

Abstract—An application framework provides a reusable design

and implementation for a family of software systems. Application
developers extend the framework to build their particular
applications using hooks. Hooks are the places identified to show
how to use and customize the framework. Hooks define the
Framework Interface Classes (FICs) and their possible specifications,
which helps in building reusable test cases for the implementations of
these classes. This paper introduces a novel technique called all
paths-state to generate state-based test cases to test the FICs at class
level. The technique is experimentally evaluated. The empirical
evaluation shows that all paths-state technique produces test cases
with a high degree of coverage for the specifications of the
implemented FICs comparing to test cases generated using round-trip
path and all-transition techniques.

Keywords—Hooks, object-oriented framework, framework
interface classes (FICs), specification-based testing, test case
generation.

I. INTRODUCTION
N application framework provides a reusable design and
implementation for a family of software systems [1]. It

contains a collection of reusable concrete and abstract classes.
The framework design provides the context in which the
classes are used. The framework itself is not complete. Users
of the framework complete or extend the framework to build
their particular applications. Places at which users can add
their own classes are called hooks [2,3,4]. Frameworks are
classified according to their customization method into two
categories [5]: white box and black box. In white box
frameworks, the functionality is extended or customized by
subclassing some existing framework classes. In the black box
frameworks, compositions and existing components are used
without inheritance. Gray-box frameworks contain the
characteristics of both black and white-box frameworks.

Jehad Al Dallal is with Department of Information Sciences, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

Paul Sorenson is with Department of Computing Science, University of
Alberta, Edmonton, AB. T6G 2H1, Canada (e-mail: sorenson@cs.ualberta.ca).

To build an application using a framework, application

developers create two types of classes: (1) classes that use the
framework classes and (2) classes that do not. Classes that use
the framework classes are called Framework Interface Classes
(FICs) because they act as interfaces between the framework
classes and the second type of the classes created by
application developers. Instances of FICs are called
framework interface objects. Fig. 1 shows the relation
between the framework classes, the hooks, and the FICs. FICs
use the framework classes in two ways: either by sub-classing
them (i.e., when using white box frameworks) or by using
them without inheritance (i.e., when using black box
frameworks). In this paper, the focus is in testing FICs that
use framework classes without inheritance. Hooks define how
to use the framework, and therefore, they define the FICs and
specify the pre-conditions and post-conditions of the FIC
methods. Synthesizing the FIC state-based model from the
pre-conditions and post-conditions of the FIC methods is
detailed in [6].

Fig. 1 Framework interface classes

Application developers may use all FICs or some of them
according to the application requirements. When application
developers use FICs to implement their applications, they deal
with the specification of the FICs introduced by the hooks in
three ways: (1) use them as defined, (2) add new
specifications for the added behaviors to meet the application
requirements, and (3) ignore specifications for the behaviors
that are unnecessary in implementing the application
requirements. The FIC specifications can be represented using
a State Transition Diagram (STD) or an UML statechart.

Fig. 2 shows the STD representation of a NewAccount
banking framework interface object specification introduced
by the framework hooks. The STD contains two special states:
alpha and omega to represent the states of the object before

Generating Class-Based Test Cases for Interface
Classes of Object-Oriented Black Box

Frameworks

Jehad Al Dallal, and Paul Sorenson

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:4, 2008

1107International Scholarly and Scientific Research & Innovation 2(4) 2008 scholar.waset.org/1307-6892/12038

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
w

as
et

.o
rg

/P
ub

lic
at

io
n/

12
03

8

http://waset.org/publication/Generating-Class-Based-Test-Cases-for-Interface-Classes-of-Object-Oriented-Black-Box-Frameworks/12038
http://scholar.waset.org/1307-6892/12038

being constructed and after being destructed. Moreover, the
STD contains the Open, Overdrawn, Inactive, and Frozen
states to model the states of the object. A banking system
developer may choose to implement the specification shown
in Fig 2 as defined. Moreover, the developer may choose to
add, for example, transitions between Overdrawn and Frozen
states to match the requirement of a banking system. Finally,
the application developer may choose to ignore, for example,
the transition originated from the Open state and ended at the
Inactive state. This implies that an account can never go
directly from the Open state to the Inactive state without going
though the Frozen state first.

Fig. 2 The STD of the NewAccount object defined in the banking

framework hooks

Testing techniques for deriving test cases starting from the
software specification only are called specification-based
testing techniques. Instead of applying such techniques to
produce test cases to test the FICs every time a framework
application is developed, we can apply them once to build
reusable test cases when the framework is developed and the
hooks that specify the FICs behaviors are described. The test
cases that are generated at this stage are called baseline test
cases. When developing the framework application the
developer can reuse some of the baseline test cases and write
new test cases only for the added behaviors instead of writing
all test cases from scratch.

As a result, two main problems have to be tackled: (1)
building effective baseline test cases in terms of reusability
and fault coverage, and (2) introducing an efficient way to use
the baseline test cases. Although we are studying both
problems, this paper focuses on just the first problem. The
drawbacks of using the existing testing techniques are studied
and a novel test case generator technique that eliminates the
drawbacks is introduced. Finally, an empirical study is
reported to show the relative effectiveness of the test cases
generated using the proposed technique in covering the
specifications of the implemented FICs.

The paper is organized as follows. Section II discusses the
related work. In Section III, the proposed test case generator
technique, all paths-state, is described. An empirical

evaluation is reported in Section IV. Finally, Section V
provides conclusion and discussion of future work.

II. RELATED WORK
In object-oriented testing, each class has to be tested

individually. Class testing is a unit testing step with respect to
application testing and the first level of integration testing. At
class testing level, the method responsibilities, intraclass
interactions, and superclass/subclass interactions are
considered [7]. Research in generating test cases to test an
implementation at the class level can be divided into two
broad approaches: (1) generating test cases from the source
code to achieve a given level of statement, branch, or path
coverage, and (2) generating test cases from the formal
specification of the implementation. Testing techniques that
follow the former approach are called implementation-based
testing techniques (also sometimes referred to as white-box
testing techniques), while testing techniques that follow the
latter approach are called specification-based testing
techniques (also sometimes referred to as black-box testing
techniques).

The specification of a class behavior can be expressed using
state-based models such as finite state machines and UML
statecharts [7]. In this case, a state is a set of instance variable
value combinations of the class object. A transition is an
allowable two-state sequence caused by an event. An event is
a method call. Each transition may be associated with (1) an
event, (2) a set of predicates, and (3) a set of expected actions.
The UML syntax for a transition is:
event-name argument-list [guard predicate]/action-expression

There are several state-based specification coverage criteria
proposed in the literature such as:
1. All-transition coverage. In all-transitions coverage, each
transition is covered at least once in some test case. Therefore,
to test a transition, the test case requires that the object under
test be in the accepting state of the transition. The technique
does not put any constraints on how to reach the accepting
state. Chow [8] introduced the all-transition coverage
technique for finite state machines and Offut et al. [9] adapted
the technique for UML statecharts and compared it
experimentally with other specification coverage techniques.
Bogdanov et al. [10] used the all-transitions coverage
technique to derive test sequences in the presence of
hierarchical statecharts.
2. Transition-pair coverage. In transition-pair coverage, it is
required to cover each pair of adjacent transitions at least once
in some test case [8,9,11]. Therefore, the transition-pair
coverage subsumes the all-transitions coverage.
3. Full predicate coverage. In full predicate coverage, it is
required to cover each clause in each predicate on every
transition, if the clause independently affects the value of the
predicate [9,11]. Offut et al. [9] showed experimentally that
the full predicate coverage is more effective than the
transition-pair coverage in terms of fault coverage. Abdurazik
et al. [11] compared experimentally the transition-pair
coverage and the full predicate coverage. The comparison
results showed that transition-pair tests offer something
different from full predicate tests. Moreover, the comparison

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:4, 2008

1108International Scholarly and Scientific Research & Innovation 2(4) 2008 scholar.waset.org/1307-6892/12038

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
w

as
et

.o
rg

/P
ub

lic
at

io
n/

12
03

8

http://waset.org/publication/Generating-Class-Based-Test-Cases-for-Interface-Classes-of-Object-Oriented-Black-Box-Frameworks/12038
http://scholar.waset.org/1307-6892/12038

results showed that the test set size of the transition-pair
coverage technique is larger than the test set size of the full
predicate coverage technique. This means that applying the
transition-pair coverage technique costs more than applying
the full predicate coverage technique.
4. Round-trip path coverage. In round-trip path coverage,
transition sequences that start and end with the same state and
simple paths from alpha to omega state are covered. A simple
path includes only an iteration of a loop, if a loop exists in
some sequence. The round-trip path coverage guarantees that
each transition in the model is covered at least once and,
therefore, it subsumes the all-transitions coverage. The round-
trip path strategy was proposed originally by Chow [8] and
was denoted as W-method. Binder [7] adapted the strategy to
UML statecharts and called it round-trip path testing. Antoniol
et al. [12] showed experimentally that the round-trip path
testing strategy is reasonably effective at detecting faults. Kim
et al. [13] used a technique similar to the round-trip path
strategy to derive testing trees for testing control and data flow
through states.

FICs are not framework classes. They are not implemented
unless an application developer uses the framework hooks to
implement them at the application development stage.
However, since the framework hooks introduce the
specifications of the FICs, the test cases that can be used to
test the FICs at the application testing stage can be produced
once when the hooks are described and applied each time the
FICs are used to develop an application. When any of the
existing coverage techniques, except the transition-pair
coverage, is applied to generate baseline test cases for FICs,
only one transition sequence is required to cover a transition.
For the example STD given in Fig. 2, in the all-transitions
technique, to cover the transition labeled 15, we can follow
the path that has the sequence of transitions (1,20,15) and we
do not have to worry about any other paths such as
(1,12,21,15). In the transition-pair coverage, some but not all
transition sequences are used to cover a transition. For
example, to cover the transition-pair (15,7), we can follow the
path that has the sequence of transitions (1,20,15,7) and we do
not have to worry about any other paths such as
(1,12,21,15,7). The sequences of transitions are used to derive
the required test cases.

The application developer can decide to ignore some of the
specifications for the FIC behaviors because they are
unnecessary in implementing the application. Therefore, any
baseline test case derived from a sequence of transitions that
includes an unimplemented transition is considered broken
and cannot be used as-is. Consequently, the application tester
has to build new test cases or modify some baseline test cases
to test the implemented transitions that were supposed to be
tested using the broken baseline test cases.

For example, when the round-trip path strategy is used to
derive test cases for the NewAccount FIC (the STD is shown
in Fig. 2), the tree shown in Fig. 3 is constructed. Each path
from the root node to a leaf node is used to build a test case.
Since there are 16 such paths, 16 test cases are built. If the
application developer chooses not to implement the transition
originating from the Open state and ending at the Inactive
state, the test cases built using the round-trip paths that

include the transition are considered broken, and therefore,
they cannot be used as-is. This results in breaking the test
cases built from the paths that include the transition sequences
labeled as (1,20,13), (1,20,15), (1,20,18), and (1,20,4). Note
that the outgoing transitions from the Inactive state may be
implemented in the application, but none of the non-broken
test cases, built using the round-trip path strategy, can test
them.

Fig. 3 Round-trip path tree of the STD example shown in Fig. 2

This introduces the need for a test case generation
technique that considers all sequences of transitions which can
reach each state defined in the specification. A sequence of
transitions forms a path to a state. To solve this problem, we
introduce a new coverage technique that ensures the coverage
of all simple paths to each state in the state-transition model.
The technique is called all paths-state.

III. ALL PATHS-STATE COVERAGE CRITERION
In the all paths-state technique, we construct a set of test

cases T from a specification graph SG (e.g., UML statechart
or STD of the FIC under test). T covers all simple paths to
each state in the SG. A simple path includes only one iteration
of a loop, if a loop exists in some sequence. Fig. 4 provides a
simple visualization of the idea. The coverage criterion of the
technique can be written precisely as follows:
For each state in the SG, T contains tests that traverse all
simple transition sequences to the state.

The set of paths that satisfy the criterion can be shown in a
tree. The procedure shown in Fig. 5 describes how to
construct the tree. The procedure starts from the alpha state of
the SG. In the process, whenever a state is reached the
procedure traverses all the outgoing transitions from the state.
The process terminates when each root-leaf tree path
terminates at the omega state or a state already encountered on
the path.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:4, 2008

1109International Scholarly and Scientific Research & Innovation 2(4) 2008 scholar.waset.org/1307-6892/12038

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
w

as
et

.o
rg

/P
ub

lic
at

io
n/

12
03

8

http://waset.org/publication/Generating-Class-Based-Test-Cases-for-Interface-Classes-of-Object-Oriented-Black-Box-Frameworks/12038
http://scholar.waset.org/1307-6892/12038

Fig. 4 All paths-state technique idea

The set of paths that satisfy the criterion can be shown in a
tree. The procedure shown in Fig. 5 describes how to
construct the tree. The procedure starts from the alpha state of
the SG. In the process, whenever a state is reached the
procedure traverses all the outgoing transitions from the state.
The process terminates when each root-leaf tree path
terminates at the omega state or a state already encountered on
the path.

Fig. 5 Produce an all paths-state tree from a state model

Fig. 6 shows the all paths-state tree of the STD of Fig 2. In
the STD, if any transition is deleted, reachable states from the
deleted transition can still be reached by some other paths of
the tree. For example, if all paths-state technique is used to
build the test cases and the application developer chooses not
to implement the transition originated from the Open state and
ended at the Inactive state, the test cases that include the
transition are considered broken, and therefore, they cannot be
used as-is. This results in breaking the test cases built from the

paths that include the transition sequences labeled as
(1,20,13,21), (1,20,13,14), (1,20,13,19), (1,20,13,5),
(1,20,15), (1,20,18), and (1,20,4). Note that the remaining test
cases still cover all outgoing transitions from the Inactive
state, and therefore, can be deployed.

Test cases are generated by traversing each path in the tree
from the tree root to a leaf node. The number of generated test
cases is equal to the number of leaf nodes in the tree. The
number of leaf nodes in the tree shown in Fig. 6 is 22, and
therefore, the number of generated test cases is 22.

Fig. 6 All paths-state tree, constructed using the procedure shown in

Fig. 5, of the STD example shown in Fig. 2

Property 1: In terms of path coverage, the all paths-state
coverage subsumes the round-trip path coverage.
Rationale: The coverage of each of the all paths-state and
round-trip path strategies is represented by a tree. The only
difference between the construction procedures of the two
types of trees is in the stopping criterion. In the round-trip
path strategy, each path in the tree ends in either a node that
represents the omega state in the model or a node that
represents a state in the model already represented elsewhere
in the tree. In the all-paths-state strategy, each path in the tree
ends by either a node that represents the omega state in the
model or a node n that represents a state in the model already
represented elsewhere in the path that contains node n. As a
result, the stopping criterion imposed by the all paths-state
strategy is more constrained than the stopping criterion
imposed by the round-trip path strategy. Consequently, each
path in the round-trip path tree is identical to a sub-path in the
all paths-state tree. Therefore, the all paths-state coverage
subsumes the round-trip path coverage in terms of path
coverage. Fig. 7 shows the path coverage hierarchy for three
different strategies. The all paths-state coverage technique
covers the same or more paths than the round-trip path
coverage technique. The all paths-state coverage technique

Input: A class state-based testing model
Output: The all paths-state tree of the class model.
Procedure:
1. Draw the root node of the tree to represent the alpha state.
2. Examine the state that corresponds to each non-terminal

leaf node in the tree and each outgoing transition from the
state. At least one new edge will be drawn for each
transition. Each new edge and node represents an event and
resultant state reached by an outgoing transition.
a. If the transition is unguarded, the transition guard is a

simple predicate, or the transition guard is a complex
predicate composed of only AND operators draw one
new edge.

b. If the transition guard is a complex predicate using one
or more OR operators, draw a new edge for each truth
value combination that is sufficient to make the guard
TRUE.

3. For each edge and node drawn in Step 2:
a. Record the corresponding transition event, guard, and

action on the new edge.
b. If the state that the new node represents has already been

encountered on the tree path that contains the new node
or is the omega state, mark this node as a terminal – no
more transitions are drawn from this node.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:4, 2008

1110International Scholarly and Scientific Research & Innovation 2(4) 2008 scholar.waset.org/1307-6892/12038

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
w

as
et

.o
rg

/P
ub

lic
at

io
n/

12
03

8

http://waset.org/publication/Generating-Class-Based-Test-Cases-for-Interface-Classes-of-Object-Oriented-Black-Box-Frameworks/12038
http://scholar.waset.org/1307-6892/12038

covers the same or less paths than the exhaustive all paths
coverage criterion that covers all possible paths in a state
machine.

IV. EMPIRICAL EVALUATION
In this case study, we evaluate experimentally the all paths-

state technique in comparison to the round-trip path and the
all-transitions techniques. The comparison is performed in
terms of the number of transitions covered in the updated state
model after deleting transitions. Two WaveFront Pattern
frameworks derived using CO2P3S parallel programming
system [14] are considered in this study. The hooks of each
framework identify two FICs and their specifications. One of
the FICs is very simple (i.e., trivial), and therefore, it is not
considered in this study. The characteristics of the STD of the
other one, for each framework, are shown in the first row of
Table I.

Fig. 7 Path coverage hierarchy

The case study considered three test case coverage

techniques: round-trip path, all transitions, and all paths-state.
The trees corresponding to the round-trip path technique and
all paths-state technique are constructed from the STD of the
considered FICs. For each of the two considered STDs, there
are four possible different round-trip path trees that can be
constructed from them using the round-trip path tree
production procedure [7]. However, they all have the same
number of states, nodes, and number of generated test cases
and these numbers are shown in Table I. The all-transitions
technique generates a test case for each outgoing transition
from a state in the STD. Since some states can be reached
using different paths, we have to select one path and write the
corresponding test case. In our study, we followed the
algorithm provided in [9] to find a path to a state. If there is
more than one path to a state, the algorithm picks one of the
paths. The selection of the path affects greatly the results of
the case study. Therefore, in our analysis we considered each
path alone, obtained the required results, and computed the
average over all of the considered paths. For the transitions of
the FIC in the first and second framework, 136 and 140 paths
were considered, respectively. Finally, there is only one
possible all paths-state tree for each STD and its
characteristics are shown in the last row of Table I.

The study considered an application for each framework.
The applications were not built for the purpose of the study.
STDs were drawn for the implemented FICs in the
applications. The names of the implemented FICs in the first

and second applications are SkylineMatrixInterface and
MatrixBlock, respectively. For each of the two implemented
FICs, three transitions of the original STDs were removed
because they are not required in modeling the specifications of
the implemented FICs. This results in having 34 and 32 reused
transitions in the STDs that specify the behaviors of the
SkylineMatrixInterface and MatrixBlock objects, respectively.
The effect of the removed transitions on the baseline test cases
was analyzed for each of the three testing techniques. In the
analysis, all broken baseline test cases were discarded. Finally,
we counted the number of STD transitions of the
SkylineMatrixInterface and MatrixBlock objects that are still
covered using the non-broken test cases. Since there are four
different possible round-trip path trees for each of the STDs,
we have considered each round-trip path tree alone and, then,
we have computed the average number of transitions covered
by the non-broken test cases. We did the same analysis for the
all-transitions test cases, because there are different possible
paths to each state.

TABLE I
HIGH LEVEL DESCRIPTIONS OF THE USED GRAPHS

Fig. 8 shows the average number of the transitions of the
implemented FICs covered by the non-broken test cases when
each of the three techniques is used to produce test cases for
SkylineMatrixInterface and MatrixBlock classes. For example,
the all paths-state coverage technique was used to generate
test cases for the considered FIC of Framework 1. Table I
shows that 95 test cases were required. The implementation of
the FIC, i.e., SkylineMatrixInterface class, reused 34 out of 37
transitions introduced by the hooks. The test cases that cover
the non-reused transitions (i.e., the transitions not required in
modeling the specifications of the implemented FICs) were
discarded because they cannot be used as-is. Fig. 8 shows that
the remaining test cases were able to cover 34 reused
transitions (i.e., all the reused transitions).

 FIC of Framework 1 FIC of Framework 2

Statechart
 No. of states
 No. of transitions

7

37

7

35

Round-trip path tree
 No. of nodes
 No. of edges
 No. of test cases

38
37
33

36
35
33

All transitions
 No. of test cases

37

35

All paths-state tree
 No. of nodes
 No. of edges
 No. of test cases

116
115
95

151
150
124

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:4, 2008

1111International Scholarly and Scientific Research & Innovation 2(4) 2008 scholar.waset.org/1307-6892/12038

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
w

as
et

.o
rg

/P
ub

lic
at

io
n/

12
03

8

http://waset.org/publication/Generating-Class-Based-Test-Cases-for-Interface-Classes-of-Object-Oriented-Black-Box-Frameworks/12038
http://scholar.waset.org/1307-6892/12038

Fig. 8 Coverage comparison results

The results showed that the all paths-state technique
produces test cases that are more effective than the ones
produced using the all-transitions and round-trip path
techniques in covering the reused transitions in the
specification models of the implemented FICs. All paths-state
coverage subsumes round-trip path coverage, which means
that the all paths-state coverage has at least the same fault
coverage effectiveness as the round-trip path one. In [16],
round-trip path strategy was shown to be reasonably effective
in terms of fault coverage.

V. CONCLUSIONS AND FUTURE WORK
This paper helps to address the overall goal of providing a

framework with effective reusable test cases. The application
developer can not only use the framework design and code to
build the application, but can also use the provided test cases
to test part of the new application code. Part of the application
code is implemented by following the hook descriptions.
Hook descriptions define how to construct the FICs and
introduce also the specifications of the FICs. As a result, the
framework developer can produce specification-based test
cases for the FICs that the application developer can use to
test the implementation of the FICs.

The problem with this approach is that the application
developer may implement part of the specification and decide
that the rest of the specification is not required to be
implemented and used in the application. This may affect the
baseline test cases generated from the full specification
provided through the hook descriptions. This paper addresses
this problem by introducing a specification coverage criterion
that produces test cases for FICs that are sufficient to cover all
implemented transitions in the specification models of the
FICs under test. The introduced coverage criterion is called all
paths-state and it covers all paths to each state in the
specification model. The criterion is experimentally evaluated.
The empirical evaluation shows that all paths-state technique
produces test cases with high coverage degree for the
specifications of the implemented FICs comparing to test
cases generated using round-trip path and all-transition
techniques. A tool called FIST2 is developed to support the
introduced technique. The tool reads a STD described in a

tabular form, applies the all path-state coverage technique, and
generated Java coded test cases.

Using all paths-state coverage technique may result in
covering some transitions more than once in different paths.
This might result in building redundant test cases. A
redundant test case is a test case for transitions covered by one
or more other test cases and no more. Redundant test cases
may still exist after discarding broken test cases. Thus, it is
required to investigate whether the effort in discovering the
redundant test cases is less than the effort of actually applying
the redundant test cases. If yes, it is required to define
formally the nature of redundant test cases and develop an
efficient way to detect and remove them. The test case
generation technique introduced in this paper is limited to
classes that have sequential behaviors. Further research is
required to show how to generate test cases for classes that
have concurrent behaviors.

REFERENCES
[1] K. Beck and R, Johnson. Patterns generated architectures, Proc. of

ECOOP 94, 1994, 139-149.
[2] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson. Using Object-

Oriented Frameworks, CRC Handbook of Object Technology, CRC
Press, 1998, 26-1 - 26-22.

[3] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson. Hooking into
Object-Oriented Application Frameworks, Proc. 19th Int'l Conf. on
Software Engineering, Boston, May 1997, 491-501.

[4] G. Froehlich. Hooks: an aid to the reuse of object-oriented frameworks,
Ph.D. Thesis, University of Alberta, Department of Computing Science,
2002.

[5] R. Johnson and B. Foote. Designing reusable classes, Journal of Object-
Oriented Programming, Vol. 2(1), 1988, pp.22-35.

[6] J. Al Dallal and P. Sorenson, Generating State-Based Testing Models for
Object-Oriented Framework Interface Classes, submitted for publication
in Transactions on Engineering, Computing and Technology, 2006.

[7] R. Binder. Testing object-oriented systems, Addison Wesley, 1999.
[8] T. Chow, Testing software design modeled by finite state machines,

IEEE Transactions on Software Engineering, EE-4(3), 1978, 178-187.
[9] J. Offut and A. Abdurazik, Generating tests from UML specifications,

Second International Conference on the Unified Modeling Language
(UML99), Fort Collins, CO, October 1999, 416-429.

[10] K. Bogdanov and M. Holcombe, Statechart testing method for aircraft
control systems, Software Testing, Verification and Reliability, 11(1),
2001, 39-54.

[11] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, Evaluation of three
specification-based testing criteria, Sixth IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS '00), Tokyo,
Japan, September 2000, 179-187.

[12] G. Antoniol, L. Briand, M. Penta, and Y. Labiche, A case Study Using
the Round-Trip Strategy for State-based Class Testing, Carlton
University TR SCE-01-08, revised Jan. 2002.

[13] Y. Kim, H. Hong, D. Bae, and S. Cha, Test cases generation from UML
state diagrams, IEE Proc.-Software, 146(4), 1999, 187-192.

[14] S. McDonald, J. Schaeffer, and D. Szafron. Pattern-based object-
oriented parallel programming. Proceedings of the First International
Scientific Computing in Object-Oriented Parallel Environments
Conference (ISCOPE’97), 1343 of Lecture Notes in Computer Science,
1997, 167-274.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:4, 2008

1112International Scholarly and Scientific Research & Innovation 2(4) 2008 scholar.waset.org/1307-6892/12038

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

Sy
st

em
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
w

as
et

.o
rg

/P
ub

lic
at

io
n/

12
03

8

http://waset.org/publication/Generating-Class-Based-Test-Cases-for-Interface-Classes-of-Object-Oriented-Black-Box-Frameworks/12038
http://scholar.waset.org/1307-6892/12038

