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ABSTRACT 
This work focuses on Artificial Intelligence (AI)-driven materials design, addressing the challenge of 

improving the sustainability of building materials amid complex formulations. These formulations 

involve various components, such as binders, additives, and recycled aggregates, necessitating a balance 

between environmental impact and performance. Traditional experimental methods often fall short in 

managing the complexity of material composition, hindering fast enough development of optimal 

solutions. Our research explores complex composition materials design through a comprehensive, 

comparative lab study between Data-Driven Design, using SLAMD - an open-source AI materials 

design tool, and traditional Design of Experiments (DOE). We aimed to develop a high-performance, 

alkali-activated material using secondary precursors, aiming for a compressive strength exceeding 100 

MPa after 7-days. The findings reveal that AI-driven design outperforms DOE in development speed 

and material quality, successfully identifying multiple high-performance materials. This result 

showcases AI's capability to handle complex designs with limited data, marking a significant 

improvement over conventional methods and demonstrating AI's revolutionary role in sustainable 

material design. Our study provides in-depth insights into the real-world application of data-driven 

design in a laboratory setting, highlighting the effective collaboration between AI-guided design and 

expert oversight. By showcasing the successful integration of AI, this research contributes to advancing 

sustainable materials science. It sets the stage for shorter time-to-market development boosting the 

impact of sustainable building in the construction industry. 

Keywords: Data-Driven Design, Sequential Learning, Design of Experiments, Alkali-

Activated Binder, Secondary Raw Materials, 
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1. INTRODUCTION 

The growing need to protect the environment and achieve the United Nations Sustainable 

Development Goals (SDGs), especially Goal 12: Responsible Consumption and Production, 

requires a reduction in the consumption of primary resources while increasing the use of 

secondary resources. This includes building materials of inorganic binders to produce mortar 

and concrete. To achieve the SDGs, the composition of inorganic binders is evolving towards 

significantly more complex mix designs. One reason is the increased number of (secondary) 

components; however, the compositional variability of the secondary raw materials is an 

additional challenge, as it is associated with less reliable chemical and physical properties 

inherited from their production processes.  

One promising class of inorganic binders for future large-scale applications are alkali-activated 

materials (AAM). What makes them particularly promising is the fact that these binders can be 

produced from secondary resources, “wastes”. AAMs may achieve similar mechanical and 

durability properties as Ordinary Portland Cement (OPC) while emitting up to 80 % less CO2 

[1]. However, these benefits can only be achieved by the optimizing the composition of the mix 

design. The wide variety of solid precursors, typically a solid aluminum silicate, as well as 

alkaline solutions results in a large variability of the materials and their properties. Slags, fly 

ashes, clays, and natural stones are the most studied suitable solid precursors for alkaline 

activation, but numerous other industrial by-products and natural materials are suitable [2]. The 

use of industrial slags is most appropriate as they are produced in large quantities with 

comparatively less compositional variation [3]. The circular use of these large quantities is a 

major contribution to SDG 12. Each constituent affects the mix, strength or durability, and their 

interactions add a layer of complexity, creating an intricate optimization challenge. Reliable 

material performance is a key element for large-scale marked implementation, but errors in the 

mix design can result in reduced material properties or even binder degradation [4, 5, 6]. 

Due to the lack of digital tools that can handle such complex systems, mix design is typically 

based on the know-how of the skilled workers. Traditional mix design methods cannot handle 

this complexity, consequently, so more systematic approaches can be beneficial to accelerate 

the process and reduce the need for skilled laboratory personnel. Such computational 

approaches include Design of Experiments (DOE) and Artificial Intelligence (AI). 

1.1.  Points of Departure  

In concrete science predictive machine learning (ML) applications have been widely 

investigated, typically with a focus on the accuracy of predicted material properties  [7, 8, 9]. 

Complementary, data-driven design (DDD) methods exploit predictive models with a focus on 

discovering promising material compositions. This has been demonstrated for several classes 

of materials [10]. The efficiency of these methods is often benchmarked through simulated 

experiments in which the outcomes of possible designs are predetermined. This allows the 
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evaluation of the DDD to identify desired materials under random initial conditions, as 

statistically analyzed by Ling et al. [11].  

Research by Golafshani et al. [12], Zhang et al. [13], and Shobeiri et al. [14] has focused on the 

design of eco-friendly concrete mixes using generative design and genetic algorithms. While 

these approaches suggest new, promising compositions, they require large datasets (~1000 data 

points), making data collection both expensive and time consuming, especially for precursors 

with varying compositions. 

Völker et al. [15] showed that DDD is highly efficient for cementitious materials, 

outperforming traditional ML methods with substantial fewer data points required to guide the 

design of complex materials. This study not only underlined ML's potential in the building 

materials sector but also its practical relevance and efficiency in data visualization. Völker et 

al. [16] further investigated impacting factors of DDD for the development of sustainable 

building materials in a large-scale study with more than 10,000 virtual experiments across nine 

AAM data sets – deriving clear guidance for application DDD. This work led to the 

development of SLAMD (Sequential Learning App for Materials Discovery), a DDD software 

for cementitious materials making this innovative design method accessible in the laboratory 

[17]. 

1.2. Research Gap, Hypothesis, and Research Question 

While statistical benchmarking and methodological advancements present valuable insights, 

they underscore a critical research gap: the practical translation of these theoretical potentials 

into tangible outcomes in laboratory settings. We hypothesize that the application of DDD 

methodologies can substantially accelerate the experimental development process. To 

investigate this proposition, our study is centered around the following research questions (RQ): 

RQ 1: How do the methodologies of DOE and AI contribute to a more rapid and efficient mix 

design for AAM? 

RQ 2: To what extent can these two design approaches, individually and in comparison, 

enhance the progress and final quality of mix designs for AAM? 

Our goal is to critically assess the impact of the AI-driven design strategy on formulating 

sustainable material compositions. The results will be benchmarked against the already 

stablished materials design by DOE. This evaluation aims to bridge the theoretical and practical 

realms, offering insights that advance the field of sustainable materials science. 
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2. MATERIALS & METHODS  

2.1.  Materials 

The alkali-activated binders of the study were based on an industrial glass precursor. Table 1 

shows its chemical composition. This glass was mixed with several sodium-based activator 

solutions that will be specified in section 3. The composition and quantity of these activator 

solutions was determined and optimized by DOE and AI. 

Table 1: X-ray fluorescence analysis of the glass precursor used in this work. 

 Al2O3 CaO Cr2O3 Fe2O3 K2O MgO Mn2O3 Na2O SiO2 SO3 TiO2 

M.-% 18.5 41.6 0.6 1.4 0.2 6.3 0.3 0.9 28.3 0.8 0.6 

2.2.  Data-Driven Design vs. Design of Experiments  

While both, DDD and DOE aim to streamline the development process of materials, their 

methodologies, underlying principles, and effectiveness in handling complexity differ 

significantly. 

DDD embodies an AI-enhanced methodology that systematically explores a vast array of 

material combinations and processing parameters through the creation and navigation of a 

design space (DS). This DS is an extensive table that contains all conceivable material 

formulations, enabling the consideration of a broad spectrum. The strength of DDD lies in its 

ability to embrace the complexity of material design without the constraints typically imposed 

by traditional experimental frameworks. This is achieved by utilizing predictive models (e.g., 

from machine learning) to transfer limited knowledge from an initial dataset to uncharted areas 

of the DS. This search process, where the most promising materials are sought after, is iterative: 

cycles of exploration (to maximize knowledge by delving into areas of uncertainty) are 

followed by final exploitation (to leverage accumulated knowledge in areas where the model 

predicts high potential). The method targets formulations meeting set performance criteria, 

allowing tailored material discovery. 

Conversely, DOE is a more traditional method that seeks to optimize processes or mixtures 

through a structured experimental plan. This approach generates a model of the entire design 

space in a first step and then predicts optimized mixtures based on that model. Common DOE 

focuses on quadratic relationships to understand non-linear interactions between factors. 

However, DOE's effectiveness diminishes in the face of complex material compositions where 

the interactions between components are not well understood or are highly non-linear. The 

method relies on predefining factor levels and assumes interactions can be captured by the 

experimental plan. 

The main differences between DDD and DOE in approaching a design task lie in their handling 

of the design target: DDD uses AI to learn from experimental data, focusing on the design 
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target. This allows it to navigate through complex interactions, optimizing formulations 

effectively. In contrast, DOE systematically explores the design space using predefined plans, 

lacking feedback from the design target until the final model is generated. 

3. SAMPLE PREPARATION AND EXPERIMENTS 

The experimental parameters of this study are summarized in Table 2 and are described in the 

following. 

Table 2: Experimental parameters 

No. Parameter Description 

1) Target 7-day compressive strength >100 MPa 

2) Sample size  20 x 20 x 20 mm3  

3) Implementation DOE: Minitab; DDD: SLAMD  

4) Lab budget Max. 50 formulations in max 12 weeks 

5) Activator compounds: Na-silicate [g]  

Na2SO4 [g]  

Na2CO3 [g]  

NaOH [g]  

W/S [g/g] 

0 – 122.2 

0 – 91.7 

0 – 6.4 

0 – 51.6 

0.5 – 0.6 

1) The target of this study was to find high performance materials that exceed a 7-day 

compressive strength of 100 MPa. 2) The pastes were cast as 2 cm3 cubes and vibration 

compacted. Sample preparation and seal curing were performed at 20 °C to exclude moisture 

loss and carbonation. The activator solutions were premixed one day earlier to release 

dissolution heat. 3) The designs were carried out using the software SLAMD [17] for the DDD 

and Minitab for DOE. 4) Due to the intensive labor and time required for quality assurance, the 

study was constrained to testing a maximum of 50 samples within a 12-week period. Quality 

assurance protocols necessitated the production of six samples for each formulation at test ages 

of 1, 7, and 28 days, resulting in a total of 18 samples per formulation and cumulatively 

amounting to 900 lab tests for a 50-formulation run. 5) The study explored varying proportions 

of sodium-based activators: hydroxide, sulphate, carbonate, and silicate, each contributing up 

to a maximum of 40 grams of sodium oxide equivalent. The sodium silicate used in the 

formulations had a specific composition of 14.7% Na2O, 30.2% SiO2, and 55.1% H2O by 

weight. 

3.1.  Experimental Procedure for Data-Driven Design with SLAMD 

The procedure can be delineated into three steps: the initial preparation of the design space, the 

collection of training data, and the systematic exploration and optimization of material 

formulations across seven development cycles. 

1) The construction of the DS began with the variation of each constituent in 10% intervals, 
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ranging from 0% to 100%. Additionally, the water-to-solids (W/S) ratio was varied across three 

discrete values: 0.5, 0.55, and 0.6. This variation was automated using an Excel tool, 

culminating in a DS that included 43,923 potential formulations, encapsulating all conceivable 

activator combinations. 

2) For the initial training set 6 formulations were strategically selected to encompass a high 

degree of variability across all parameters. This selection aimed to capture a broad 

representation of the DS, facilitating the training of a machine learning model, which was 

subsequently employed to predict the material strength of the remaining 43,917 formulations. 

3) The model predictions are instrumental in ranking the formulations according to the 

predicted strength. However, the selection of candidates was also informed by strategic criteria. 

In the first three cycles (exploration phase), prediction uncertainty was given double weight in 

the candidate ranking. Given the relatively high prediction error at this stage, samples with 

higher uncertainties are deemed more valuable for enhancing the model's learning capabilities. 

In the subsequent two cycles (explore and exploit phase), the weight of uncertainty in sample 

selection was reduced to one, balancing the focus between exploring uncertain designs and 

exploiting predictions. In the final cycle (exploitation phase) solely the predictive capabilities 

of the model were exploited to select optimal formulations. The selection process also 

considered the novelty of each mix. This criterion, provided by SLAMD, assessed how different 

the parameter configuration was from previously tested materials, with novel designs 

potentially offering broader insights into the DS. Lastly, the intuition of lab personnel played a 

crucial role in the selection process in cases of uncertainty, ensuring that the selection of 

meaningful designs was both informed and strategic. 

A detailed description of the material design process with SLAMD can be found in Völker et 

al [17]. 

3.2.  Experimental Procedure for Design of Experiments with Minitab 

In contrast, the Design of Experiments (DOE) plans the experimental investigation to efficiently 

understand the influence of various factors, such as the amount and composition of the activator 

solution, on the material properties.  

1) Initially a design plan had to be selected. The Box-Behnken design is particularly suitable 

because it strategically excludes vertices that are more likely to express workability problems. 

Moreover, it can determine quadratic relationships between factors, allowing for nuanced 

analysis of nonlinear interactions. Three factor levels were chosen to limit the number of 

experimental runs, the minimum and maximum as shown in Table 2 plus a 50% level.  

2) The design of experiment software generated an experimental plan based on the specified 

input, which included 46 mixtures to be tested. 
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3) After testing all 46 mixtures the model was generated and based on the regression formula 

determined, an optimized mixture was found and prepared. The model is accompanied by a 

comprehensive statistical analysis of the factors and the goodness of prediction, and provides 

several insights into the design space and the factor relationships. 

4. RESULTS 

The results of the experimental runs are shown in terms of the compressive strength achieved 

for each day in the laboratory. Figure 1 shows the DDD run results for each design phase. There 

is exactly one week between each laboratory day to allow the 7-day strength test data to be used 

as feedback for the DDD sample selection. In total, 34 geopolymer designs were validated, 

representing 612 laboratory strength tests.  

In Figure 1, the results of the DOE-based design approach are shown on the left side. Compared 

to DDD the training phase is exhaustive and only the final formulation is derived from the DOE 

model analysis. The average performance achieved by the DDD is 89 MPa. However, the 

laboratory results clearly show a progressive average increase in strength over the course of the 

design stages (see Table A-1 in the Appendix). The highest compressive strength was achieved 

in the last cycle (125.5 MPa), and 12 samples reached the 100 MPa target.  

 

Figure 1: The 7-day compressive strength results from the data-driven design and the design of experiments 

approach with the goal of achieving 100 N/mm2. The respective design phases are indicated by the arrows above.  

The DOE approach led to the preparation and testing of 47 geopolymer mixtures, equivalent to 

846 strength tests. The average performance of DOE designs was comparatively lower than 

with the DDD, at 61 MPa, and including 8 designs that failed to develop any strength. Only one 

mixture achieved a compressive strength above the 100 MPa mark during the training phase 

(108.7 MPa). The optimized mixture predicted by the DOE model reached the targeted strength, 

by a close margin, achieving 100.2 MPa. 

The targeted progression of the data-driven experiment toward higher performing samples 
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becomes evident in Figure 2, A which illustrates the design space. An irregular design space 

was explored, and it is clear that in later stages of the experiment, high-performance materials 

were found in the green region. 

Conversely, the design space explored by DOE (Figure 2, B) is strictly regular in its dimensions 

and with respect to the sample compositions studied, except for the optimized mixture shown 

in green with an "x”. However, the highest strength was obtained during the model building 

phase, highlighted by the star. 

 

Figure 2: Lower dimensional representation of design spaces that were explored by DDD (A) and DOE (B). The 

size of the points reflects the compressive strength reached after 7 days. The highest strength is marked with a 

star. The optimized mixture from DOE is marked with an X. The variation of the W/S ratio and the sodium 

sulphate content are not shown. 

5. CONCLUSION 

This study embarked on a comparative analysis of two prevalent materials design 

methodologies, Design of Experiments (DOE) and Data-Driven Design (DDD), within a 

laboratory setting to address the inherent challenges posed by the high complexity and 

variability of secondary resources in materials design. The investigation delineated the 

processes and fundamental differences between the two approaches, with DOE aiming to 

representatively model the design space and DDD focusing on iterative navigation toward 

performance goals. 

We postulated that the application of DDD methodologies can substantially accelerate the 

experimental development process for complex materials design, which was clearly confirmed 

by our comparative analysis of DDD and DOE. In particular, the investigation of the first 

research question yielded a compelling answer: both, the DOE and AI methodologies, as 

represented by DDD, contribute significantly to the mix design process for alkali-activated 

materials, albeit in significantly different capacities. DDD demonstrated a faster and more 

efficient route to high-performance material formulations, supporting our hypothesis with a 
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clear preference for the DDD approach in terms of speed, efficiency, and adaptability. 

DDD not only accelerated the design process but also resulted in a higher quality of final mix 

designs, as evidenced by the success rate (33% and 4% for DDD and DOE, respectively) and 

the performance of the developed materials. The comparative analysis highlighted the 

limitations of DOE, particularly the need for a lengthy training phase within a predetermined 

experimental design, which may include numerous unfavorable mix designs and a 

comparatively weak final model.  
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APPENDIX 

Table A-1: Detailed results from DDD 

1st Dev. Cycle             

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation   

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days   

  g g g g g   MPa MPa MPa MPa MPa MPa   

T-1 500 51.62 0 0 0 0.5 39 56 66 3 4 3   

T-2 500 51.62 0 0 0 0.55 33 51 63 2 3 4   

T-3 500 0 122.18 0 0 0.55 0 33 53 0 1 1   

T-4 500 0 0 91.72 0 0.55 0 20 35 0 4 3   

T-5 500 0 0 0 68.4 0.55 0 0 0 0 0 0   

T-6 500 0 122.18 0 0 0.6 0 2 40 0 0 3   

       Average:  27       

2nd Dev. Cycle             

  Curiosity 2            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

1 400 46.46 73.31 9.17 6.84 0.5 63 90 104 1 3 1 56 

2 400 41.3 110 82.55 13.7 0.5 74 94 110 5 8 7 56 

3 400 41.3 61.1 91.72 27.36 0.5 62 87 101 3 2 5 56 

4 400 36.13 24.44 27.52 68.4 0.5 61 86 88 1 4 4 56 

       Average:  89    Average:  56  

 

 

 

         
ø Error: 33 
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3rd Dev. Cycle 
  Curiosity 2            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

5 400 20.65 122.18 18.34 6.84 0.6 62 88 91 2 3 2 64 

6 400 20.65 73.31 18.34 54.72 0.6 58 82 86 2 6 3 62 

7 400 20.65 109.96 18.34 47.88 0.55 64 95 104 5 5 4 65 

8 400 46.46 97.74 0 54.72 0.5 73 100 111 4 5 8 66 

       Average:  91    Average:  64  

4th Dev. Cycle          ø Error:  27  

  Curiosity 2            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

9 400 46.46 97.74 0 0 0.6 47 74 93 1 4 5 77 

10 400 46.46 122.18 64.2 0 0.6 62 84 101 2 4 5 75 

11 400 15.49 97.74 9.17 0 0.5 53 78 96 2 4 3 78 

12 400 25.81 24.44 91.72 0 0.55 46 72 78 2 3 2 68 

       Average:  77    Average:  75  

 

 

 

 

 

 

         

ø Error: 2 
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5th Dev. Cycle 
  Curiosity 1            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

13 400 10.32 97.74 9.172 41.04 0.5 64 100 106 4 6 7 73 

14 400 46.46 97.74 9.172 68.4 0.5 71 97 106 2 3 5 89 

15 400 10.32 97.74 45.86 41.04 0.55 53 95 101 1 3 6 72 

16 400 46.46 122.18 45.86 68.4 0.55 60 80 95 5 5 4 87 

       Average:  93    Average:  80  

6th Dev. Cycle          ø Error:  13  

  Curiosity 1            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

17 400 10.32 110.0 18.34 34.20 0.5 63 106 110 3 4 6 90 

18 400 10.32 97.74 45.86 13.68 0.5 60 96 94 2 2 6 89 

19 400 51.62 97.74 0.00 61.56 0.5 74 107 109 4 8 4 92 

20 400 51.62 110.0 9.17 41.04 0.5 71 104 117 4 6 11 92 

       Average:  104    Average:  91  

 

 

 

 

 

         

ø Error: 13 
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7th Dev. Cycle 

  Curiosity 1 resp. 0            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

21 400 51.62 97.74 64.20 27.36 0.5 73 104 124 2 4 7 99 

22 400 10.32 122.2 0.00 34.20 0.5 70 125 123 3 6 6 101 

23 400 10.32 122.2 18.34 54.72 0.5 68 115 127 3 4 9 100 

24 400 51.62 110.0 0.00 68.40 0.5 80 111 109 2 3 5 103 

       Average:  114    Average:  100  

8th Dev. Cycle          ø Error:  13  

  Curiosity 0            

  Model Random Forest           

IDX Powder 

Salt 

w/s 

Compressive Strength Standard Deviation Prediction 

NaOH 
Na-

silicate 
Na2SO4 Na2CO3 1-day 7-days 28-days 1 day 7-days 28-days 7-days 

  g g g g g   MPa MPa MPa MPa MPa MPa MPa 

25 400 10.32 122.2 0.00 20.52 0.5 79 112 112 3 6 4 114 

26 400 10.32 122.2 0.00 47.88 0.5 81 111 113 4 6 7 114 

27 400 20.65 122.2 0.00 34.20 0.5 84 115 117 5 7 7 113 

28 400 15.49 122.2 0.00 41.04 0.5 82 126 124 4 3 4 114 

       Average:  116    Average:  114  

            ø Error:  2  
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Table A-2: Detailed results from DOE, including the 1, 7 and 28-day compressive strength. 

  Activator Compounds [g]   Compressive Strength [MPa]  Standard Dev. [MPa] 

Nr.  Na-Silicate Na2SO4 Na2CO3 NaOH W/S  1d 7d 28d  1d 7d 28d 

1  0.00 45.85 34.20 51.60 0.55  52.3 54.7 66.7  3.9 8.4 4.3 

2  0.00 45.85 68.40 25.80 0.55  13.0 51.9 47.4  1.6 5.3 14.5 

3  0.00 45.85 0.00 25.80 0.55  37.4 49.1 53.0  4.1 3.2 18.7 

4  61.10 45.85 34.20 25.80 0.55  57.9 97.6 85.4  4.4 3.4 12.7 

5  122.20 91.70 34.20 25.80 0.55  71.5 91.5 118.0  5.3 12.5 17.3 

6  122.20 45.85 34.20 25.80 0.50  53.0 79.4 94.0  2.0 9.6 9.8 

7  122.20 45.85 68.40 25.80 0.55  67.1 108.6 110.0  4.0 6.7 24.3 

8  61.10 0.00 34.20 25.80 0.50  59.6 87.9 98.4  5.8 3.0 6.1 

9  61.10 45.85 34.20 25.80 0.55  66.4 82.8 73.1  5.7 6.4 9.4 

10  61.10 45.85 34.20 51.60 0.60  58.3 75.5 93.7  3.0 10.3 6.3 

11  0.00 45.85 34.20 25.80 0.60  32.2 64.6 59.2  1.7 4.6 7.6 

12  61.10 0.00 68.40 25.80 0.55  64.4 89.0 76.7  1.3 3.7 2.7 

13  0.00 45.85 34.20 25.80 0.50  40.1 66.6 72.2  2.8 8.0 12.0 

14  61.10 45.85 34.20 25.80 0.55  55.6 71.3 100.6  3.7 9.5 9.6 

15  61.10 0.00 34.20 51.60 0.55  58.5 74.9 83.1  9.7 8.3 12.8 

16  61.10 91.70 68.40 25.80 0.55  57.2 81.9 89.5  5.4 8.5 10.0 

17  61.10 45.85 68.40 25.80 0.60  51.9 78.6 87.7  4.7 7.1 12.1 

18  122.20 45.85 34.20 25.80 0.60  53.6 82.9 82.8  10.0 11.1 13.4 

19  61.10 45.85 0.00 0.00 0.55  0.0 0.0 10.7  0.0 0.0 1.4 

20  61.10 0.00 34.20 25.80 0.60  27.5 59.3 64.6  6.6 2.3 6.2 

21  0.00 91.70 34.20 25.80 0.55  33.4 50.1 59.3  3.8 4.4 4.3 

22  61.10 45.85 34.20 51.60 0.50  66.2 91.8 84.5  2.5 2.6 15.7 

23  61.10 45.85 34.20 0.00 0.50  0.0 0.0 56.5  0.0 0.0 13.4 

24  61.10 45.85 34.20 0.00 0.60  0.0 0.0 0.0  0.0 0.0 0.0 
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  Activator Compounds [g]   Compressive Strength [MPa]  Standard Dev. [MPa] 

Nr.  Na-Silicate Na2SO4 Na2CO3 NaOH W/S  1d 7d 28d  1d 7d 28d 

25  0.00 0.00 34.20 25.80 0.55  33.3 47.2 62.7  2.2 5.7 2.1 

26  61.10 45.85 34.20 25.80 0.55  53.1 85.8 84.0  9.4 5.5 4.2 

27  61.10 45.85 0.00 51.60 0.55  58.0 81.9 89.9  7.0 7.5 12.0 

28  61.10 91.70 34.20 51.60 0.55  56.4 66.2 92.0  9.4 13.9 12.5 

29  122.20 45.85 34.20 0.00 0.55  24.7 73.2 82.0  15.8 11.7 10.0 

30  61.10 0.00 34.20 0.00 0.55  0.0 0.0 0.0  0.0 0.0 0.0 

31  61.10 45.85 34.20 25.80 0.55  53.5 81.5 94.3  7.7 6.3 5.4 

32  122.20 45.85 0.00 25.80 0.55  58.1 91.0 106.5  3.4 10.8 3.6 

33  61.10 0.00 0.00 25.80 0.55  10.4 38.5 55.6  10.0 7.0 4.6 

34  61.10 45.85 0.00 25.80 0.50  58.3 77.3 90.1  2.6 3.4 6.0 

35  61.10 91.70 0.00 25.80 0.55  43.8 68.6 80.5  10.1 10.7 15.4 

36  61.10 45.85 34.20 25.80 0.55  46.2 81.1 98.6  17.3 11.5 6.4 

37  61.10 45.85 68.40 0.00 0.55  0.0 0.0 0.0  0.0 0.0 0.0 

38  61.10 91.70 34.20 25.80 0.50  55.0 75.8 93.6  5.3 12.2 11.2 

39  61.10 45.85 0.00 25.80 0.60  34.2 59.9 77.6  3.6 13.4 14.9 

40  122.20 45.85 34.20 51.60 0.55  65.4 73.8 91.3  11.0 5.1 13.9 

41  61.10 91.70 34.20 0.00 0.55  0.0 0.0 0.0  0.0 0.0 0.0 

42  61.10 91.70 34.20 25.80 0.60  50.9 79.3 90.5  5.3 4.6 3.8 

43  61.10 45.85 68.40 25.80 0.50  55.8 89.3 103.8  6.0 16.7 14.9 

44  0.00 45.85 34.20 0.00 0.55  0.0 0.0 0.0  0.0 0.0 0.0 

45  61.10 45.85 68.40 51.60 0.55  0.0 0.0 0.0  0.0 0.0 0.0 

46  122.20 0.00 34.20 25.80 0.55  65.1 84.7 109.0  2.3 14.6 3.3 

Opt.  122.18 22.23 43.53 30.23 0.5  70.2 100.2 106.4  8.0 6.9 12.3 
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