A Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers

G.K.Panda, S.S.Rout

Abstract—The balancing numbers are natural numbers n satisfying the Diophantine equation $1 + 2 + 3 + \cdots + (n - 1) = (n + 1) + (n + 2) + \cdots + (n + r)$; r is the balancer corresponding to the balancing number n. The n^{th} balancing number is denoted by B_n and the sequence $\{B_n\}_{n=1}^{\infty}$ satisfies the recurrence relation $B_{n+1} = 6B_n - B_{n-1}$. The balancing numbers posses some curious properties, some like Fibonacci numbers and some others are more interesting. This paper is a study of recurrent sequence $\{x_n\}_{n=1}^{\infty}$ satisfying the recurrence relation $x_{n+1} = Ax_n - Bx_{n-1}$ and possessing some curious properties like the balancing numbers.

Keywords-Recurrent sequences, Balancing numbers, Lucas balancing numbers, Binet form.

I. INTRODUCTION

T HE balancing numbers originally introduced by Behera and Panda [1] are natural numbers n satisfying the Diophantine equation $1 + 2 + 3 + \cdots + (n - 1) = (n + 1) + (n + 2) + \cdots + (n + r)$, where r is called the balancer corresponding to the balancing number n. It is proved in [1] (see also [3]) that the sequence of balancing numbers $\{B_n\}_{n=1}^{\infty}$ are solution of the second order linear recurrence $y_{n+1} = 6y_n - y_{n-1}, y_0 = 0, y_1 = 1$. The Binet form of this sequence is $B_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}$ where $\lambda_1 = 3 + \sqrt{8}$ and $\lambda_2 = 3 - \sqrt{8}$. In a subsequent paper Panda [2], unveiled some fascinating properties of balancing numbers. These properties are:

- The sum of first *n* odd balancing numbers is equal to the square of the *n*th balancing numbers a property similar to the fact that the sum of first *n* odd natural numbers is equal to *n*². This property is neither satisfied by the cobalancing numbers [3] nor by the Fibonacci numbers.
- The greatest common divisor of two balancing numbers is a balancing number; in particular, the greatest common divisor of B_m and B_n is B_k where k is the greatest common divider of m and n. This property is true for Fibonacci numbers also.
- $B_{m+n} = B_m C_n + C_m B_n$ a property similar to $\sin(x + y) = \sin x \cos y + \cos x \sin y$, where $C_n = \sqrt{8B_n^2 + 1}$ is a sequence whose terms are known as Lucas balancing numbers and satisfy a recurrence relation identical with balancing numbers.

II. RESULTS

We consider a class of recurrent second order sequences $x_{n+1} = Ax_n - Bx_{n-1}, x_0 = 0, x_1 = 1$ such that $A^2 - 4B > 0$

0 and study conditions under which these sequences would satisfy some of the fascinating properties of balancing numbers mentioned in the last paragraph.

Let us start with a second order linear recurrence

$$x_{n+1} = Ax_n - Bx_{n-1}, \ x_0 = 0, x_1 = 1$$

where A and B are natural numbers such that $A^2 - 4B > 0$. The auxiliary equation of this recurrence is given by

$$\alpha^2 - A\alpha + B = 0$$

which has, because of the condition $A^2 - 4B > 0$, the unequal real roots

$$\alpha_1 = \frac{A + \sqrt{A^2 - 4B}}{2}, \quad \alpha_2 = \frac{A - \sqrt{A^2 - 4B}}{2}.$$

The general solution is given by

$$x_n = P\alpha_1^n + Q\alpha_2^n,$$

and using the initial conditions, we get the Binet form

$$x_n = \frac{\alpha_1^n - \alpha_2^n}{\alpha_1 - \alpha_2}, \ n = 0, 1, 2, \cdots.$$

To find the conditions under which

$$x_1 + x_3 + \dots + x_{2n-1} = x_n^2$$

it is enough to find conditions for

$$x_{2n+1} = x_{n+1}^2 - x_n^2.$$

We note that $\alpha_1 + \alpha_2 = A$ and $\alpha_1 \alpha_2 = B$ and

$$x_{n+1}^2 - x_n^2 = \left[\frac{\alpha_1^{n+1} - \alpha_2^{n+1}}{\alpha_1 - \alpha_2}\right]^2 - \left[\frac{\alpha_1^n - \alpha_2^n}{\alpha_1 - \alpha_2}\right]^2$$
$$= \frac{\alpha_1^{2n+2} + \alpha_2^{2n+2} - \alpha_1^{2n} - \alpha_2^{2n} - 2B^{n+1} + 2B^n}{(\alpha_1 - \alpha_2)^2}$$

and

33

$$x_{2n+1} = x_{n+1}^2 - x_n^2$$

is equivalent to

$$(\alpha_1 - \alpha_2)(\alpha_1^{2n+1} - \alpha_2^{2n+1}) = \alpha_1^{2n+2} + \alpha_2^{2n+2} - \alpha_1^{2n} - \alpha_2^{2n} - 2B^{n+1} + 2B^n$$

which yields

$$B(\alpha_1^{2n} + \alpha_2^{2n}) = \alpha_1^{2n} - \alpha_2^{2n} + 2B^{n+1} - 2B^n.$$

Further rearrangement converts the last equation to

$$(B-1)[2B^n - (\alpha_1^{2n} + \alpha_2^{2n})] = 0$$

G.K.Panda,Department of Mathematics, National Institute of Technology, Rourkela, India-769008 e-mail: gkpanda@nitrkl.ac.in

S.S.Rout,Department of Mathematics, National Institute of Technology, Rourkela, India-769008 e-mail:sudhansumath@yahoo.com .

and applying $\alpha_1 \alpha_2 = B$ the last equation finally reduces to

$$(B-1)(\alpha_1^n - \alpha_2^n)^2 = 0$$

which is possible if $\alpha_1^n = \alpha_2^n$ or B = 1. If $\alpha_1^n = \alpha_2^n$, then $\alpha_1 = \alpha_2$ or $\alpha_1 = -\alpha_2$. But $\alpha_1 = \alpha_2$ corresponds to $A^2 - 4B = 0$, which is forbidden by our initial assumption and $\alpha_1 = -\alpha_2$ corresponds to a negative B, which is also firbidden. Thus the only option left for us is B = 1.

Conversly, if B = 1 then $\alpha_1 \alpha_2 = 1$ and

$$\begin{aligned} x_{n+1}^2 - x_n^2 &= \left[\frac{\alpha_1^{n+1} - \alpha_2^{n+1}}{\alpha_1 - \alpha_2}\right]^2 - \left[\frac{\alpha_1^n - \alpha_2^n}{\alpha_1 - \alpha_2}\right]^2 \\ &= \frac{\alpha_1^{2n+2} + \alpha_2^{2n+2} - \alpha_1^{2n} - \alpha_2^{2n}}{(\alpha_1 - \alpha_2)^2} \\ &= \frac{\alpha_1^{2n+1} (\alpha_1 - \alpha_2) - \alpha_2^{2n+1} (\alpha_1 - \alpha_2)}{(\alpha_1 - \alpha_2)^2} \\ &= \frac{\alpha_1^{2n+1} - \alpha_2^{2n+1}}{\alpha_1 - \alpha_2} \\ &= x_{2n+1} \end{aligned}$$

leading to

$$x_1 + x_3 + \dots + x_{2n-1} = x_n^2.$$

The above discussion proves the following theorem:

Theorem 2.1: Let $x_{n+1} = Ax_n - Bx_{n-1}, x_0 = 0, x_1 = 1$ be a second order linear recurrence such that A and B are natural numbers satisfying $A^2 - 4B > 0$. Then, for each natural number n, a necessary and sufficient conditions for $x_1 + x_3 + \cdots + x_{2n-1} = x_n^2$ to hold is B = 1. The helpeneing spectra characteristic set of the set of

The balancing number also satisfies a relation

$$B_2 + B_4 + \dots + B_{2n} = B_n B_{n+1}.$$

We next investigate the conditions under which

$$x_2 + x_4 + \dots + x_{2n} = x_n x_{n+1}.$$

It is enough to find conditions under which

$$x_n x_{n+1} - x_{n-1} x_n = x_{2n}.$$

This is equivalent to

$$x_{n}(x_{n+1} - x_{n-1})$$

$$= \frac{\alpha_{1}^{n} - \alpha_{2}^{n}}{\alpha_{1} - \alpha_{2}} \left[\frac{\alpha_{1}^{n+1} - \alpha_{2}^{n+1}}{\alpha_{1} - \alpha_{2}} - \frac{\alpha_{1}^{n-1} - \alpha_{2}^{n-1}}{\alpha_{1} - \alpha_{2}} \right]$$

$$= \frac{\alpha_{1}^{2n+1} + \alpha_{2}^{2n+1} - \alpha_{1}^{2n-1} - \alpha_{2}^{2n-1} - B^{n}(\alpha_{1} + \alpha_{2})}{(\alpha_{1} - \alpha_{2})^{2}}$$

$$+ \frac{B^{n-1}(\alpha_{1} + \alpha_{2})}{(\alpha_{1} - \alpha_{2})^{2}}$$

$$= \frac{\alpha_{1}^{2n} - \alpha_{2}^{2n}}{\alpha_{1} - \alpha_{2}}.$$

On rearrangement we get

$$(\alpha_1 - \alpha_2)(\alpha_1^{2n} - \alpha_2^{2n}) = \alpha_1^{2n+1} + \alpha_2^{2n+1} - \alpha_1^{2n-1} - \alpha_2^{2n-1} - B^n(\alpha_1 + \alpha_2) + B^{n-1}(\alpha_1 + \alpha_2).$$

which leads to

$$(B-1)(\alpha_1^{2n-1} + \alpha_2^{2n-1}) = B^{n-1}(B-1)(\alpha_1 + \alpha_2)$$

which is possible for all n if B = 1.

Conversely, it can be easily seen that if B = 1, then $x_n x_{n+1} - x_{n-1} x_n = x_{2n}$. The above discussion together with Theorem 2.1 proves

Theorem 2.2: Let $x_{n+1} = Ax_n - Bx_{n-1}$, $x_0 = 0$, $x_1 = 1$ be a second order linear recurrence such that A and B are natural numbers satisfying $A^2 - 4B > 0$. Then, for each natural number n, a necessary and sufficient conditions for $x_2 + x_4 + \cdots + x_{2n} = x_n x_{n+1}$ is B = 1.

While the Binet form for balancing numbers is

$$B_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}$$

where $\lambda_1 = 3 + \sqrt{8}$ and $\lambda_2 = 3 - \sqrt{8}$, the Binet form for the Lucas balancing numbers is

$$C_n = \frac{\lambda_1^n + \lambda_2^n}{2}$$

Thus, if we define a new sequence

$$y_n = \frac{\alpha_1^n + \alpha_2^n}{2},$$

then it is easy to verify that

$$2x_n y_n = x_{2n},$$

a property similar to that of balancing numbers. In addition, we observe that $\alpha_1 - \alpha_2 = \sqrt{A^2 - 4B}$, so that

$$(\alpha_1 - \alpha_2)^2 = A^2 - 4B$$

is a natural number. Thus in all cases where $\sqrt{A^2 - 4B}$ is irrational, we have

$$y_m + \frac{\sqrt{A^2 - 4B}}{2} x_m = \alpha_1^m,$$

leading to

$$\begin{bmatrix} y_m + \frac{\sqrt{A^2 - 4B}}{2} x_m \end{bmatrix} \begin{bmatrix} y_n + \frac{\sqrt{A^2 - 4B}}{2} x_n \end{bmatrix}$$
$$= \alpha_1^{m+n} = y_{m+n} + \frac{\sqrt{A^2 - 4B}}{2} x_{m+n}.$$

Comparing rational and irrational parts from both sides, we get

$$y_{m+n} = y_m y_n + \frac{A^2 - 4B}{4} x_m x_n,$$

and

$$x_{m+n} = x_m y_n + y_m x_n$$

The above discussion proves

Theorem 2.3: Let $x_{n+1} = Ax_n - Bx_{n-1}, x_0 = 0, x_1 = 1$ be a second order linear recurrence such that A and B are natural numbers and $A^2 - 4B$ is non-square and positive. If y_n is defined as $y_n = \frac{\alpha_1^n + \alpha_2^n}{2}$, then for all natural numbers m and n we have

$$y_{m+n} = y_m y_n + \frac{A^2 - 4B}{4} x_m x_n,$$
$$x_{m+n} = x_m y_n + y_m x_n.$$

A well known connection between balancing and Lucas balancing numbers is

$$C_n^2 = 8B_n^2 + 1$$

We can except a similar relationship between the sequences x_n and y_n . Indeed

$$x_n^2 = \left[\frac{\alpha_1^n - \alpha_2^n}{\alpha_1 - \alpha_2}\right]^2 = \frac{\alpha_1^{2n} + \alpha_2^{2n} - 2B^n}{A^2 - 4B}.$$

Thus

$$\frac{(A^2 - 4B)x_n^2}{4} + B^n = \frac{\alpha_1^{2n} + \alpha_2^{2n} + 2B^n}{4}$$
$$= \left[\frac{\alpha_1^n + \alpha_2^n}{2}\right]^2$$
$$= y_n^2.$$

Writting $D = \frac{A^2 - 4B}{4}$, the last equation can be written as

$$y_n^2 = B^n + Dx_n^2.$$

The above equation proves

Theorem 2.4: Let $x_{n+1} = Ax_n - Bx_{n-1}, x_0 = 0, x_1 = 1$ be a second order linear recurrence such that A and B are natural numbers and $A^2 - 4B > 0$. If y_n is defined as $y_n = \frac{\alpha_1^n + \alpha_2^n}{2}$, then $y_n^2 = B^n + Dx_n^2$ where $D = \frac{A^2 - 4B}{4}$.

We now try to find a recurrence relation for y_n . Since α_1 and α_2 are roots of the equation

$$\alpha^2 - A\alpha + B = 0$$

it follows that

and

$$\alpha_2^2 - A\alpha_2 + B = 0$$

 $\alpha_1^2 - A\alpha_1 + B = 0,$

Multiplying the last two equations by α_1^{n-1} and α_2^{n-1} respectively and rearranging, we get

$$\alpha_1^{n+1} = A\alpha_1^n + B\alpha_1^{n-1}$$

and

$$\alpha_2^{n+1} = A\alpha_2^n + B\alpha_2^{n-1}$$

Adding the last two equation and dividing by 2 we arrive at

$$y_{n+1} = Ay_n - By_{n-1}.$$

It is clear that $y_0 = 1$ and $y_1 = \frac{A}{2}$. This shows that y_n satisfies a recurrence relation identical with x_n . Further, if A is even then y_n is an integer sequence.

Theorem 2.5: Let $x_{n+1} = Ax_n - Bx_{n-1}, x_0 = 0, x_1 = 1$ be a second order linear recurrence such that A and B are natural numbers and $A^2 - 4B > 0$. If y_n is defined as $y_n = \frac{\alpha_1^n + \alpha_2^n}{2}$, the sequence $\{y_n\}_{n=1}^{\infty}$ satisfies the recurrence relation $y_{n+1} = Ay_n - By_{n-1}$. Further, y_n is an integer sequence if A is even.

We now suppose that A is even and hence $\{y_n\}_{n=1}^{\infty}$ an integer sequence and choose B = 1 so that the greatest common divisor of x_n and y_n is 1 for each n. Let k and n be two natural numbers such that n > 1. Then denoting the greatest common divisor of a and b by (a, b), we have

$$(x_k, x_{nk}) = (x_k, x_k y_{(n-1)k} + y_k x_{(n-1)k}) = (x_k, x_{(n-1)k}).$$

Iterating recursively, we arrive at

$$(x_k, x_{nk}) = (x_k, x_k) = x_k.$$

This proves

Theorem 2.6: Let $x_{n+1} = Ax_n - x_{n-1}$, $x_0 = 0$, $x_1 = 1$ be a second order linear recurrence such that A is an even natural number and $A^2 - 4$ is positive. If m and n are natural numbers and m divides n then x_m divides x_n .

We now look at the converse of this theorem. Assume that m and n are natural numbers such that x_m divides x_n . Then definitely, m < n and by Euclid's division algorithm [4], there exist natural numbers k and r such that $n = mk+r, k \ge 1, 0 \le r < m$. By Theorem 2.3

$$x_m = (x_m, x_n) = (x_m, x_{mk+r}) = (x_m, x_{mk}y_r + y_{mk}x_r).$$

Since *m* divides *mk*, by Theorem 2.6, x_m divides x_{mk} and hence the last equation yields

$$x_m = (x_m, y_{mk} x_r)$$

Further by Theorem 2.5 $(x_{mk}, y_{mk}) = 1$ and since x_m divides x_{mk} by Theorem 2.6, we arrive at the conclusion that $(x_m, y_{mk}) = 1$. Thus the last equation results in

$$x_m = (x_m, x_r).$$

Since r < m, this is impossible unless r = 0. Thus n = mk showing that m divides n. This proves

Theorem 2.7: Let $x_{n+1} = Ax_n - x_{n-1}, x_0 = 0, x_1 = 1$ be a second order linear recurrence such that A is an even natural number and $A^2 - 4$ is positive. If x_m divides x_n , then m divides n.

Let m and n are two natural numbers such that k = (m, n). Thus k divides both m and n. In view of Theorem 2.6, x_k divides both x_m and x_n and hence x_k divides (x_m, x_n) . Further if s > k and x_s divides x_m and x_n , then by Theorem 2.7, s divides both m and n and consequently, s divides k which is a contradiction. Hence if k = (m, n), then k is the largest number such that x_k divides both x_m and x_n . The discussion of this paragraph may be summarized as follows:

Theorem 2.8: Let $x_{n+1} = Ax_n - x_{n-1}, x_0 = 0, x_1 = 1$ be a second order linear recurrence such that A is an even natural number and $A^2 - 4$ is positive. If m and n are natural numbers then $(x_m, x_n) = x_{(m,n)}$.

REFERENCES

- [1] Behera A. and Panda G.K., *On the square roots of triangular numbers*, The Fibonacci Quaterly, 37(2) (1999), 98-105.
- [2] Panda G.K., Some fascinating properties of balancing numbers, Applications of Fibonacci Numbers, Congressus Numerantium, Vol 194, 185-190, 2006.
- [3] Panda G.K. and Ray P.K., *Cobalancing numbers and cobalancers*, International Journal of mathematics and Mathematical Sciences,(8)(2005),1189-1200.
- [4] Niven I. and Zuckerman H.L., An Introduction to the theory of Numbers, Wiley Eastern Limited, New Delhi 1991.