assume the
matching between video and MoCap recordings is known and
we perform the sole alignment between them. In the latter
and more challenging scenario, we use the proposed method
to perform both matching and alignment of the two sets of
video and MoCap streams.



5t

Fig. 1. An example of a video and MoCap recordings of the same session.
Please note the slight misalignment between the camera’s perspectives.

II. FEATURE REPRESENTATION

The proposed approach requires to compare a video and
a MoCap signals to estimate the likelihood they refer to
the same session and their relative time offset. Video and
MoCap signals are not directly comparable since they capture
different information (i.e., light and color intensity for the
video, positions in the MoCap), in different format. For this
reason we adopt a feature-base representation.

We aim to extract a set of features that satisfy the following
requirements:

« they need to be consistent, i.e., to represent the same
physical quantity across the different signals, such as
the position, velocity or acceleration of the actors in the
scene;

« they should capture global properties for each frame, in
order to be robust to the noise that might affect local
properties of the recordings (such as body joints/limbs or
single pixels);

o they must be invariant to a set of transformations, such
as spatial alignment of the actors; for this reason, the
position is not likely to be a reliable descriptor.

While the proposed algorithm might work for a variety of
feature representation that satisfy the aforementioned require-
ments, in this study we adopt the physical velocity (i.e., the
first-order derivative of the position) of the actor in the scene,
which is independent by the position of the actor.

In the following, we describe the procedure to extract the
features from the video (through the Optical Flow descriptor)
and MoCap (through the first-order derivative of the position
of the joints) signals.

A. Video’s Optical Flow

Given a video signal with F' frames and three color chan-
nels (RGB components), we first process it to remove the
background and highlight the foreground, by performing a
Gaussian blur filtering, with an isotropic Gaussian kernel of
standard deviation oy, and a temporal FIR filtering, where the
filter is the composition of a first order difference and a length
Nme Moving average. The filtering operation is performed
separately for each RGB channel, in order to exploit all
available information, and the results are merged as a weighted
sum (0.299R + 0.587G + 0.114B). The first-order difference
operation can return negative values, therefore we finally

extract the magnitude of the movement by computing the
absolute value of the signal.

We then extract the Dense Optical Flow, which detects
the direction of the apparent motion of subjects present in
the scene [19]. We use the Gunnar Farnebacks algorithm
[20] to estimate the local apparent motion of each pixel by
comparing its neighborhoods over pairs of successive frames
using a quadratic polynomial approximation of them. If the
background is static enough, so that it has been removed in
previous processing stages, and the camera was steady during
the recording, the Dense Optical Flow provides a reliable
descriptor of the direction and the amount of movement in the
scene, i.e., its velocity. We aggregate the velocities over pixels
by computing the sum over vectors for each frame and we
consider the two components of the vectors, which represent
the global amount of movement toward the horizontal and
vertical directions. We apply a final 7,,,,,-long moving median
filter to the velocity signals, in order to remove the spikes that
are due to sudden scene or light changes. The procedure results
in two velocity sequences, one for the horizontal and one for
the vertical directions, collected in the matrix X? € R2xF—1
for a generic video v.

B. MoCap Velocities

We formalize a generic MoCap signal composed of F
frames, J markers (or body joints) and the 3 dimensions in
space as the tensor M € RF 73,

Since we want to build a velocity representation consistent
with the one extracted from the video, we take into consid-
eration the set of markers correspondent to the parts of the
body that are clearly captured by the video, i.e., the head, the
torso, the legs and the arms. We extract first-order derivatives
for each marker and sum them over markers in order to obtain
a global velocity descriptor v for each frame f:

J
vi=> (M1 —Myg;)  f=1,...,F—1 (1)
j=1

We project the 3D velocity signal onto the projection plane
of the camera [21] such that the two dimensions on the plane
match the horizontal and vertical directions of the video fea-
tures. Assuming that the position and orientation of the video
camera (with respect to the 3D MoCap space) are known, the
projection plane is defined by the span of the two unit vectors
% and y. We project the velocity features v onto X and y
to obtain the horizontal and vertical components, respectively,
which are collected in the final matrix X™ € R2*F~1 for a
generic MoCap m.

It is worth remarking that we are not considering any
clipping window [21], so the MoCap features are computed
even when the video signal is occluded (e.g., the actor is
outside the view of the camera and therefore no motion is
detected). For this reason, our method includes a stage to
detect the segments where a meaningful amount of information
(i.e., movement) occur, as discussed in Section III-A.



C. Oversampling of the signals to match the sample rate

The proposed approach is based on a multi-dimensional
correlation among the features extracted from the two sig-
nals, which therefore need be re-sampled to the same frame-
rate. Undersampling the higher-rate signal would lead to lose
information and possibly introduce aliasing issues. For this
reason, we rather oversample the lower-rate by using a linear
interpolation. The systems for the MoCap recording commonly
use a frame rate of around 60-250 Hz, that is two to four times
higher than the time resolution of traditional video cameras
(25-30 Hz), so the latter is the most likely candidate for the
oversampling.

III. MULTI-DIMENSIONAL CORRELATION

Given a video and a MoCap stream and the correspond-
ing velocity-based features, the proposed method estimates a
(sorted) set of likelihoods that the two streams were acquired
from the same session, and their relative offset. This is
accomplished with a series of processing steps:

1) segmentation: we extract the segments that contain
a meaningful amount of information (i.e., movement),
in order to focus on them and possibly fasten the
computation;

2) multi-dimensional correlation: we correlate all the
pairs of video and MoCap segments on both horizontal
and vertical dimensions, resulting in a list of estimates
of offset and their corresponding reliabilities

3) clustering: we cluster the computed offset and update
their values with a weighted mean based on reliability
estimates.

A. Segmentation

We want to pass to the next computation stage only the
segments of the recording that contain a meaningful amount
of movement. This is required since in the subsequent multi-
dimensional correlation step, the velocity sequences are being
normalized and therefore small movements could have a
detrimental effect on the estimation. Both video and MoCap
features follow the same segmentation procedure.

Given a generic matrix of features X with F' frames, we
extract the magnitude of movement by aggregating the two
horizontal and vertical components as indicated by d:

= > X, f=1,..
d

and we threshold m with its 7-th percentile P, obtaining the
binary sequence m, which is equal to 1 when m > P, and 0
otherwise.

The result at this stage is over-segmented, therefore we
apply the binary closing and opening morphology operators,
in order to remove gaps smaller than 7; and segments smaller
than 75. The segments containing meaningful movement are
passed to the subsequent multi-dimensional correlation stage.

F =1 2

using i as estimate index and k as cluster index;
foreach pair (1;, ¢;) do
if mkin|li — l}c‘ < Iy, then

k* < argmin|l; — I ;
k

Lp* Cp* +ié .
cpx+¢E;
Cr+ — (crr 4 ¢);
else
‘ create a new cluster;

end

lk* —

end
return {(lx, cx)} sorted by cy, (reverse order);

Algorithm 1: The clustering of offsets and reliabilities.

B. Multi-dimensional correlation

Let X, € R2*F> be the sequence of features corresponding
to the generic p-th segment.For each unique pair of segments
(p, ¢q) from a MoCap (p) and video (g) stream, with F}, and
F, frames, respectively, we compute the multi-dimensional

correlation as
S

d teT

d, t+1)
Uq(d)

3)

Cp,q(

where [ is the lag index, representing the delay (in frames) of
the MoCap stream with respect to the video stream; o, and o,
are the standard deviations of the two feature sequences; and
T = [max(0, —I),min(F},, F; — 1)] is the set of time frames
where the two segments overlap, given the offset [ (this is
equivalent to zero padding the sequences to compute “full”
correlation).

The offset that maximizes the correlation between the pair
of sequences is then adjusted by considering the frame indexes
s(p) and s(q), when the two segments p and ¢ start:

Ipq = argmaxcy.q(1) + 5(p) = s(a), 4)
and we use
Cp,g = mlax cp.q(l) )

as an indicator of the reliability of the estimated offset.

In this step we estimate, for each pair of segments from the
MoCap and video streams, the lag that maximizes the multi-
dimensional correlation. In order to retrieve the most likely
offset between the two streams, we need to cluster together
the information inferred from the different pairs of segment.

C. Clustering

In this last stage we cluster together the offsets having close
values and compute the corresponding aggregated reliabilities
(i.e., the correlation values as computed in Eq. 5) . Each cluster
represents a set of offsets, which we use to compute the overall
offset as the (weighted) centroid of the cluster. We compute the
reliability of a cluster as the sum of the included reliabilities.
The procedure is detailed in Algorithm 1.
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Fig. 2. Percentage of recordings matched at different estimates k* considered
(style and width of the lines), for the 10 most matching recordings, using the
MoCap-vs-Videos and Video-vs-MoCaps strategies (colors of the line). Best
seen in color.

IV. ALIGNMENT AND MATCHING USING THE
MULTI-DIMENSIONAL CORRELATION

In this Section we discuss how we use the proposed ap-
proach to estimate the correct alignment between two multi-
modal recordings of the same session, or to retrieve the best-
matching MoCap recording given a video recording.

A. Alignment and Matching

For the scenario of sole alignment, we assume to have a
set of matched pairs of MoCap (m) and video (v) recordings
of the same session and we need to automatically estimate
the offset among those. Given a pair of recordings (m, v),
we compute the set of reliabilities and offsets (cf, ,,IF )
sorted by decreasing reliability, where k& = 1,..., K, , and
K, » is the number of estimates. The best candidate is l,l,w.
In some scenarios an user might be interested in considering
the remaining estimates £ > 1, e.g., to analyze possible
periodicities in the velocity signals.

For the scenario of matching, we define two alternative
strategies, the MoCap-vs-Videos or the Video-vs-MoCaps. We
here only discuss the former, while the latter is deducible from
the duality of the approach. Given a generic MoCap stream m,
we compute, for each video in the dataset, the set of estimates
and we sort them across all the videos. The result is a set of
pairs (cf,:’v, lfn*’v), with k* the new index given by the sorting
across all the videos and v a generic video. In this scenario,
the reliability cﬁ,;v indicates the likelihood that the MoCap and
video recordings have been acquired from the same session
with the time offset lﬁ;v. The best video and offsets candidate
are those corresponding k* = 1, and the remaining estimates
k* > 1 might be used to retrieve similar recordings.

The matching scenario is extremely challenging, since we
use the reliabilities as a global indicator of matching through-

out the entire set of MoCaps or videos. However, the value of
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Fig. 3. Visualization of the joints in the MoCap representation
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the reliability depends on many factors, such as the number of
segments, the individual reliabilities of which it is composed,
the duration of the involved recordings, the quantity of motion,
etc. In the next Subsection we perform a preliminary test
to analyze the effectiveness of the reliability to estimate the
likelihood of matching and alignment.

B. The hub issue

With regard to the MoCap-vs-Videos strategy, we collect the
most popular videos, i.e., the videos that were matched with
the highest amount of MoCaps, at different indices £*. We
perform the same analysis for the Video-vs-MoCaps strategy.
The results are shown in Figure 2, where the amount of
matched recordings is shown as a percentage of the total
amount of recordings. With £* = 1, the most popular record-
ing is matched with around 10 to 30 % of the entire dataset.
Due to the extreme popularity of such recordings, we name
them hubs. At k* = 10, the issue greatly affects the dataset,
since the amount of recordings matched with the first hub is
greater or equal than the size of the dataset itself. While this
might seem an issue caused by a few outliers, we discover that
even by removing them, other recordings are likely to take the
lead role as hubs.

We address this issue by including a variant of the two
matching strategies. With regard to the MoCap-vs-Videos
strategy, we collect the whole set of N x K estimates across
all the N MoCap recordings, with K the maximum amount
of considered estimates across all the MoCap and video se-
quences. Then, we pick the estimate with the highest reliability
Cpn s We assign the MoCap recording m to the video recording
v with the corresponding offset, and we remove from the set
all the estimates regarding the MoCap m and the video v. We
iterate this procedure until the set of estimates is empty. Doing
this, the video hubs are only matched with the most likely
MoCap, and their impact on the whole matching procedure is
dramatically reduced.
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Fig. 4. Numerical evaluation of the alignment stage at different intervals of
confidence and amount of estimates (style of the lines).

V. EXPERIMENTAL SETUP AND EVALUATION
A. Collection of the dataset

We recorded N = 707 dance sessions from four different
dance genres: Classic Ballet (130 sessions), Contemporary
(347), Flamenco (49) and Green Folk dance (181).

For each session, we captured the performance of the
dancers by means of a Vicon Motion Capture system!, from
which we built a skeleton-based representation composed of
J = 22 joints (see Figure 3) at 60 fps. We recorded a video
of the performance at 29 fps by means of a full-HD camera,
approximately placed in front of the recording stage. In order
to fasten the computation of the video features and focus to the
movement of the dancers, we cropped the sides of the video
and downscaled it. The final resolution was 480 x 270 pixels.

From the skeleton and the video recordings we computed
the velocity-related features as explained in Section II. In
particular, we computed X and y according to the position
of the camera, while some minor changes of positions occur
across the recordings (see for example Figure 1). Nevertheless,
the results show that the features are rather robust to such
minor misalignment.

We extracted the velocity features from the recordings,
using the following setup as experimentally determined. The
parameters for the initial video smoothing were set to o, = 3
and 7,,, = 4. We uses the opencv[22] library to compute
the optical flow features, and we set the parameters for the
segmentation to P, = 35, 71 = 0.1 s and 7 = 0.23 s.

B. Collection of the ground truth

The manual annotation of the alignment between a video
and a MoCap signal is a hard task. For this reason, we
only considered the recordings of Flamenco and Green Folk
sessions.We annotated the correct matching between MoCap
and video recordings and their time offset with a precision of
about 0.1 s.

Uhttps://www.vicon.com
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Fig. 5. Numerical evaluation of the matching stage at different amount of
estimates, for the Mocap-vs-Videos and Video-vs-Mocaps strategies (color of
the lines), with and without the strategy for hubs correction (style of the lines).

With regard to the Contemporary and Ballet sessions, we
reverse the problem and we use the proposed approach to
compute a set of estimates of matching and alignment. We then
manually annotated the correct matching and offset candidates,
if any.

C. Evaluation of the sole alignment scenario

In Figure 4 we show the evaluation of the proposed ap-
proach for the task of the sole alignment, using the accuracy
quality metric. We evaluate the accuracy at different intervals
of confidence, i.e., the time interval from the annotated offset
within which a value of alignment is marked as correctly
retrieved. We also take into consideration the number of
estimates required to find the correct offset. It is possible to
note that even with k = 1, the achieved results are higher than
0.9 within 150 ms of interval of confidence. The additional
estimates £ > 1 slightly improve the performance, and the
best accuracy is achieved within an interval of confidence of
250 ms.

We believe that the residual error is caused by the spatial
misalignment among the features, or by those recordings that
exhibit a small amount of movement. Nevertheless, the results
are highly promising, which motivates the use of the proposed
method to address the matching scenario.

D. Evaluation of the matching scenario

In Figure 5 we show the accuracy achieved by the proposed
approach for the two strategies at different k. It is clear that
the MoCap recordings provide a higher discriminability with
respect to the video recordings. In particular, using &k = 1,
the achieved accuracy is higher than 0.6, which improves
to around 0.85 when considering the top 5 estimates. The
Video-vs-MoCaps strategy achieves worse results, with only
0.5 accuracy for k = 1. It is clear that the hub issue described
in Section I'V-B negatively affects the overall accuracy of the
approach.

This is highlighted by the results achieved by the two
strategies when the variant for the hub correction is applied.



The results greatly improve and we achieve around 0.9 of
accuracy for both the strategies. As before, the Mocap-vs-
Videos strategy seems to slightly outperform the Video-vs-
Mocaps one. The results are consistent with those obtained
with the alignment scenario.

VI. CONCLUSION

In this paper we addressed the problem of multimodal signal
matching and alignment. In the specific scenario of dance
performances we take into consideration video and MoCap
acquisitions to be matched (find those that are related to the
same session) and aligned. In particular, our method estimates
the likelihood of MoCap and Video recordings to have been
acquired from the same session, with a certain offset.

We validate our approach in two scenarios: alignment of
pairs of streams (video-MoCap) already matched (we know
they belong to the same session), but not aligned; matching
and alignment of video and MoCap streams.

The approach, based on a multi-dimensional correlation
of 2D velocity-based features achieves high accuracy (about
90%) for even narrow intervals of confidence for the alignment
scenario. For the matching scenario, we design a procedure
to use the approach over the global dataset, which results
to be extremely effective. The approach can be used to
assist researchers and artists in the organization of dataset of
multimodal recordings.

As future works, we intend to remove the assumption of
prior knowledge of the camera position, adding a stage for
the estimation of the vectors X and y. This will widen the
use-case scenarios of our approach to perform the matching of
multiple video recordings of the same MoCap from different
points of view. We will also explore further approaches to
include a semantic layer of abstraction, such as multimodal
deep learning techniques, which however will require a greater
amount of data for training.
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