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Abstract
Digital twins in medicine are computational models that represent the health state of
individual patients over time, enabling optimal therapeutics and forecasting patient
prognosis, representing a key technology for personalised care. Many health conditions
involve the immune system as an essential component, and hence, it is crucial to include its
key features across spatial and temporal scales in medical digital twins. The immune
response is complex and heterogeneous across diseases and patients, and its modelling
requires the collective expertise of the international clinical, immunology, and
computational modelling communities. A 2023 three-week workshop on immune digital
twins brought together almost 100 researchers from these communities into a consortium
to promote interdisciplinary collaboration and develop a detailed roadmap for immune
digital twin modelling and application to be pursued over the next two years. This paper
outlines the initial progress on immune digital twins achieved during the workshop and the
environment that enabled effective communication between these three communities.
Future steps include developing a repository of existing computational models related to the
human immune system and developing infrastructure to construct complex disease models,
including immune system components.

Keywords: immune system, immune digital twin, computational model, community effort,
interdisciplinary collaboration.
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Building a sustainable interdisciplinary community of researchers focused on
Immune Digital Twin (IDT) technology
A digital twin (DT) in biomedicine is a virtual representation of a patient, or a patient’s state,
that allows communication and data feedback from the actual patient to the virtual patient
and vice versa. A recent report by the National Academies of Sciences, Engineering and
Medicine in the US specified that in healthcare, this feedback loop might not be through
(semi-)automated interactions but might require a human-in-the-middle (1). This
interpretation aligns with the definition taken by the European Commission in the
development of their Virtual Human Twin (VHT) initiative and the recommendation in the
VHT roadmap (2,3) . While DT approaches in medicine are still in their infancy, a few
biomedical applications close to the DT concept have already been implemented in oncology,
radiology, and cardiology (4–18). DTs of large blood vessels could allow the early diagnosis
of potential abnormalities and aid in designing interventions (19–21). Pancreatic DTs,
representing an “artificial pancreas”, can largely automate the decision algorithms for the
administration of insulin, leading to control and reduction of long-term consequences of
type I diabetes. The clinical success achieved with the artificial pancreas proves that the DT
paradigm can profoundly change medical care and improve human health (22–25).

Several factors have limited the development and adoption of mechanistic simulations of
the immune system to improve patient care directly. Importantly, we still need a complete
understanding of the immune system's functions in health, disease and response to
therapies. To progress, we must comprehensively leverage what we know and benefit from a
wealth of data, tools, and algorithms to augment mechanism-based simulations (26). Such a
complex endeavour can only be achieved through a coordinated, combined effort of
clinicians, immunologists, experimental and computational biologists, computer scientists,
bioinformaticians, and mathematical modellers (Figure 1).

A workshop on Building Immune Digital Twins (IDTs) was held at the Institut Pascal,
University of Paris Saclay, on the outskirts of Paris, France, bringing together almost 100
scientists from 19 countries1. Over the course of three weeks, the workshop included six
keynotes, twelve advanced talks, nine advanced tutorials on simulation software and
platforms, and nine interventions from the industry, pharma, biotech, start up and
bio-cluster sectors2. The participants had different backgrounds, including biology, medicine,
immunology, computational biology, molecular and cellular biology, biotechnology,
engineering, mathematics, computer science, biochemistry, physics, and different levels of
seniority, spanning from masters level students to chairs and department directors. The
participants came from academia and the private sector, including pharmaceutical and
biotech companies and start-ups. The group worked together to eliminate communication
barriers, create synergies, and lay the foundation for an active community working to bring
a prototype of an IDT technology to life, using as a guide the roadmap on Building Digital
Twins for the human immune system (27). Genopole3, a prominent French bio-cluster, also
supported the workshop which helped create links with all stakeholders needed for

3 https://www.genopole.com/

2 https://indico.ijclab.in2p3.fr/event/9017/page/377-orateursspeakers

1 https://www.institut-pascal.universite-paris-saclay.fr/en/scientific-programs/building-immune-digital-twins
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progress. As a first success, the Working Group was selected as a new Research Data Alliance
working group4 and will receive technical support to reach its first milestones in the next
two years. The purpose of this article is to describe the workshop's outcome and the group's
activities that laid the foundation for creating the international and interdisciplinary
community of Immune Digital Twins.

The workshop was structured around lectures and keynotes on the state-of-the-art,
round tables and panel discussions in the mornings, followed by extensive breakout sessions
and group activities during the afternoons. In the following sections, we will present the
highlights of the working documents produced during the three-week workshop.
Information about participants and access to the presentation slides can be found on the
workshop’s website5.

Figure 1. Bringing different stakeholders together to create an international and interdisciplinary
community committed to developing and deploying Immune Digital Twins.

Basic Principles for Designing IDTs
An Immune Digital Twin is a digital twin for a particular medical application with a
significant immune system component, e.g., a digital twin to treat pneumonia patients.
Following industrial design practice, a DT should be a system that enables a two-way flow of
information, designed to receive information from the patient (the physical twin), process it,
and recalibrate the digital twin to improve the accuracy of the simulated dynamics, used to,
in turn, forecast the prognosis and optimise the treatment of the physical twin. The flow of
information may or may not proceed in real-time and should provide the necessary data to
contextualise, recalibrate, and personalise the DT. The driving hypothesis is that a frequent
feed of biomedical data related to different aspects of disease manifestations, combined with
a robust computational environment, could give a significant advantage compared to

5 https://indico.ijclab.in2p3.fr/event/9017/

4 https://www.rd-alliance.org/groups/building-immune-digital-twins-wg
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simulations of computational models not linked to the patient in a two-way relationship.
This capability holds the potential to improve personalised care and patient-tailored
treatments. However, implementing such technology may only be feasible for some
pathologies.

In either case, data accessibility and integration for the IDT feed should be seamless and
enabled in a protected and anonymised fashion to ensure patient privacy. This would require
a federated database with harmonised and standardised multimodal data (clinical, omic,
imaging, lifestyle, etc). In such a setup, statistical and machine learning (ML) analyses could
be performed remotely (as in the successful cases of RHAPSODY for diabetes (28) or SOPHIA
for obesity research (29) and streamed into the IDT without sensitive patient-level data
disclosure. Ideally, the setup should allow updates whenever a new round of patient
measurements is available. The personalised IDT could be considered part of the patient’s
health record.

Causal relationships and parameters within multiscale systems are usually inferred
independently for each scale, often relying on experimental data from separate studies. To
effectively implement future multiscale IDT, it is crucial to promote adoption of best
practices in formulating multiscale experimental designs. These designs should involve
interventions at multiple scales simultaneously, enabling the reliable establishment of causal
relationships between them. However, implementing these interventions faces challenges
within the personalised medicine approach of IDTs. It is not always feasible to acquire in vivo
samples from actual patients. Humanised in vitro systems such as cell-based assays or
organoids could be employed to produce relevant data and help parametrize the IDTs.
However, these systems often lack a representative microenvironment for drawing
meaningful conclusions.

Besides specific characteristics for the “internal design and content” of the IDT, there are
also important general features that a successful IDT system should possess to comply with
best practices and community guidelines regarding large-scale and multi-scale models.
These features include the compliance with the FAIR Principles. The IDT should follow the
FAIR principles (30–32) and be:
I. Findable: The different IDT elements should be fully annotated and characterised by

globally unique and persistent identifiers and stored in appropriate data and model
repositories, facilitating their retrieval. Their metadata should also be indexed in a
searchable resource.

II. Accessible: The different IDT elements and their metadata should be retrievable in an
open and accessible manner following a standard communication protocol. The metadata
should be available even if the IDT elements are inaccessible.

III. Interoperable: IDTs should be interoperable and able to work together with other
models and systems, regardless of the underlying infrastructure. Interoperability will
allow the IDT to process information from multiple heterogeneous sources, ensuring a
seamless flow of information. Standard input and output formats and the use of
accessible programming languages and environments will help towards its adoption and
usability. The IDT design requires a concerted effort by the systems biology community to
adopt and implement suggested community standards, such as Systems Biology Markup
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Language (SBML) (33) for mathematical model exchange, Systems Biology Graphical
Notation (SBGN) (34) for model visualisation, Biological Pathway Exchange (BioPaX) (35)
for pathway descriptions, and Simulation Experiment Description Markup Language
(SED-ML) (36) for simulation specifications. IDTs will likely use various modelling
platforms, including tools that support ODE, agent-based, discrete, stochastic, or
data-driven models. Not all of them are currently supported by community standards,
thus there is a critical need to create standards for model specification for a much
broader class of models, through close collaboration and discussions with the COMBINE
community (37). A useful resource is also the EDITH standards collection for Virtual
Human Twins in Health (38).

IV. Reusable: All IDT elements should be described in detail, comprising multiple attributes
using standard metadata structures. Naming and annotating DT elements should be
orchestrated by existing ontologies and newly designed controlled vocabularies, where
needed. Transparency and accuracy in description are necessary for maximising
reusability. Special to the IDT field, in relation to reusability, are the aspects of scalability
and modularity. The IDT should be:
a) Modular: An IDT should be designed to be modular. In this context, it is constructed
from component models that capture elementary features of the immune system, such as
a particular function of a particular immune cell type or cytokine signalling in a particular
physiological context. A modular IDT architecture allows for the integration of different
components and models. Each IDT module can be derived from previously built models
designed to represent specific aspects of the immune system; the modules can be
designed from scratch to match unanswered questions, enabling flexibility to mix and
match models as needed. This architecture supports easy updates, replacements, or
additions. It allows the integration of new data and new data types and formats as they
are discovered or developed, ensuring that the IDT can adapt to new research findings
and evolving medical and biological knowledge, keeping it always up-to-date (39).
Although this modular approach represents a rapid way to move forward, it would need
unambiguous and stable standards for model construction and input and output formats.
In addition to that, the granularity of the modules and the level of mechanistic details
should be well described to allow seamless assembly of the foundation modules, across
the same or different scales. Ideally, the IDT design should be based on standardised,
well-annotated modules that can be assembled into adaptable models. Note that the
modelling community has long recognised (40) that constructing a model in a
plug-and-play fashion is a natural approach to managing model complexity and offers
additional opportunities, such as the potential to reuse model components. In particular,
the SBML Model Composition package (SBMLcomp) (41) was developed to enable a
modeller to include submodels within an enclosing model and edit, delete, or replace
elements of that submodel. The concept of modularity in IDTs is similar to the use of
containers and container libraries in bioinformatics frameworks (42).
b) Scalable: Scalability is indispensable for integrating the different computational
modules accounting for different scales and the computational power demanded for the
simulations. A successful IDT requires a clear multilevel and multiscale organisation of

7

https://sciwheel.com/work/citation?ids=9576714&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=399992&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=48487&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2156255&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9176206&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16143155&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11607407&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1234651&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5695650&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5634824&pre=&suf=&sa=0


the immune response that would allow for simpler surrogate models when complexity is
unnecessary (43), (44)). Additionally, the IDT infrastructure should be able to respond to
an increase in data, number of models, or size of models relative to the immune system
and the pathological context under consideration. It should include connections to HPC
and cloud computing (45). While supercomputers represent hardware-enhanced
machines, HPC uses distributed resources to combine storage, applications,
computational power, and network resources. Cloud computing refers to delivering
computing services over the internet to facilitate access to resources and economies in
scaling. Combination of HPC and cloud computing could accelerate simulations at a large
scale, thus significantly reducing the time to market for an IDT prototype.
The FAIR principles are intended to foster collaboration, accelerate scientific discovery,

and maximise the value and impact of the data for research and innovation. Various
modelling communities have manifested the need for comprehensive, accessible, reusable,
interoperable and reproducible computational models in systems biology. A key aspect is
creating the model metadata and the model annotation in community-supported and
standardised formats (46,47,48). Model repositories such as BioModels would need (49) to
be extended to support FAIR dissemination of IDT and its components. A successful example
of a large-scale community effort that leveraged knowledge assembly, platform and tools
interoperability and FAIR implementations is the C19DMap project (50,51). The use of
community standards for graphical representations, computational models and input and
output formats allowed the building of an impressive ecosystem of interoperable software .

While the IDT should in principle be a two-way information system, ethical questions
arise regarding the accessibility of the IDT predictions for patients (9). In the proposed
schema, the decision is not directly accessible by the patient, and it implies the presence of a
control point, where a clinician (expert) uses the IDT’s in silico results to make an informed
decision, that is then communicated to the patient The level of accessibility to the IDT’s
predictions should be controlled, and this can be addressed with different user categories
having different types of rights. In Figure 2, we offer a conceptual design of an IDT
implementation.
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Figure 2. A minimalistic conceptual design of an IDT implementation. Producing a DT requires
calibrating a computational model to data derived from a real-world patient. The connection to the
real world is seen in the grey box to the left, where inputs of different types are generated for a
particular individual and then passed to the virtual/computational model to personalise ("twin")
that general model to the specific patient. The process of "twinning" involves parameterisation and a
matching score to the real-world system by making predictions of how the real-world system
propagates through time. This process iterates as new data becomes available and the DT is updated.

A stepwise, question-driven guide for the development and implementation of IDTs
A defining feature of the immune system is that it operates across scales, bridging molecules
to organs’ dynamics and spanning timescales from seconds to weeks, months or years. This
implies that digital twins incorporating immune system functions must be multiscale by
default. This is a critical feature for simulating disease progression and predicting
prognostic and therapeutic outcomes, allowing it to dynamically capture macroscopic
immune system behaviours and microscopic cellular and molecular interactions.
Consequently, any generic model would need to take this feature into account. It must
delineate scales from the intracellular to the cellular, tissue, organ, and organism levels.
While multiscale modelling technology in biomedicine has made significant progress over
the last decade (52), many theoretical problems will need to be solved, from software
engineering to mathematics, including methodological challenges in sensitivity analysis or
uncertainty quantification (53).

To begin designing an IDT, one could ask the following questions: is time-series data
available? Does the disease progress within hours or years? Next, one should determine the
level of granularity and complexity of the virtual representation that will be the core of the
digital twin. In particular, one could ask, is there a real need for intracellular pathways, or
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would tissue and organ crosstalks suffice? In addition, the appropriate formalism and
modelling approach should be carefully chosen according to the available data and
computational capabilities. Where quantitative data are limited, discrete, logic-based models
can represent regulation and causal effects. However, if a quantitative answer is needed, for
example, the highest dosage of an administered drug without the patient suffering severe
side effects, then quantitative data is needed, and appropriate formalisms such as ordinary
differential equations/partial differential equations (ODE/PDE) -based models could be
employed (54).

Specific use cases will direct the degree of representation and detail required for the IDT.
A significant endeavour is identifying the mechanism of interest and the core application
(“fit-for-use”). Defining the specific use case can inform both the details required in the IDT
and guide the necessary data linkages/types to personalise the IDT (including to help guide
the development of new assay technologies to meet the desired goal of the IDT). This
approach is consistent with the emphasis on modularity in IDTs (noted above) and allows
the construction and deployment of clinically useful IDTs as new knowledge and
technologies are developed. Mechanism-based simulations and subsequent experimental
and clinical validation will allow for iterative improvement of models of the human immune
system. These models will become increasingly more accurate and robust in their capacity to
simulate the human immune system’s reactivity against insults, and dysregulation in
disease, and predict potential pharmacologic intervention points at different scales.

Integrating Artificial Intelligence (AI) models with mechanistic models for IDT
construction
Data-driven solutions can bring valuable insights when the precise mechanism of interest is
unknown but sufficient data is available. Deep learning (DL) models are playing increasingly
pivotal roles in various domains (55, 56). However, their application still presents
challenges, such as (i) the need for large amounts of data and computing resources; (ii)
ethical and privacy issues, particularly concerning the potential misuse of AI models and the
risk of perpetuating existing biases in patient data; and (iii) a complex regulatory landscape
across countries and institutions, which severely limits the sharing of sensitive human data.
Due to the latter, many algorithms are trained on small and homogeneous cohorts, leading to
data overfitting and limited generalizability to new patient groups. Innovative ML
methodologies are emerging to combat these challenges. For instance, generating synthetic
data informed by mechanistic knowledge offers a way to augment datasets and mitigate data
scarcity and imbalance (57). Furthermore, models can be contextualised to represent a wide
range of demographics and conditions, enhancing the diversity in patient population
representation (58). Foundational predictive AI models, built upon extensive multi-modal
data encompassing scientific texts, molecular datasets, and biomedical knowledge graphs,
are emerging in the field of biology and show great potential in facilitating all aspects of
model engineering, from biocuration to training model parameters (59). Transfer learning
(60), federated learning (61,62), and Explainable AI (XAI) (63) approaches lead to more
reliable, safer and interpretable predictions of immune response upon perturbations or
treatments. Finally, the current approach to ‘Omics data analysis, especially in the single cell
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data science, is undergoing a significant transformation with the advent of the new
generation of generative (64) and causal AI methods (65). These methods are effectively
bridging the gap between the data-driven approach (66,67) and the mechanistic modelling,
marking a notable shift in the traditional distinction between them.

A promising avenue for future development is the integration of AI and Mechanism-based
Multiscale Models (MSMs) (65). Mechanistic models excel in inferring causal relationships
based on known biological mechanisms (68, 69), while AI models can help identify patterns
and correlations within extensive datasets (20). Hybrid IDTs could combine the robustness
and interpretability of mechanistic models with the capability of AI models for extracting
information from large data sets. Furthermore, hybrid models can address data scarcity
while enhancing the robustness of the model, as demonstrated in physics with
physics-informed neural networks (PINNs) (70), i.e., neural networks constrained to comply
with established physical principles. Constraining the model with prior knowledge typically
boosts accuracy even with limited data and enhances its generalizability to new scenarios.
However, applying similar approaches in biology is challenging, as biological systems are
typically described in qualitative terms, e.g., using networks to describe intracellular
signalling or transcriptional processes or statistical and probabilistic approaches to describe
random interactions at the systems, organs, tissue and cellular levels. Despite the difficulty
of integrating qualitative knowledge into deep learning models, proof of concept cases have
already been demonstrated, such as with pathway-aware multi-layered hierarchical
networks used to classify cancer patients (71) or visible neural networks that can reproduce
the inner workings of eukaryotic cells (72).

While further research is essential to integrate AI and mechanistic models to replicate
multiscale immunological processes, hybrid IDTs could be particularly effective in predicting
and suggesting therapeutic interventions targeting specific mechanisms (73). In fact,
immune system functions that have effects across several levels and their complex
interactions are well suited to be addressed by hybrid IDTs and are problems that are
currently not solved by either AI or MSMs. Hybrid IDTs could extract the most relevant
information and identify relevant players across levels and provide robust and interpretable
predictions on intervention targets of diseases.

Implementing Immune Digital Twins in the Study of Complex Human Pathologies
The human immune system is central to several classes of disease, such as infectious,
autoimmune, cancer, and others, as a causal and modulating factor. This section will outline
how an IDT could be implemented as a valuable tool in different pathologies with distinct
and disease-specific characteristics. The examples described here will also be hands-on use
cases for developing working IDT implementations.

To achieve tangible results, the collaboration of multiple stakeholders is needed.
Moreover, a change of mindset is needed so that the computational biologist, modeller, or
bioinformatician participates from the beginning in the experimental design and the study
setup. Traditionally, clinicians, immunologists, and experimental biologists identified
hallmarks of the disease, biomarkers and pathways affected, organ and body systemic
manifestations, measurable factors used in the clinic, and experimental techniques that
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could be employed in the short or long-term to enrich the molecular, genomic, metabolic and
clinical profile of the patients. Bioinformaticians and computational biologists then used
integrative methods to analyse the data available and provide coherent links and possible
abstractions that could capture the essential characteristics of the system. However, an early
inclusion of the computational and mathematical modellers in the study design could have a
great impact in making sure that the minimal set of measurements for building a reliable
model is factored in. Likewise, exchanges and discussions early on in a research project
would allow for a maximum of comprehension of the disease mechanisms and questions at
stake. Besides IDT design and implementation, bioengineers can help identify and
manufacture critical biosensor technologies that could be implemented into the IDT
computational ecosystem. Partnerships with startups could accelerate the production of
prototypes, and the industry could contribute by providing infrastructure for the necessary
scaling and support for bench-to-market pilot studies. The workshop “Building Immune
Digital Twins” successfully brought together representatives of all stakeholder communities
to advance toward IDT preclinical and clinical implementations for various complex human
pathologies.

During the workshop, the participants worked on four different use cases, briefly
presented in the following paragraphs. The basic steps across scientific fields that are
required for a full-circle IDT implementation are shown briefly in Figure 3.

Figure 3. Different steps across scientific fields are required for a full-circle IDT implementation.

Infectious pneumonia Immune Digital Twin (IP-IDT) paradigm: Infectious pneumonia
inflames the air sacs in one or both lungs, which can quickly become life-threatening.
Pathogenic insults such as viruses (e.g., influenza, coronaviruses), fungi (A. fumigatus), or
bacteria (K. pneumoniae, S. aureus) can cause the lungs' air sacs (alveoli) to become inflamed
and filled up with fluid or pus. The infected host will then struggle to get oxygen into the
bloodstream. Mounting a robust immune response is crucial for the clearance of the
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pathogen and the resolution of inflammation. On the other hand, an overpowering response
can lead to acute respiratory distress syndrome (ARDS), as exemplified in severe COVID-19
patients, and/or unresolved formation of scar tissue. The alveoli will be essential in IP-IDT.
Alveolar macrophages are the sentinels of the alveoli; their functions are broad, e.g.,
phagocytosis, clearing debris, resolution of inflammatory responses, and tissue remodelling
(74). Pulmonary macrophages are diverse, including tissue-resident alveolar macrophages
that maintain immune balance and monocyte-derived alveolar macrophages that adapt to
the microenvironment (75). Recently, alveolar epithelial cells were found to actively
participate in innate immunity by directly communicating with alveolar macrophages,
phagocytosis of pathogens, and/or recruiting other leukocytes to the injury site. If the
pneumonia lasts several days, the importance of adaptive immunity, such as T-cells and B
cells, must be included (76). A DT that captures the relevant lung biology and can be
calibrated to individual patient characteristics, such as their immune profile or the extent of
damage to the lung epithelium from the infection, could serve as a decision support tool for
the ICU physician. Implementing an IP-IDT could include models at the cell and tissue level
combined with a physiological model of oxygen exchange and blood flow. An early prototype
of a computational model underlying such an IDT is published in (77). Other interventions in
which physiological details will be necessary include the effects of prone positioning of
patients in ICU beds or mechanical ventilator-induced injury.

The Rheumatoid Arthritis Immune Digital Twin paradigm (RA-IDT): Rheumatoid
arthritis is an autoimmune complex disease that affects the articular joints of the human
body. The disease is multifactorial, with genetic and environmental factors pivotal in the
disease pathogenesis. RA's aetiology is unknown, and the treatment is primarily
symptomatic. The disease affects the immune system, which mistakenly attacks the synovial
lining of the joints, causing inflammation, cartilage destruction and bone erosion. The
autoimmune component is central; however, other mechanisms, both immunologic and
tissue-derived, clearly contribute to its onset and progression (78). In the first stages of the
disease, leukocytes infiltrate the synovial compartment of the joint, secreting
pro-inflammatory mediators that induce inflammatory cascades. Interactions between the
joint’s resident cells, such as fibroblast-like and macrophage-like synoviocytes, with the cells
of the innate, like mastocytes, dendritic cells, etc., as well as cells of the adaptive immune
system, such as T cells and B cells, contribute to the sustained inflammation and tissue
damage. These conditions can also lead to a decrease in osteoblasts and an increase in
osteoclasts and synoviocytes, leading to bone loss. If left untreated, the fulminant stage of
the disease is described by a hyperplastic inflamed synovium, cartilage damage, bone
erosion, and other systemic consequences (79).

The main objective of the RA-IDT would be to decipher the interplay between resident
cells of the joint and immune cells in RA, which eventually leads to bone erosion, cartilage
breakdown, and inflammation. A composable, multicellular, and multiscale model for RA
could be a complex and sophisticated tool for studying the underlying mechanisms of RA
and testing new treatments for the disease. In addition, it could provide valuable insights
into the pathogenesis of the disease and help identify new targets for therapeutic
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intervention. Recently, several models on the intra and inter-cellular level have been
developed (80–85) that could serve as the core components of an RA-IDT. Moreover, given
some shared characteristics, especially regarding bone erosion and cartilage destruction,
between RA and Osteoarthritis (OA), OA models could also be contextualised and
implemented in the RA-IDT (86,87). Modelling methods that couple signalling, gene
regulation and metabolic fluxes are now available (80, 88) and can be combined with omics
data technologies to create personalised instantiations. Hybrid modelling methods that
allow for combinations of large-scale inter-cellular models with cell-level agent-based
models could be employed to create a virtual joint. Biosensors that can measure matrix
degradation and bone erosion could also be valuable tools in diagnosing and managing RA.
Biosensor results and patient-reported outcomes and scores could be used to assess the
patient's joint and bone health and monitor changes over time (89). The RA-IDT could also
be integrated with other technologies, such as imaging techniques or wearable non-invasive
sensors (smart watches, smartphone applications), to provide a more comprehensive
picture of the patient's joint and overall health.

For a successful RA-IDT implementation, the collaboration between rheumatologists,
computational and experimental biologists, and engineers is indispensable for tackling the
multiple facets of this debilitating disease. The response rate to current therapies is
estimated to be around 40% (90) demonstrating the pressing need for accelerating
innovative and powerful technologies for personalised care.

The Sepsis-IDT paradigm for therapeutic discovery: Sepsis is a syndrome that often arises
from severe infection but can also arise from severe trauma or burns, where a disordered
immune response can lead to both early proinflammatory collateral tissue damage/organ
dysfunction (“cytokine storm”) (91) and later immune incompetence due to a prolonged
anti-inflammatory state, leading to increased susceptibility to nosocomial infections (92). In
this context, several bacteria (P. aeruginosa, A. baumannii, and Enterobacterales Multi-Drug
Resistant) represent the leading causes of nosocomial infections (93,94), even if such severe
infection could be due to many other bacterial or fungal pathogens (i.e. S. aureus and C. auris,
respectively) (95,96). The primary goal of a Sepsis IDT is the development of a high-fidelity
computational approximation of a specific human, employing techniques from machine
learning and artificial intelligence to personalise computational models (97) to be used for
deriving precision therapeutic strategies to return the patient to a state of health and full
immune/inflammatory functionality (98). As sepsis is a systemic disease that can lead to
multiple organ dysfunction, a Sepsis IDT will necessarily represent and integrate those
organs at risk: the immune system, lung, liver, kidney, gut, and cardiovascular system. Given
the modular nature of IDTs, each organ system can be cast as a sub-compartment model of
the entire IDT for an early example of such an architecture that represents the gut-lung axis
of sepsis (99). The instantiation of an individualised sepsis DT requires that it be linked to a
suite of clinical and laboratory measurements reflecting dynamic molecular profiling of the
patient’s immune state and determinants of trajectories of organ function. For the latter, the
Sequential Organ Failure Score (SOFA) (100) and its variants (101), which have been used to
predict mortality and outcomes in the critically ill population, are generated by readily
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obtainable clinical measurements (e.g., serum bilirubin or creatinine, blood oxygen
concentration) can be sequentially measured to update the IDT. An initial example of
dynamic multiscale molecule-to-organ integration can be seen in a Critical Illness Digital
Twin that links plasma cytokine levels with respiratory SOFA scores (102). Data collection to
establish the inflammatory state of the patient will ultimately require the development of
more advanced sensors and assays; strides in this direction are being made as real-time
blood-serum cytokine measurements (103) become more readily obtainable to capture the
relatively rapid temporal dynamics (minutes to hours) of sepsis and be used to inform the
molecular scale inputs of a Sepsis IDT (97). Numerous challenges must be overcome to
develop a generalisable Sepsis IDT, from insufficient knowledge regarding protein
interactions in the inflammatory/immune signalling network to technological developments
in sensor technologies for real-time proteomic readouts of patient state. Furthermore, the
deep interaction between host and bacterial pathogens in sepsis and the immune response
in systemic infection should be considered in sepsis IDT to understand the molecular
mechanisms, considering different pathogens, outcomes, and symptoms (104). In fact, the
transcriptomics analysis at single cells, performed on blood immune cell types of patients
with sepsis, allowed the identification of a cytological signature of the disease (i.e., CD14+
Monocytes) (105), as well as highlighted a differential molecular response to different
pathogens in early stages of systemic infection (106).

The Onco-IDT paradigm: The ability to evade immune surveillance and destruction is now
a well-recognised hallmark of cancer (107), and its targeting through immunotherapy
approaches has already significantly improved cancer outcomes for several cancer types
(108). During oncogenesis, the immune system activates a multifaceted response involving
both the innate and adaptive immune systems. However, cancer cells and their environment
progressively evade immune surveillance, for instance, by down-regulating major
histocompatibility complexes (MHC) and upregulating immune checkpoint proteins (109),
(110). Cancerous, immune, and stromal cells are the critical components of the tumour
microenvironment (TME); therefore, their crosstalk should be represented in an Onco-IDT
as the TME is crucial for carcinogenesis and acquiring malignant traits (111, 112). An ideal
Onco-IDT should include elements like the TME, neoangiogenesis, the creation of
pre-metastatic niches, and ultimately, system-level information like blood and lymphatic
transport that together with cancer-intrinsic metastasis-enabling molecular programs
underpin systemic disease.

Today, personalised therapy in oncology is making progress in identifying cancer-driver
mutations for each patient (113) or cellular patterns linked with disease state/progression
(114, 115, 116). Extensive cell phenotyping, genetic testing, or even sequencing of tumour
material is possible but requires tissue obtained by biopsy. The biopsy-based molecular
subtyping provides direct data on a tumour's current state and microenvironment, and
single-cell techniques are powerful tools to capture natural and pharmacologically induced
tumour immunity (117). However, cancer genomics-guided approaches harnessing or
targeting the immune system are incomplete and still in their infancy, and, typically,
surrogate markers for the immune system engagement are used. Also, since biopsies are
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invasive, they are usually reserved for diagnostics, and only performed on rare occasions
after that, which limits their ability to track tumour development over time and sample
intra- and inter-tumoral heterogeneity.

On the other hand, data and measurements from non or semi-invasive interventions can
be integrated with the biopsy data points. These types of data and measurements include
electronic health records, radiological imaging, and serological or molecular data that could
inform about the inflammatory state of the patient. In addition, blood samples can provide
insights into drug pharmacokinetic (PK) relevant processes, while wearables can offer
additional information regarding vital signs, body temperature and physical activity levels.
Notably, progress has been made to provide detailed insight into the molecular features of
the tumour from non-invasive techniques by investigating circulating tumour cells and
circulating tumour DNA as surrogates for the biopsied tumours.

The analysis of each data type independently poses a challenge, and becomes almost
insurmountable when numerous data types are considered together. Onco-IDTs are
envisioned to provide a solution by integrating a multitude of data measurements across
numerous data types and time points, and provide the means for a systems level approach to
patient-centred medical insights, disease simulation for prognostics, and in silico
experimentation of therapies.

An effective Onco-IDT will provide oncologists with a dynamic clinical decision support
platform, aiding prognosis and disease management. More specifically, the Onco-IDT could
contribute significantly in prognostic predictions regarding disease course, considering
factors like metastatic capacity and patient survival. Additionally, it could offer actionable
insights concerning therapeutic interventions, involving the selection of the most effective
therapy that maximises benefits while minimising side effects and adverse outcomes.
Therapeutic decisions might also be optimised to select effective monotherapies versus
combination therapies, drug doses, and treatment schedules. Interestingly, the US National
Cancer Institute and the US Department of Energy started to explore the development and
implementation of predictive Cancer Patient Digital Twins for personalised treatment (118).

IDTs in drug discovery
Drug development is costly and slow. The costs include expenses from the early stages of
research and discovery through clinical development, regulatory approval, and
post-marketing surveillance. The majority of candidate targets and drugs experience
failure in the early stages, contributing significantly to the overall cost of delivering more
successful candidates. Therefore, optimising these earlier stages holds transformative
potential in the pharmaceutical industry. A strong consensus among experts supports the
opinion that the involvement of digital twins in this transformation can be essential (119).

The early stages of drug development increasingly involve the use of growing volumes of
molecular, imaging, and clinical data. This trend surpasses the human capacity to provide a
rational and holistic approach to decision-making in the identification of therapeutic
targets and their subsequent triaging for further validation based on complex causal
relationships. The introduction of a specialised form of drug development digital twins
(DDDT) has the potential to be a game-changer (120). Major pharmaceutical companies
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believe in the innovative and transformative potential of DTs in drug discovery and actively
invest in their development (121). This approach is geared towards discovering new
therapies, in contrast to DTs focusing on optimising the existing process for a known
treatment. DDDTs, by design, are characterised by a specific set of challenging
requirements, with one of the most crucial being the granularity of representation of
molecular mechanisms (i.e., mechanisms of action of drugs and targets). Current
mathematical models of biological processes are usually too abstract to be applicable to the
task of the DDDT. For instance, a mathematical model of viral infection with an aggregated
term for "pro-inflammation" cannot evaluate the effect of a specific drug because
"pro-inflammation" is not a mechanistic target for a chemical compound. Consequently,
DDDTs must be inherently multiscale, initially developed at the level of intracellular
components and genes before expanding to the physiological scale (120). This is
particularly crucial in the field of immunology.

Moreover, we can envision further specialisation of DDDTs based on various tasks in the
early drug discovery process. These tasks include 1) identifying targets and their
combinations, as well as determining the most promising treatment modalities
(encompassing not only small chemical compounds but also antibody-drug conjugates,
various types of biologics, and gene or cell therapies); deciding on the level at which the
target should be affected (whether directly, through its RNA, or its involvement in
protein-protein interactions), 2) experimental target and drug validation, aiding in
identifying the most informative experimental systems (such as cell lines or organoids) and
experiment designs, 3) repurposing drugs for alternative indications in case of a failure for
the primary one, 4) delivering drugs by integrating pharmacokinetic models into the global
in silico models of treatment and taking into account safety aspects early in the process, 5)
finally, there might be flavours of DDDTs aimed at optimising the process of drug
production, with notable examples like Sanofi exploring the use of digital twins for vaccine
manufacturing (122).

All these DT specialisations require specific designs, functionalities, and connections to
the existing wealth of public and proprietary data. Furthermore, the scope application of
DTs goes beyond the scope of early drug discovery or production; e.g. virtual populations of
patient DTs can be used for running in silico clinical trials that can accompany or be used
for designing real-life trials (123). One recent example is the Universal Immune Simulator
(UIS) (124). The European Medicines Agency (EMA) provided a letter of support for the
use of the UIS as a simulation platform to predict how the circulating interferon gamma
(IFNγ) changes over time as a function of the treatment dose in a cohort of virtual patients,
to select the doses to be tested in escalating dose phase IIa trials of new therapeutic whole
cell / fragmented based vaccines against a number of diseases (125). Whereas more work
is required before qualification advice can be given, it does show that EMA believes this is a
genuine possibility. Recently, a book was published focusing on best practices for the use of
computational modeling and simulation in the regulatory process of biomedical products,
showcasing the need to address policy and implementation early on in the DT design
(126). Different types of challenges associated with the DT development and
implementation are depicted in Figure 4.
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Figure 4. Key challenges in developing and implementing IDTs in pre-clinical and clinical settings .

Perspectives
The major challenge in building UDTs is bringing together clinicians, biologists, and

mathematical modellers coming from academia and the biotech industry, from Europe, the
U.S., and many other countries in deep, prolonged discussions and collaborations around
DT technology and implementation. Very close collaboration and coordination among the
different communities are required for success. Our workshop, together with similar efforts
toward the same direction (127) show that the right intellectual environment and a
well-articulated common purpose might help overcome barriers and set the basis of
international multi-partner collaborations between academia and industry. The final
success of these multi-partner collaborations crucially depends on the ability to have a
common culture, vocabulary, and understanding of the potential and current limitations of
DT technology. Over the next two years, the Working Group that emerged from the Institut
Pascal workshop aims to create additional venues for such interdisciplinary interactions at
different scales and move forward with the development and implementation of IDTs.
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