
 

 

  
 
Abstract—An application framework provides a reusable design 

and implementation for a family of software systems. Application 
developers extend the framework to build their particular 
applications using hooks. Hooks are the places identified to show 
how to use and customize the framework. Hooks define the 
Framework Interface Classes (FICs) and their possible specifications, 
which helps in building reusable test cases for the implementations of 
these classes. This paper introduces a novel technique called all 
paths-state to generate state-based test cases to test the FICs at class 
level. The technique is experimentally evaluated. The empirical 
evaluation shows that all paths-state technique produces test cases 
with a high degree of coverage for the specifications of the 
implemented FICs comparing to test cases generated using round-trip 
path and all-transition techniques. 
 

Keywords—Hooks, object-oriented framework, framework 
interface classes (FICs), specification-based testing, test case 
generation. 

I. INTRODUCTION 
N application framework provides a reusable design and 
implementation for a family of software systems [1]. It 

contains a collection of reusable concrete and abstract classes. 
The framework design provides the context in which the 
classes are used. The framework itself is not complete. Users 
of the framework complete or extend the framework to build 
their particular applications. Places at which users can add 
their own classes are called hooks [2,3,4]. Frameworks are 
classified according to their customization method into two 
categories [5]: white box and black box. In white box 
frameworks, the functionality is extended or customized by 
subclassing some existing framework classes. In the black box 
frameworks, compositions and existing components are used 
without inheritance. Gray-box frameworks contain the 
characteristics of both black and white-box frameworks. 
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To build an application using a framework, application 

developers create two types of classes: (1) classes that use the 
framework classes and (2) classes that do not. Classes that use 
the framework classes are called Framework Interface Classes 
(FICs) because they act as interfaces between the framework 
classes and the second type of the classes created by 
application developers. Instances of FICs are called 
framework interface objects. Fig. 1 shows the relation 
between the framework classes, the hooks, and the FICs. FICs 
use the framework classes in two ways: either by sub-classing 
them (i.e., when using white box frameworks) or by using 
them without inheritance (i.e., when using black box 
frameworks). In this paper, the focus is in testing FICs that 
use framework classes without inheritance. Hooks define how 
to use the framework, and therefore, they define the FICs and 
specify the pre-conditions and post-conditions of the FIC 
methods. Synthesizing the FIC state-based model from the 
pre-conditions and post-conditions of the FIC methods is 
detailed in [6]. 

 

 
 

Fig. 1 Framework interface classes 
 
 

Application developers may use all FICs or some of them 
according to the application requirements. When application 
developers use FICs to implement their applications, they deal 
with the specification of the FICs introduced by the hooks in 
three ways: (1) use them as defined, (2) add new 
specifications for the added behaviors to meet the application 
requirements, and (3) ignore specifications for the behaviors 
that are unnecessary in implementing the application 
requirements. The FIC specifications can be represented using 
a State Transition Diagram (STD) or an UML statechart. 

Fig. 2 shows the STD representation of a NewAccount 
banking framework interface object specification introduced 
by the framework hooks. The STD contains two special states: 
alpha and omega to represent the states of the object before 
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being constructed and after being destructed. Moreover, the 
STD contains the Open, Overdrawn, Inactive, and Frozen 
states to model the states of the object. A banking system 
developer may choose to implement the specification shown 
in Fig 2 as defined. Moreover, the developer may choose to 
add, for example, transitions between Overdrawn and Frozen 
states to match the requirement of a banking system. Finally, 
the application developer may choose to ignore, for example, 
the transition originated from the Open state and ended at the 
Inactive state. This implies that an account can never go 
directly from the Open state to the Inactive state without going 
though the Frozen state first. 

 

 
Fig. 2 The STD of the NewAccount object defined in the banking 

framework hooks 
 

Testing techniques for deriving test cases starting from the 
software specification only are called specification-based 
testing techniques. Instead of applying such techniques to 
produce test cases to test the FICs every time a framework 
application is developed, we can apply them once to build 
reusable test cases when the framework is developed and the 
hooks that specify the FICs behaviors are described. The test 
cases that are generated at this stage are called baseline test 
cases. When developing the framework application the 
developer can reuse some of the baseline test cases and write 
new test cases only for the added behaviors instead of writing 
all test cases from scratch. 

As a result, two main problems have to be tackled: (1) 
building effective baseline test cases in terms of reusability 
and fault coverage, and (2) introducing an efficient way to use 
the baseline test cases. Although we are studying both 
problems, this paper focuses on just the first problem. The 
drawbacks of using the existing testing techniques are studied 
and a novel test case generator technique that eliminates the 
drawbacks is introduced. Finally, an empirical study is 
reported to show the relative effectiveness of the test cases 
generated using the proposed technique in covering the 
specifications of the implemented FICs. 

The paper is organized as follows. Section II discusses the 
related work. In Section III, the proposed test case generator 
technique, all paths-state, is described. An empirical 

evaluation is reported in Section IV. Finally, Section V 
provides conclusion and discussion of future work. 

II. RELATED WORK 
In object-oriented testing, each class has to be tested 

individually. Class testing is a unit testing step with respect to 
application testing and the first level of integration testing. At 
class testing level, the method responsibilities, intraclass 
interactions, and superclass/subclass interactions are 
considered [7]. Research in generating test cases to test an 
implementation at the class level can be divided into two 
broad approaches: (1) generating test cases from the source 
code to achieve a given level of statement, branch, or path 
coverage, and (2) generating test cases from the formal 
specification of the implementation. Testing techniques that 
follow the former approach are called implementation-based 
testing techniques (also sometimes referred to as white-box 
testing techniques), while testing techniques that follow the 
latter approach are called specification-based testing 
techniques (also sometimes referred to as black-box testing 
techniques).  

The specification of a class behavior can be expressed using 
state-based models such as finite state machines and UML 
statecharts [7]. In this case, a state is a set of instance variable 
value combinations of the class object. A transition is an 
allowable two-state sequence caused by an event. An event is 
a method call. Each transition may be associated with (1) an 
event, (2) a set of predicates, and (3) a set of expected actions. 
The UML syntax for a transition is: 
event-name argument-list [guard predicate]/action-expression 

There are several state-based specification coverage criteria 
proposed in the literature such as: 
1. All-transition coverage. In all-transitions coverage, each 
transition is covered at least once in some test case. Therefore, 
to test a transition, the test case requires that the object under 
test be in the accepting state of the transition. The technique 
does not put any constraints on how to reach the accepting 
state. Chow [8] introduced the all-transition coverage 
technique for finite state machines and Offut et al. [9] adapted 
the technique for UML statecharts and compared it 
experimentally with other specification coverage techniques. 
Bogdanov et al. [10] used the all-transitions coverage 
technique to derive test sequences in the presence of 
hierarchical statecharts.  
2. Transition-pair coverage. In transition-pair coverage, it is 
required to cover each pair of adjacent transitions at least once 
in some test case [8,9,11]. Therefore, the transition-pair 
coverage subsumes the all-transitions coverage. 
3. Full predicate coverage. In full predicate coverage, it is 
required to cover each clause in each predicate on every 
transition, if the clause independently affects the value of the 
predicate [9,11]. Offut et al. [9] showed experimentally that 
the full predicate coverage is more effective than the 
transition-pair coverage in terms of fault coverage. Abdurazik 
et al. [11] compared experimentally the transition-pair 
coverage and the full predicate coverage. The comparison 
results showed that transition-pair tests offer something 
different from full predicate tests. Moreover, the comparison 
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results showed that the test set size of the transition-pair 
coverage technique is larger than the test set size of the full 
predicate coverage technique. This means that applying the 
transition-pair coverage technique costs more than applying 
the full predicate coverage technique.  
4. Round-trip path coverage. In round-trip path coverage, 
transition sequences that start and end with the same state and 
simple paths from alpha to omega state are covered. A simple 
path includes only an iteration of a loop, if a loop exists in 
some sequence. The round-trip path coverage guarantees that 
each transition in the model is covered at least once and, 
therefore, it subsumes the all-transitions coverage. The round-
trip path strategy was proposed originally by Chow [8] and 
was denoted as W-method. Binder [7] adapted the strategy to 
UML statecharts and called it round-trip path testing. Antoniol 
et al. [12] showed experimentally that the round-trip path 
testing strategy is reasonably effective at detecting faults. Kim 
et al. [13] used a technique similar to the round-trip path 
strategy to derive testing trees for testing control and data flow 
through states. 

FICs are not framework classes. They are not implemented 
unless an application developer uses the framework hooks to 
implement them at the application development stage. 
However, since the framework hooks introduce the 
specifications of the FICs, the test cases that can be used to 
test the FICs at the application testing stage can be produced 
once when the hooks are described and applied each time the 
FICs are used to develop an application. When any of the 
existing coverage techniques, except the transition-pair 
coverage, is applied to generate baseline test cases for FICs, 
only one transition sequence is required to cover a transition. 
For the example STD given in Fig. 2, in the all-transitions 
technique, to cover the transition labeled 15, we can follow 
the path that has the sequence of transitions (1,20,15) and we 
do not have to worry about any other paths such as 
(1,12,21,15). In the transition-pair coverage, some but not all 
transition sequences are used to cover a transition. For 
example, to cover the transition-pair (15,7), we can follow the 
path that has the sequence of transitions (1,20,15,7) and we do 
not have to worry about any other paths such as 
(1,12,21,15,7). The sequences of transitions are used to derive 
the required test cases. 

The application developer can decide to ignore some of the 
specifications for the FIC behaviors because they are 
unnecessary in implementing the application. Therefore, any 
baseline test case derived from a sequence of transitions that 
includes an unimplemented transition is considered broken 
and cannot be used as-is. Consequently, the application tester 
has to build new test cases or modify some baseline test cases 
to test the implemented transitions that were supposed to be 
tested using the broken baseline test cases.  

For example, when the round-trip path strategy is used to 
derive test cases for the NewAccount FIC (the STD is shown 
in Fig. 2), the tree shown in Fig. 3 is constructed. Each path 
from the root node to a leaf node is used to build a test case. 
Since there are 16 such paths, 16 test cases are built. If the 
application developer chooses not to implement the transition 
originating from the Open state and ending at the Inactive 
state, the test cases built using the round-trip paths that 

include the transition are considered broken, and therefore, 
they cannot be used as-is. This results in breaking the test 
cases built from the paths that include the transition sequences 
labeled as (1,20,13), (1,20,15), (1,20,18), and (1,20,4). Note 
that the outgoing transitions from the Inactive state may be 
implemented in the application, but none of the non-broken 
test cases, built using the round-trip path strategy, can test 
them.  

 

 
Fig. 3 Round-trip path tree of the STD example shown in Fig. 2 

 
 

This introduces the need for a test case generation 
technique that considers all sequences of transitions which can 
reach each state defined in the specification. A sequence of 
transitions forms a path to a state. To solve this problem, we 
introduce a new coverage technique that ensures the coverage 
of all simple paths to each state in the state-transition model. 
The technique is called all paths-state. 

 

III. ALL PATHS-STATE COVERAGE CRITERION 
In the all paths-state technique, we construct a set of test 

cases T from a specification graph SG (e.g., UML statechart 
or STD of the FIC under test). T covers all simple paths to 
each state in the SG. A simple path includes only one iteration 
of a loop, if a loop exists in some sequence. Fig. 4 provides a 
simple visualization of the idea. The coverage criterion of the 
technique can be written precisely as follows: 
For each state in the SG, T contains tests that traverse all 
simple transition sequences to the state. 
 

The set of paths that satisfy the criterion can be shown in a 
tree. The procedure shown in Fig. 5 describes how to 
construct the tree. The procedure starts from the alpha state of 
the SG. In the process, whenever a state is reached the 
procedure traverses all the outgoing transitions from the state. 
The process terminates when each root-leaf tree path 
terminates at the omega state or a state already encountered on 
the path. 
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Fig. 4 All paths-state technique idea 
 

The set of paths that satisfy the criterion can be shown in a 
tree. The procedure shown in Fig. 5 describes how to 
construct the tree. The procedure starts from the alpha state of 
the SG. In the process, whenever a state is reached the 
procedure traverses all the outgoing transitions from the state. 
The process terminates when each root-leaf tree path 
terminates at the omega state or a state already encountered on 
the path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Produce an all paths-state tree from a state model 
 

Fig. 6 shows the all paths-state tree of the STD of Fig 2. In 
the STD, if any transition is deleted, reachable states from the 
deleted transition can still be reached by some other paths of 
the tree. For example, if all paths-state technique is used to 
build the test cases and the application developer chooses not 
to implement the transition originated from the Open state and 
ended at the Inactive state, the test cases that include the 
transition are considered broken, and therefore, they cannot be 
used as-is. This results in breaking the test cases built from the 

paths that include the transition sequences labeled as 
(1,20,13,21), (1,20,13,14), (1,20,13,19), (1,20,13,5), 
(1,20,15), (1,20,18), and (1,20,4). Note that the remaining test 
cases still cover all outgoing transitions from the Inactive 
state, and therefore, can be deployed. 

Test cases are generated by traversing each path in the tree 
from the tree root to a leaf node. The number of generated test 
cases is equal to the number of leaf nodes in the tree. The 
number of leaf nodes in the tree shown in Fig. 6 is 22, and 
therefore, the number of generated test cases is 22. 

 

 
Fig. 6 All paths-state tree, constructed using the procedure shown in 

Fig. 5, of the STD example shown in Fig. 2 
 
 

Property 1: In terms of path coverage, the all paths-state 
coverage subsumes the round-trip path coverage. 
Rationale: The coverage of each of the all paths-state and 
round-trip path strategies is represented by a tree. The only 
difference between the construction procedures of the two 
types of trees is in the stopping criterion. In the round-trip 
path strategy, each path in the tree ends in either a node that 
represents the omega state in the model or a node that 
represents a state in the model already represented elsewhere 
in the tree. In the all-paths-state strategy, each path in the tree 
ends by either a node that represents the omega state in the 
model or a node n that represents a state in the model already 
represented elsewhere in the path that contains node n. As a 
result, the stopping criterion imposed by the all paths-state 
strategy is more constrained than the stopping criterion 
imposed by the round-trip path strategy. Consequently, each 
path in the round-trip path tree is identical to a sub-path in the 
all paths-state tree. Therefore, the all paths-state coverage 
subsumes the round-trip path coverage in terms of path 
coverage. Fig. 7 shows the path coverage hierarchy for three 
different strategies. The all paths-state coverage technique 
covers the same or more paths than the round-trip path 
coverage technique. The all paths-state coverage technique 

Input: A class state-based testing model 
Output: The all paths-state tree of the class model. 
Procedure: 
1. Draw the root node of the tree to represent the alpha state.  
2. Examine the state that corresponds to each non-terminal 

leaf node in the tree and each outgoing transition from the 
state. At least one new edge will be drawn for each 
transition. Each new edge and node represents an event and 
resultant state reached by an outgoing transition. 
a. If the transition is unguarded, the transition guard is a 

simple predicate, or the transition guard is a complex 
predicate composed of only AND operators draw one 
new edge. 

b. If the transition guard is a complex predicate using one 
or more OR operators, draw a new edge for each truth 
value combination that is sufficient to make the guard 
TRUE. 

3. For each edge and node drawn in Step 2: 
a. Record the corresponding transition event, guard, and 

action on the new edge. 
b. If the state that the new node represents has already been 

encountered on the tree path that contains the new node 
or is the omega state, mark this node as a terminal – no 
more transitions are drawn from this node. 
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covers the same or less paths than the exhaustive all paths 
coverage criterion that covers all possible paths in a state 
machine.      

IV. EMPIRICAL EVALUATION  
In this case study, we evaluate experimentally the all paths-

state technique in comparison to the round-trip path and the 
all-transitions techniques. The comparison is performed in 
terms of the number of transitions covered in the updated state 
model after deleting transitions. Two WaveFront Pattern 
frameworks derived using CO2P3S parallel programming 
system [14] are considered in this study. The hooks of each 
framework identify two FICs and their specifications. One of 
the FICs is very simple (i.e., trivial), and therefore, it is not 
considered in this study. The characteristics of the STD of the 
other one, for each framework, are shown in the first row of 
Table I. 

 
Fig. 7 Path coverage hierarchy 

 
The case study considered three test case coverage 

techniques: round-trip path, all transitions, and all paths-state. 
The trees corresponding to the round-trip path technique and 
all paths-state technique are constructed from the STD of the 
considered FICs. For each of the two considered STDs, there 
are four possible different round-trip path trees that can be 
constructed from them using the round-trip path tree 
production procedure [7]. However, they all have the same 
number of states, nodes, and number of generated test cases 
and these numbers are shown in Table I. The all-transitions 
technique generates a test case for each outgoing transition 
from a state in the STD. Since some states can be reached 
using different paths, we have to select one path and write the 
corresponding test case. In our study, we followed the 
algorithm provided in [9] to find a path to a state. If there is 
more than one path to a state, the algorithm picks one of the 
paths. The selection of the path affects greatly the results of 
the case study. Therefore, in our analysis we considered each 
path alone, obtained the required results, and computed the 
average over all of the considered paths. For the transitions of 
the FIC in the first and second framework, 136 and 140 paths 
were considered, respectively. Finally, there is only one 
possible all paths-state tree for each STD and its 
characteristics are shown in the last row of Table I. 

The study considered an application for each framework. 
The applications were not built for the purpose of the study. 
STDs were drawn for the implemented FICs in the 
applications. The names of the implemented FICs in the first 

and second applications are SkylineMatrixInterface and 
MatrixBlock, respectively. For each of the two implemented 
FICs, three transitions of the original STDs were removed 
because they are not required in modeling the specifications of 
the implemented FICs. This results in having 34 and 32 reused 
transitions in the STDs that specify the behaviors of the 
SkylineMatrixInterface and MatrixBlock objects, respectively. 
The effect of the removed transitions on the baseline test cases 
was analyzed for each of the three testing techniques. In the 
analysis, all broken baseline test cases were discarded. Finally, 
we counted the number of STD transitions of the 
SkylineMatrixInterface and MatrixBlock objects that are still 
covered using the non-broken test cases. Since there are four 
different possible round-trip path trees for each of the STDs, 
we have considered each round-trip path tree alone and, then, 
we have computed the average number of transitions covered 
by the non-broken test cases. We did the same analysis for the 
all-transitions test cases, because there are different possible 
paths to each state. 
 

TABLE I 
HIGH LEVEL DESCRIPTIONS OF THE USED GRAPHS 

   
 

Fig. 8 shows the average number of the transitions of the 
implemented FICs covered by the non-broken test cases when 
each of the three techniques is used to produce test cases for 
SkylineMatrixInterface and MatrixBlock classes. For example, 
the all paths-state coverage technique was used to generate 
test cases for the considered FIC of Framework 1. Table I 
shows that 95 test cases were required. The implementation of 
the FIC, i.e., SkylineMatrixInterface class, reused 34 out of 37 
transitions introduced by the hooks. The test cases that cover 
the non-reused transitions (i.e., the transitions not required in 
modeling the specifications of the implemented FICs) were 
discarded because they cannot be used as-is. Fig. 8 shows that 
the remaining test cases were able to cover 34 reused 
transitions (i.e., all the reused transitions). 

 FIC of Framework 1 FIC of Framework 2

Statechart 
  No. of states 
  No. of transitions  

 
7 

37 

 
7 

35 

Round-trip path tree
  No. of nodes 
  No. of edges 
  No. of test cases 

 
38 
37 
33 

 
36 
35 
33 

All transitions 
  No. of test cases 

 
37 

 
35 

All paths-state tree 
  No. of nodes 
  No. of edges 
  No. of test cases 

 
116 
115 
95 

 
151 
150 
124 
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Fig. 8 Coverage comparison results 
 

The results showed that the all paths-state technique 
produces test cases that are more effective than the ones 
produced using the all-transitions and round-trip path 
techniques in covering the reused transitions in the 
specification models of the implemented FICs. All paths-state 
coverage subsumes round-trip path coverage, which means 
that the all paths-state coverage has at least the same fault 
coverage effectiveness as the round-trip path one. In [16], 
round-trip path strategy was shown to be reasonably effective 
in terms of fault coverage. 

V. CONCLUSIONS AND FUTURE WORK  
This paper helps to address the overall goal of providing a 

framework with effective reusable test cases. The application 
developer can not only use the framework design and code to 
build the application, but can also use the provided test cases 
to test part of the new application code. Part of the application 
code is implemented by following the hook descriptions. 
Hook descriptions define how to construct the FICs and 
introduce also the specifications of the FICs. As a result, the 
framework developer can produce specification-based test 
cases for the FICs that the application developer can use to 
test the implementation of the FICs.  

The problem with this approach is that the application 
developer may implement part of the specification and decide 
that the rest of the specification is not required to be 
implemented and used in the application. This may affect the 
baseline test cases generated from the full specification 
provided through the hook descriptions. This paper addresses 
this problem by introducing a specification coverage criterion 
that produces test cases for FICs that are sufficient to cover all 
implemented transitions in the specification models of the 
FICs under test. The introduced coverage criterion is called all 
paths-state and it covers all paths to each state in the 
specification model. The criterion is experimentally evaluated. 
The empirical evaluation shows that all paths-state technique 
produces test cases with high coverage degree for the 
specifications of the implemented FICs comparing to test 
cases generated using round-trip path and all-transition 
techniques. A tool called FIST2 is developed to support the 
introduced technique. The tool reads a STD described in a 

tabular form, applies the all path-state coverage technique, and 
generated Java coded test cases.     

Using all paths-state coverage technique may result in 
covering some transitions more than once in different paths. 
This might result in building redundant test cases. A 
redundant test case is a test case for transitions covered by one 
or more other test cases and no more. Redundant test cases 
may still exist after discarding broken test cases. Thus, it is 
required to investigate whether the effort in discovering the 
redundant test cases is less than the effort of actually applying 
the redundant test cases. If yes, it is required to define 
formally the nature of redundant test cases and develop an 
efficient way to detect and remove them. The test case 
generation technique introduced in this paper is limited to 
classes that have sequential behaviors. Further research is 
required to show how to generate test cases for classes that 
have concurrent behaviors. 
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