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Abstract

Let Lu =

[
1 0
u 1

]
and Rv =

[
1 v
0 1

]
be matrices in SL2(Z) with u, v ≥ 1. Since the

monoid generated by Lu and Rv is free, we can associate a depth to each element
based on its product representation. In the cases where u = v = 2 and u = v = 3,
Bromberg, Shpilrain, and Vdovina found a depth n matrix containing the maximal
entry for each n ≥ 1. By using ideas from our previous work on positive linear
fractional transformation (u, v)-Calkin-Wilf trees and a polynomial partial ordering,
we extend their results for any u, v ≥ 1 and in the process we recover the Fibonacci
and some Lucas sequences. As a consequence we obtain bounds which guarantee
collision resistance on a family of Cayley hash functions based on Lu and Rv.

1The second author received support for this project provided by a PSC-CUNY Award, #69227-
00 47, jointly funded by The Professional Staff Congress and The City University of New York.



INTEGERS: 20 (2020) 2

1. Introduction

Let Lu :=

[
1 0
u 1

]
and Rv :=

[
1 v
0 1

]
where u and v are fixed positive integers. These

matrices have been considered in the study of growth and expansion in groups, ex-

pander graphs, and in connection with the girth of certain Cayley graphs in SL2(Fp)
(p a prime) in important works by Bourgain and Gamburd [4], and Helfgott [11].

We are interested in the monoid generated by Lu and Rv. Nathanson [13] provided

a simple proof that this monoid is free. That is, every non-identity element M in

the monoid generated by Lu and Rv can be written as an alternating product of

positive powers of Lu and Rv in a unique way. We refer to the sum of these powers

as the depth2 of M . For example, if M = L3
uR

24
v L

7
u, then the depth of M is 34. We

define the depth of the identity matrix as zero.

In 2017, Bromberg, Shpilrain, and Vdovina [6] proposed a Cayley hash function3

based on Lu and Rv in SL2(Fp). Bromberg [5] and Bromberg, Shpilrain, and

Vdovina [6] measured the collision resistance of these Cayley hash functions by

finding a depth n matrix containing the maximal entry in the cases where u = v = 2

and u = v = 3 for each n ≥ 1. The proof is by induction. They show that if M

is a depth n matrix containing the maximal entry and maximal column sum, then

either LuM or RvM , depending on the parity of n, must be a depth n+ 1 matrix

containing the maximal entry and maximal column sum.

The goal of this paper is to answer and expand upon some open questions4

appearing in [5, 6]. Our main contribution is to extend the above result to the

general case u, v ≥ 1 (Theorem 1). In the case where u, v ≥ 2, our method uses a

similar induction argument as above. When either u = 1 or v = 1, this induction

argument fails. We indicate at the end of Proposition 3 exactly where the problem

occurs. In this case the situation is more complicated, requiring a different strategy.

The novelty of our approach lies in the framework of the Calkin-Wilf tree. This tree

provides a rich, highly symmetric structure that allows us to organize the elements

of the monoid in an intuitive way. Together with a partial ordering for polynomials,

this yields a proof for the more intricate case.

The Calkin-Wilf tree is a rooted tree whose vertices are labeled by positive ra-

tional numbers. Starting from the root 1, each vertex a/b has two children: the left

one is a/(a+ b) and the right one is (a+ b)/b (see Figure 1). A nice feature of this

tree is that every positive rational number appears in the tree exactly once and in

reduced form. In past decades, the Calkin-Wilf tree has received a lot of attention

due to its many remarkable properties; see [7, 14] for a more thorough history of

this material.

2Some readers may prefer the term length, but our choice of the word depth will be made clear
shortly.

3The term Cayley hash function comes from the connection to Cayley graphs [10] mentioned
in the previous paragraph.

4The original questions in [5, 6] only ask about the case u = 1 and v = 2 (or vice versa).
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Figure 1: The first four rows of the Calkin-Wilf tree.

For a generalization of the Calkin-Wilf tree, one can consider a modified genera-

tion rule for each vertex a/b: its left child is defined by a/(ua+b) and its right child

by (a + vb)/b. Such a tree is called the (u, v)-Calkin-Wilf tree and its vertices are

a subset of the vertices of the Calkin-Wilf tree. In fact, given uv > 1, the positive

rationals can be partitioned in pairwise disjoint (u, v)-Calkin-Wilf trees with roots

coming from a special “orphan” set [8, 9, 14].

Another generalization of the Calkin-Wilf tree can be made for rooted trees

whose vertices are matrices in GL2(N0) with a generation rule based on matrix

multiplication with a pair of fixed matrices L and R. Nathanson refers to such trees

as generalized Calkin-Wilf trees for positive linear transformations5 (PLTFs) [14].

In the case where L = Lu and R = Rv, we construct the PLFT (u, v)-Calkin-Wilf

tree, denoted by T (u,v)(M), according to the following generation rules:

1. the root is labeled M ,

2. the left child of a vertex

[
a b
c d

]
is labeled

[
a b

ua+ c ub+ d

]
, and

3. the right child of a vertex

[
a b
c d

]
is labeled

[
a+ vc b+ vd
c d

]
.

In Figure 5 in the Appendix we illustrate the T (1,1)(I2) tree. By associating a

reduced rational number a/b to the vector

[
a
b

]
and considering the column vectors

of each matrix, it can be seen that T (1,1)(I2) is essentially running two Calkin-Wilf

trees in parallel that are independent of each other.

This PLFT (u, v)-Calkin-Wilf tree perspective helps us understand the monoid

generated by Lu and Rv, because the left child and the right child of a vertex M

are obtained precisely by multiplying M (on the left) by Lu and Rv, respectively.

5We also use the term PLFT here since there is a clear isomorphism between the monoid of
PLFTs (under function composition) and GL2(N0). For a proof of this fact, see [14] and [9].
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Figure 2: The first four rows of the T (u,v)(I2) tree.

Furthermore, the PLFT (u, v)-Calkin-Wilf tree organizes the elements in the monoid

generated by Lu and Rv by depth n (see Figure 2). This organization is highly

symmetric, a property which is exploited in this paper. A visual inspection of the

forms of the entries in terms of u and v in Figure 2 suggests our results. To highlight

our key ideas and make them more clear, we provide several examples and a concise

summary of our arguments. See Figures 5-8 in the Appendix for an illustration of

the first five rows of the T (1,1)(I2), T (5,2)(I2), T (2,5)(I2), and T (5,1)(I2) trees.

1.1. Examples

We begin with a few different examples illustrating various cases. Let Mi,j denote

the (i, j)-entry of M .

• In the case of the T (1,1)(I2) tree (see Figure 5), the numerical values of the

maximal entries and their corresponding positions in depth n are:

1 → 1 → 2 → 3 → · · · ,
I1,1 → (L1)2,1 → (R1L1)1,1 → (L1R1L1)2,1 → · · · .

We observe that the first five maximal entries coincide with the first five

terms of the Fibonacci sequence. We also observe that a path of maximal

entries exhibits an alternating Lu and Rv pattern. A close examination of the

T (1,1)(I2) tree reveals that the path given above is not unique since

I1,1 → (R1)1,2 → (L1R1)2,2 → (R1L1R1)1,2 → · · ·
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provides another path to obtain the maximal entries. It is also interesting to

see that this path is the symmetric image of the previous path.

• In the case of the T (5,2)(I2) tree (see Figure 6), the numerical values of the

maximal entries and their corresponding positions in depth n are:

1 → 5 → 11 → 60 → · · · ,
I1,1 → (L5)2,1 → (R2L5)1,1 → (L5R2L5)2,1 → · · · .

We observe the generalized Fibonacci relations 11 = 5 · v + 1, 60 = 11 · u+ 5

and 131 = 60 · v + 11, and the path exhibits the same alternating Lu and Rv
pattern as before. Furthermore, a close examination of T (5,2)(I2) reveals that

for odd depth, the maximal entry appears to occur uniquely in one position,

whereas, for even depth, the same is not true.

• In the case of the T (2,5)(I2) tree (see Figure 7), the numerical value of the

maximal entries and their corresponding positions at depth n are:

1 → 5 → 11 → 60 → · · · ,
I2,2 → (R5)1,2 → (L2R5)2,2 → (R5L2R5)1,2 → · · · .

Note that the maximal values of the T (2,5)(I2) tree are exactly the same as

those of T (5,2)(I2) tree, and the path of the maximal entries is the symmetric

counterpart of the path in T (5,2)(I2).

• In the case of the T (5,1)(I2) tree (see Figure 8), the numerical values of the

maximal entries and their corresponding positions at depth n are:

1 → 5 → 10 → 35 → · · · ,
I2,2 → (L5)2,1 → (L5)22,1 → (L5R1L5)2,1 → · · · .

Note that this path does not exhibit the nice alternating Lu and Rv pattern

and the generalized Fibonacci relation fails here. Although the first two terms

of the sequence follow the Fibonacci relation, 10 = 5+1 ·u and 35 = 10+5 ·u,

the third term does not since 65 6= 35 + 10 · u.

1.2. The Maximal Entry in T (u,v)(I2;n)

We denote by T (u,v)(M ;n) the (finite) set of matrices of depth n in T (u,v)(M),

where n ≥ 0. We often refer to T (u,v)(M ;n) as the nth row of the tree. In our

search for the maximal entry among all matrices of T (u,v)(M ;n), not only do we

observe Fibonacci-like sequence relations among the maximal entries, we are also

able to provide an explicit formula for the maximal entry at each depth.
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We define the function µ : GL2(N0)→ N by µ

([
a b
c d

])
= max{a, b, c, d}, which

computes the maximal entry of a matrix M ∈ GL2(N0). For a finite subset S of

GL2(N0), we extend the definition of µ to S by µ(S) = max{µ(M) : M ∈ S}.
So µ(T (u,v)(M ;n)) is the maximal entry among all matrices of depth n in the

T (u,v)(M) tree. In our main theorem (Theorem 1) we show that for n ≥ 0 and

fixed u ≥ v ≥ 1:

µ(T (u,v)(I2;n)) =


((LuRv)

(n−1)/2Lu)2,1 when n is odd,

(Lu(LuRv)
n/2Lu)2,1 when n is even and u > v = 1,

((RvLu)n/2)1,1 otherwise.

Similarly, by symmetry, for n ≥ 0 and fixed v ≥ u ≥ 1:

µ(T (u,v)(I2;n)) =


((RvLu)(n−1)/2Rv)1,2 when n is odd,

(Rv(RvLu)n/2Rv)1,2 when n is even, and v > u = 1,

((LuRv)
n/2)2,2 otherwise.

Theorem 1 provides an explicit formula in terms of u, v and n for computing

µ(T (u,v)(I2;n)). We define a recursive sequence F
(u,v)
n by F

(u,v)
0 = 1, F

(u,v)
1 =

max{u, v}, and for n > 1

F (u,v)
n =

{
max{u, v} · F (u,v)

n−1 + F
(u,v)
n−2 for n odd,

min{u, v} · F (u,v)
n−1 + F

(u,v)
n−2 for n even.

Theorem 1 also shows that when u, v > 1 or u = v = 1, µ(T (u,v)(I2;n)) = F
(u,v)
n ,

that is, the maximal entries coincide with the terms of the above generalized Fi-

bonacci sequence. In particular, µ(T (1,1)(I2;n)) = F
(1,1)
n gives precisely the nth Fi-

bonacci number. When u = v, F
(u,u)
n is a Lucas sequence. This result is analogous

to a theorem on the largest values of the Stern sequence by Lucas expanded upon

by Paulin [12, 15] and is reminiscent of the work Bates, Bunder, and Tognetti [1, 2]

in locating specific rationals within the Calkin-Wilf and Stern-Brocot trees.

Our approach in the proof of Theorem 1 is to consider the entries of each matrix

as polynomials in one variable following the (u, v)-Calkin-Wilf tree generation rule

(see Figures 2 and 3). The difficulty lies in the determination of the different rates of

growth of the polynomial functions in Proposition 8 as the result of the generation

rule, that is, whether the left child (multiplication by u) has a larger entry than

the right child (multiplication by v) or vice versa. Another challenge is the case

u > v = 1, which requires special treatment using a polynomial partial ordering;
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the difficulty is due to a “misalignment”. Namely, the maximal entry in an odd row

does not belong to a matrix that is the child of a matrix containing the maximal

entry in the previous (even) row.

[
f1(uv) f2(uv)
f3(uv) f4(uv)

]

[
vf3(uv) + f1(uv) vf4(uv) + f2(uv)

f3(uv) f4(uv)

][
f1(uv) f2(uv)

uf1(uv) + f3(uv) uf2(uv) + f4(uv)

]

Figure 3: Entries in the tree in terms of u and v.

1.3. Certain Symmetric Properties of PLFT (u, v)-Calkin-Wilf Trees

The symmetric features of T (u,v)(I2) have greatly aided our proof by simplifying

the computations and reducing the number of cases that need to be considered.

Let n ≥ 1 and i ∈ {1, . . . , 2n}. We denote by c
(u,v)
I2

(n, i) the ith element from left

to right and c
(u,v)
I2

(n, 2n + 1 − i) the ith element from right to left of depth n in

T (u,v)(I2). The elements c
(u,v)
I2

(n, i) and c
(u′,v′)
I2

(n, 2n + 1 − i) are said to be in

symmetric positions6. Let L(u,v) = T (u,v)(Lu) and R(u,v) = T (u,v)(Rv) represent

the “left side” and “right side” of T (u,v)(I2).

The following properties are instrumental in our proof:

• Note that if 1 ≤ i ≤ 2n−1, then c
(u,v)
I2

(n, i) is a vertex in L(u,v) and

c
(u,v)
I2

(n, 2n + 1− i) is a vertex in R(u,v). It is easy to see that if

c
(u,v)
I2

(n, i) = · · ·Rα4
v Lα3

u Rα2
v Lα1

u ,

then

c
(u′,v′)
I2

(n, 2n + 1− i) = · · ·Lα4

u′ R
α3

v′ L
α2

u′ R
α1

v′

when 1 ≤ i ≤ 2n−1.

• If c
(u,v)
I2

(n, i) =

[
a b
c d

]
, then c

(v,u)
I2

(n, 2n + 1 − i) =

[
d c
b a

]
(Proposition 9).

Hence, we may assume u ≥ v since, from the above symmetry, it follows

that µ(T (u,v)(I2;n)) = µ(T (v,u)(I2;n)). That is, the maximal entry among

matrices of depth n of T (u,v)(I2) is the same as that of T (v,u)(I2).

6Note that pairs of matrices in symmetric positions do not have to be vertices of the same tree.
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• If c
(u,v)
I2

(n, i) =

[
a b
c d

]
, then c

(u,v)
I2

(n, 2n + 1 − i) =

[
d cv

u
bu
v a

]
(Proposition 8

and [9, Theorem 1]). This symmetric property together with Proposition 10

and the assumption that u ≥ v leads to the conclusion that the maximal entry

occurs in a matrix on the left side of the tree.

• Let M =

[
a b
c d

]
be a matrix in T (u,v)(I2). Then Lemma 9 shows that the

maximal entry on the left side of the tree must appear in the first column of

the matrix, that is, µ(M) = max{a, c}. Likewise the maximal entry on the

right side of the tree must appear in the second column of the matrix, that is,

µ(M) = max{b, d}. Given the assumption u ≥ v, we focus our work on the

first columns of the left side of the tree.

Proposition 3 provides an expression for the maximal entry for odd rows. Let

(LuRv)
nLu =

[
An ∗
Cn ∗

]
∈ T (u,v)(I2; 2n + 1). If M =

[
a ∗
c ∗

]
∈ T (u,v)(I2; 2n + 1),

then by induction on n, we are able to show that a, c ≤ Cn. Moreover, we provide

an explicit formula for Cn by solving a discrete dynamical system (Lemma 1 and

Proposition 2).

For the even rows, we use a convenient argument that reduces the problem to

the odd row case. Namely, we consider the maximal entry of T (u,v)(Rv; 2n + 1).

The maximal entry has the form µ(T (u,v)(Rv; 2n+ 1)) = µ((RvLu)n+1) by Propo-

sition 10. We then show that µ(T (u,v)(I2; 2n+ 2)) = µ(T (u,v)(Rv; 2n+ 1)).

1.4. An Interesting Application in Cryptography

Another goal of this paper is to address a question raised in [5, 6] related to Cayley

hash functions. We provide an answer as an application of Theorem 1.

A hash function is a function that accepts data of arbitrary size as an input and

produces an output of a fixed size. For example, the function f : N→ [0,m) given

by f(n) = n (mod m) always outputs a nonnegative integer that is no larger than

m− 1, regardless of the size of the input. This can be a useful tool in storing data

(such as online passwords). This leads one to demand that a desirable hash function

satisfy some basic requirements (as seen in [6]):

1. It should be computationally difficult to determine an input that hashes to a

given output.

2. It should be computationally difficult to determine a second input that hashes

to the same output as another given input.

3. It should be computationally difficult to determine two inputs that hash to

the same output (referred to as collision resistance).
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In [6], Bromberg, Shpilrain, and Vdovina define a Cayley hash function, which

we refer to as the BSV hash7, for binary strings in the following way. Let p be a

large prime. For fixed integers u, v ≥ 1 and a binary string w = a0a1 · · · an where

ai ∈ {0, 1} for i = 0, . . . , n, let M =
∏n
i=0 f(ai) where f(0) = Lu and f(1) = Rv.

(For the empty string λ, define f(λ) = I2.) The hashed output, a matrix in SL2(Fp),
is obtained by reducing the entries of M modulo p. For example, when u = 2, v = 3

and p = 5, the hashed output of the string 01100 is given by

[
0 1
4 3

]
.

There is a natural one-to-one correspondence between matrices in T (u,v)(M ;n)

and bit strings of length n. As such, if one can show that µ(T (u,v)(M ;n)) is bounded

above by some monotonically increasing function f(u,v)(n) for all n, then the con-

clusion is that, in the BSV hash, all bit strings of length at most n0 := n0(u, v)

have distinct hashed values (i.e., there are no collisions for pairs of “short” strings)

where n0 is the largest integer such that f(u,v)(n0) < p. In [6], this is precisely what

is done in the cases u = v = 2 and u = v = 3.

Proposition 1 (Bromberg, Shpilrain, and Vdovina [6]). In the BSV hash there are

no collisions between outputs of length less thanlog√
3+
√
8
p when u = v = 2 and

log√
11+
√

117
2

p when u = v = 3.

Corollary 1, a consequence of Theorem 1, immediately allows us to extend this

result to any u, v ≥ 1. In particular, in the case where u = 2 and v = 1, we get

that in the BSV hash there are no collisions between outputs of length less than

log√
2+
√
3
p where

√
2 +
√

3 ≈ 1.9, answering a question posed in [6, Problem 3].

The remainder of this paper is organized in the following way. Section 2 contains

our main result. Section 3 is devoted to giving a thorough proof of the main result.

The proof involves a careful analysis of various cases using a series of different

techniques.

2. Main Results

We now state our main results. First, we provide a monotonic closed formula for the

maximal entry of any matrix of depth n for any u, v ≥ 1, denoted by µ(T (u,v)(I2;n)),

depending on the parity of n. We also determine a matrix and position entry that

contain the maximal value for every depth n. As a consequence, we obtain an upper

bound on the binary string length that guarantees collision resistance on the BSV

Cayley hash function for any u, v ≥ 1.

7The BSV hash is a generalization of a hash function defined by Zémor [16].
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Theorem 1. For n ≥ 0 and positive integers u and v, let su,v = min{u, v}, tu,v =

max{u, v}, p±u,v = ±su,v
√
tu,v +

√
su,v(4 + uv) and q±u,v = 2 + uv ±

√
uv(4 + uv).

Then

µ(T (u,v)(I2; 2n+ 1)) =

√
tu,v

(
(q+u,v)

n+1 − (q−u,v)
n+1
)

2n+1
√
su,v(4 + uv)

(1)

and

µ(T (u,v)(I2; 2n+ 2))

=


p+u,v(q

+
u,v)

n+1+p−u,v(q
−
u,v)

n+1

2n+2
√
su,v(4+uv)

if su,v > 1,
√
tu,v((

√
tu,vp

−
u,v+2)(q+u,v)

n+1+(
√
tu,vp

+
u,v−2)(q

−
u,v)

n+1)
2n+2
√

(4+uv)
otherwise.

(2)

Furthermore, the value given by (1) is attained by the (2, 1) entry of the matrix

(LuRv)
nLu when u ≥ v and by the (1, 2) entry of the matrix (RvLu)nRv when

v ≥ u. Similarly, the value given by (2) is attained by the (1, 1) entry of the matrix

(RvLu)n when u ≥ v > 1, by the (2, 1) entry of the matrix Lu(LuRv)
n−1Lu when

u ≥ v = 1, by the (2, 2) entry of the matrix (LuRv)
n when v ≥ u > 1, and by the

(1, 2) entry of the matrix Rv(RvLu)n−1Rv when v ≥ u = 1.

For concrete examples of Theorem 1, see Tables 1 and 2.

HHHHHu
v

1 2

1 (3+
√
5)n+1−(3−

√
5)n+1

2n+1
√
5

(2+
√
3)n+1−(2−

√
3)n+1

√
3

2 (2+
√
3)n+1−(2−

√
3)n+1

√
3

(3+2
√
2)n+1−(3−2

√
2)n+1

2
√
2

3 3((5+
√
21)n+1−(5−

√
21)n+1)

2n+1
√
21

3((4+
√
15)n+1−(4−

√
15)n+1)

2
√
15

Table 1: The value of µ(T (u,v)(I2; 2n+ 1)) for various choices of u and v.

H
HHHHu

v
1

1 (
√
5+1)(3+

√
5)n+1+(

√
5−1)(3−

√
5)n+1

2n+2
√
5

2 (2 +
√

3)n+1 + (2−
√

3)n+1

3 3((
√
21−1)(5+

√
21)n+1+(

√
21+1)(5−

√
21)n+1)

2n+2
√
21

Table 2: The value of µ(T (u,v)(I2; 2n+ 2)) for various choices8of u and v.

The discussion in the introduction, together with Theorem 1, immediately gives

the following result.

8We restrict the number of entries in this table due to space considerations.
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Corollary 1. Let u, v ≥ 1 and n0 := n0(u, v) be the largest integer such that

µ(T (u,v)(I2;n0)) < p. Then there are no collisions between distinct bit strings of

length at most n0 in the BSV hash.

When u = v ∈ {2, 3}, our results in Theorem 1 and Corollary 1 coincide with

the ones obtained by Bromberg, Shpilrain, and Vdovina in [6].

3. Proof of Theorem 1

For the remainder of the paper, since we are concentrating on a proof of Theorem 1,

which involves the T (u,v)(I2) tree, we will focus our attention only on matrices in

SL2(N0).

In Theorem 1, the claim is that, when u ≥ v, (LuRv)
nLu has the maximal entry

among all other matrices in T (u,v)(I2; 2n + 1). We first show that the left column

entries of matrices of this form can be easily computed using a discrete dynamical

system.

Lemma 1. Let u, v ∈ N and a, c ∈ N0 (not both zero). Define αn := α
(u,v)
n (a, c)

and γn := γ
(u,v)
n (a, c) recursively by

αn =

{
a for n = 0,

αn−1 + vγn−1 otherwise

and

γn =

{
ua+ c for n = 0,

uαn−1 + (1 + uv)γn−1 otherwise.

Then γn ≥ αn,

γn =
(cp+u,v + aq+u,v

√
u)(q+u,v)

n + (cp−u,v − aq−u,v
√
u)(q−u,v)

n

2n+1
√
v(4 + uv)

,

and

αn =
(cp+u,v + aq+u,v

√
u)(q+u,v)

np−u,v − (cp−u,v − aq−u,v
√
u)(q−u,v)

np+u,v

2n+2
√
uv(4 + uv)

where p±u,v = ±v
√
u+

√
v(4 + uv) and q±u,v = 2 + uv ±

√
uv(4 + uv).



INTEGERS: 20 (2020) 12

Proof. It is clear that γ0 ≥ α0. The fact that γn ≥ αn for n ≥ 1 follows from

noticing that γn = uαn + γn−1.

As a matrix equation, we have that, for n ≥ 1,[
αn
γn

]
=

[
1 v
u 1 + uv

] [
αn−1
γn−1

]
.

The eigenvalues of the matrix

[
1 v
u 1 + uv

]
are

λ1 =
1

2

(
2 + uv +

√
uv(4 + uv)

)
and λ2 =

1

2

(
2 + uv −

√
uv(4 + uv)

)
with associated eigenvectors ~v1 =

[√
v(4+uv)−v

√
u

2
√
u

1

]
and ~v2 =

[
−
√
v(4+uv)−v

√
u

2
√
u

1

]
,

respectively. Solving the vector equation[
α0

γ0

]
= c1~v1 + c2~v2

gives that

c1 =
c(v
√
u+

√
v(4 + uv)) + a

√
u(2 + uv +

√
uv(4 + uv))

2
√
v(4 + uv)

and

c2 =
c(−v

√
u+

√
v(4 + uv))− a

√
u(2 + uv −

√
uv(4 + uv))

2
√
v(4 + uv)

.

It follows that [
αn
γn

]
=

[
1 v
u 1 + uv

]n [
α0

γ0

]
=

[
1 v
u 1 + uv

]n
(c1~v1 + c2~v2)

= c1λ
n
1~v1 + c2λ

n
2~v2.

So γn = c1λ
n
1 + c2λ

n
2 , which gives the desired result after the appropriate substitu-

tions.

Proposition 2. Suppose that M ∈ SL2(N0) is given by M =

[
a b
c d

]
. For any

n ≥ 0, let

(LuRv)
nLuM =

[
An ∗
Cn ∗

]
.

Then An = αn and Cn = γn where αn and γn are as defined in Lemma 1.
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Proof. The result follows by noting the relationship between the left columns of

(LuRv)
nLuM and (LuRv)

n+1LuM .

Note that a result similar to Proposition 2 could easily be found for the right

column of (LuRv)
nLuM . However, as we will see later on, this is not necessary. The

symmetries associated with PLFT (u, v)-Calkin-Wilf trees will allow us to reduce

the number of cases to be analyzed.

With Proposition 2 applied to I2, we can compute the entries in the left column

of a specific family of matrices, namely matrices of the form (LuRv)
nLu. The next

step will be to show that the left column entries of any matrix of depth 2n+ 1 are

no larger than Cn.

Definition 1. Let M ∈ SL2(N0) be given by M =

[
a b
c d

]
. We say that M is

u-lower dominant (u-LD) if c ≥ ua and d ≥ ub and we say that M is v-upper

dominant (v-UD) if a ≥ vc and b ≥ vd.

We get the following immediate consequences of the definitions of u-LD and

v-UD.

Lemma 2. A matrix in SL2(N0) is u-LD (v-UD) if and only if it is of the form

LuM (RvM) for some M ∈ SL2(N0).

Proof. Let M =

[
a b
c d

]
. We have that LuM =

[
a b

ua+ c ub+ d

]
. Clearly we have

that ua+c ≥ ua and ub+d ≥ ub, which give the needed inequalities. The remaining

part of the proof is similar.

Lemma 3. Suppose that M ∈ SL2(N0) and let M ′ ∈ T (u,v)(M ;n) for some n > 0.

Then M ′ is either u-LD or v-UD.

Proof. If M ′ ∈ T (u,v)(M ;n), then either M ′ = LuM
′′ or M ′ = RvM

′′ for some

M ′′ ∈ T (u,v)(M ;n− 1). By Lemma 2, the result follows.

At this time we consider two separate cases. In the first case we assume that

u ≥ v ≥ 2 and in the second that u ≥ v = 1. The proof of the first case is

fairly straightforward and mimics many of the parts in the Bromberg, Shpilrain,

and Vdovina proof [6]. The second case is more involved and requires a somewhat

different approach.

Proposition 3. Let u ≥ v ≥ 2. Suppose that M,M ′ ∈ SL2(N0), given by

M =

[
a ∗
c ∗

]
and M ′ =

[
a′ ∗
c′ ∗

]
, are such M ′ ∈ T (u,v)(M, 2n + 1) and a ≥ c.

Then min{a′, c′} ≤ An and max{a′, c′} ≤ Cn, where An and Cn are as defined in

Proposition 2. Furthermore, when M ′ is v-UD, a′ ≤ v
uCn.
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Proof. For n = 0, notice that LuM =

[
a ∗

ua+ c ∗

]
and RvM =

[
a+ vc ∗
c ∗

]
are

the only two matrices in T (u,v)(M ; 1). Since (v − 1)c ≤ (u − 1)a, the result holds

in this case.

Suppose that the statement is true for all matrices of depth 2k + 1, for some

k ≥ 0. Let M ′ ∈ T (u,v)(M, 2k + 3). Then M ′ ∈ T (u,v)(M ′′, 2) for some M ′′ ∈

T (u,v)(M, 2k + 1) given by M ′′ =

[
a′′ ∗
c′′ ∗

]
. It must be the case that

M ′ ∈ {L2
uM

′′, LuRvM
′′, RvLuM

′′, R2
vM
′′}.

In particular,

M ′ =



[
a′′ ∗

2ua′′ + c′′ ∗

]
if M ′ = L2

uM
′′,[

a′′ + vc′′ ∗
ua′′ + (1 + uv)c′′ ∗

]
if M ′ = LuRvM

′′,[
(1 + uv)a′′ + vc′′ ∗

ua′′ + c′′ ∗

]
if M ′ = RvLuM

′′,[
a′′ + 2vc′′ ∗

c′′ ∗

]
if M ′ = R2

vM
′′.

If M ′′ is u-LD, then ua′′ ≤ c′′, so

2ua′′ + c′′ = ua′′ + ua′′ + c′′

≤ ua′′ + 2c′′

≤ ua′′ + (1 + uv)c′′.

We have that

(1 + uv)a′′ + vc′′ = a′′ + uva′′ + vc′′

≤ a′′ + 2vc′′.

Finally, it follows that 2v ≤ 1 + uv since u ≥ 2, so a′′ + 2vc′′ ≤ ua′′ + (1 + uv)c′′.

These inequalities show that max{a′, c′} ≤ ua′′ + (1 + uv)c′′.

It is easy to see that min{a′, c′} is at most either a′′ + vc′′ or ua′′ + c′′.

Since, by assumption, a′′ ≤ Ak and c′′ ≤ Ck, it follows that

ua′′ + (1 + uv)c′′ ≤ uAk + (1 + uv)Ck

= Ck+1,
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a′′ + vc′′ ≤ Ak + vCk

= Ak+1,

and

ua′′ + c′′ ≤ 2c′′

≤ Ak + vCk

= Ak+1,

since v ≥ 2, as desired.

If M ′′ is v-UD, then one can show that max{a′, c′} ≤ (1 + uv)a′′ + vc′′ using

a very similar set of arguments as above. The needed inequalities follow from the

fact that vc′′ ≤ a′′ and u ≥ v ≥ 2 in this case. This completes the proof that

min{a′, c′} ≤ An and max{a′, c′} ≤ Cn.

For the remainder of the proof, we assume that M ′ is v-UD. If M ′′ is u-LD, then

u((1 + uv)a′′ + vc′′) = u(a′′ + uva′′ + vc′′)

≤ u(a′′ + 2vc′′)

≤ ua′′ + uv2c′′

≤ v(uAk + (1 + uv)Ck)

= vCk+1.

Similarly, M ′′ is v-UD, then

u(a′′ + 2vc′′) ≤ u(2a′′ + vc′′)

≤ u((1 + uv)a′′ + vc′′)

≤ u((1 + uv)
v

u
Ck + vAk)

= v(uAk + (1 + uv)Ck)

= vCk+1

where the third inequality follows by the induction hypothesis. Having exhausted

all possibilities, we obtain that a′ ≤ v
uCn.

A careful reading of the proof above will show that the assumption that u ≥ v ≥ 2

was needed to ensure that the inequalities 2v ≤ 1 + uv and 2u ≤ 1 + uv both hold

true. If v = 1, then the second inequality does not hold in general. We begin our

alternate approach with a critical definition.

Definition 2. Let f(x) =
∑n
i=0 aix

i and g(x) =
∑m
i=0 bix

i be polynomials over

N0. If
∑
k≥N ak ≥

∑
k≥N bk for every nonnegative integer N, then we say that

f(x) < g(x). Here we assume that ai = 0 for i > n and bj = 0 for j > m.
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Note some properties of the above definition.

1. The relation is a partial order.

2. If f(x) < g(x), then deg(f) ≥ deg(g).

3. If f1(x) < g1(x) and f2(x) < g2(x), then f1(x) + f2(x) < g1(x) + g2(x).

4. If f(x) < g(x) and g(x) < h(x), then f(x) < h(x).

5. If f(x) = g(x) + h(x) for some polynomial h(x) over N0, then f(x) < g(x).

6. We have that xif(x) < xjf(x) for i ≥ j ≥ 0. (This is due to a simple shift in

the coefficients of the polynomial f(x).)

7. If ai ≥ bi for each i then
∑n
i=0 aix

i <
∑m
i=0 bix

i.

The importance of Definition 2 appears in the following lemma. It is a straight-

forward property that can be used to determine if one polynomial is greater than

or equal to another when evaluated over positive integers.

Lemma 4. If f(x) < g(x), then f(r) ≥ g(r) for every positive integer r.

Proof. Suppose f(x) =
∑n
i=0 aix

i and g(x) =
∑m
i=0 bix

i where an, bm 6= 0. By

hypothesis, we must have n ≥ m.

Suppose that bm0 is such that bm0 > am0 and bi ≤ ai for all i > m0. Let

εi = ai − bi for i > m0 and define a new polynomial fm0(x) =
∑n
i=0 cix

i by

fm0
(x) =

n∑
i=m0+1

(ai − εi)xi +

(
am0

+

n∑
i=m0+1

εi

)
xm0 +

m0∑
i=0

aix
i.

It follows that fm0
(x) < g(x) and that bi ≤ ci for all i ≥ m0. Furthermore,

f(r) =

n∑
i=0

air
i

=

n∑
i=m0+1

(ai − εi + εi)r
i + am0

rm0 +

m0∑
i=0

air
i

≥
n∑

i=m0+1

(ai − εi)ri +

(
am0

+

n∑
i=m0+1

εi

)
rm0 +

m0∑
i=0

air
i

= fm0
(r).

Iterating this procedure will generate a finite list of polynomials fm0
(x), fm1

(x), . . . ,

fmk
(x) with f(r) ≥ fm0

(r) ≥ · · · ≥ fmk
(r) and fmk

(x) =
∑n
i=0 dix

i such that

di ≥ bi for all 1 ≤ i ≤ n. Clearly fmk
(r) ≥ g(r), which gives the desired result.
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Note that the converse of Lemma 4 is not true. If f(x) = x3+1 and g(x) = x2+x,

then f(r) ≥ g(r) for every positive integer r, but it is not true that f(x) < g(x).

In order to apply Lemma 4 to our current case, we first show that the left col-

umn entries of matrices appearing in T (u,1)(I2) can all be expressed as polynomials

evaluated at u. We also explicitly compute such polynomials for certain families of

matrices, namely matrices of the form (LuR1)nLu and (R1Lu)nLu.

Lemma 5. Let M ′ ∈ T (u,1)(M ;n) be given by M ′ =

[
a′ ∗
c′ ∗

]
. Then a′ = f(u) and

c′ = g(u) where f(x) and g(x) are polynomials over N0 with f(0) = 1 and g(0) = 0.

Proof. Clearly the statement is true for n = 0.

Suppose that the statement holds for all matrices of depth k for some k ≥ 0.

Let M ′ ∈ T (u,1)(M ; k + 1). It follows that M ′ = LuM
′′ or M ′ = R1M

′′ for

some M ′′ ∈ T (u,1)(M ; k). By assumption, M ′′ =

[
f(u) ∗
g(u) ∗

]
for some polynomials

f(x) and g(x) over N0. It follows that LuM
′′ =

[
f(u) ∗

uf(u) + g(u) ∗

]
and R1M

′′ =[
f(u) + g(u) ∗

g(u) ∗

]
. In either case, it is obvious that the statement holds for M ′,

which gives the result by induction.

Note that the polynomials in Lemma 5 depend on M , but not on the value of u.

We will make extensive use of the following result based on Pascal’s rule that(
n−1
k−1
)

+
(
n−1
k

)
=
(
n
k

)
for 1 ≤ k ≤ n.

Lemma 6. We have that

a−1∑
i=0

(
b− i
i

)
xa−i +

a∑
i=0

(
b+ 1− i

i

)
xa+1−i =

a∑
i=0

(
b+ 2− i

i

)
xa+1−i.

Proof.

a−1∑
i=0

(
b− i
i

)
xa−i +

a∑
i=0

(
b+ 1− i

i

)
xa+1−i

=

a∑
i=1

(
b+ 1− i
i− 1

)
xa+1−i +

a∑
i=0

(
b+ 1− i

i

)
xa+1−i

=

a∑
i=1

[(
b+ 1− i
i− 1

)
+

(
b+ 1− i

i

)]
xa+1−i + xa+1

=

a∑
i=0

(
b+ 2− i

i

)
xa+1−i
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Lemma 6 contains an identity involving binomial coefficients that we apply mul-

tiple times with different parameters in Lemma 7, Lemma 8, Proposition 4, and

Proposition 5. We elected to carefully document our use of the lemma and the

partial ordering of polynomials for clarity. The reader may choose to skip to Propo-

sition 6 after reading Lemma 7.

Lemma 7. For any n ≥ 0, let Fn(x) and Gn(x) be the polynomials over N0 such

that (LuR1)nLu =

[
Fn(u) ∗
Gn(u) ∗

]
. Then

Fn(x) =

n∑
i=0

(
2n− i
i

)
xn−i

and

Gn(x) =

n∑
i=0

(
2n+ 1− i

i

)
xn+1−i.

Proof. Since Lu =

[
1 0
u 1

]
, it is clear that F0(x) = 1 and G0(x) = x, which satisfy

the desired conclusion in the case n = 0. For n ≥ 0, note that, by Proposition 2,

Fn+1(x) = Fn(x) + Gn(x) and Gn+1(x) = xFn(x) + (1 + x)Gn(x) = xFn+1(x) +

Gn(x). In particular, if we assume that the conclusion holds for some k ≥ 0, then

by Lemma 6 we obtain that

Fk+1(x) = Fk(x) +Gk(x)

=

k∑
i=0

(
2k − i
i

)
xk−i +

k∑
i=0

(
2k + 1− i

i

)
xk+1−i

=

k∑
i=0

(
2k + 2− i

i

)
xk+1−i + 1

=

k+1∑
i=0

(
2k + 2− i

i

)
xk+1−i.

Also,

Gk+1(x) = Gk(x) + xFk+1(x)

=

k∑
i=0

(
2k + 1− i

i

)
xk+1−i +

k+1∑
i=0

(
2k + 2− i

i

)
xk+2−i

=

k+1∑
i=0

(
2k + 3− i

i

)
xk+2−i.

The result follows by induction.
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Note that Fn(x2) = F2n−1(x) where Fm(x) is the mth Fibonacci polynomial [3].

Lemma 8. For any n ≥ 1, let Hn(x) and In(x) be the polynomials over N0 such

that (R1Lu)nLu =

[
Hn(u) ∗
In(u) ∗

]
. Then

Hn(x) =

n∑
i=0

((
2n− i
i

)
+

(
2n− 1− i

i

))
xn−i

and

In(x) =

n−1∑
i=0

((
2n− 1− i

i

)
+

(
2n− 2− i

i

))
xn−i.

Proof. As in Lemma 7, the case n = 1 follows trivially. Note that Hn+1(x) =

(1+x)Hn(x)+In(x) and In+1(x) = xHn(x)+In(x). If we assume that the conclusion

holds for some k ≥ 0, then by Lemma 6 we get that

Ik+1(x) = xHk(x) + Ik(x)

=

k∑
i=0

(
2k − i
i

)
xk+1−i +

k−1∑
i=0

(
2k − 1− i

i

)
xk−i +

k∑
i=0

(
2k − 1− i

i

)
xk+1−i

+

k−1∑
i=0

(
2k − 2− i

i

)
xk−i

=

k∑
i=0

((
2k + 1− i

i

)
+

(
2k − i
i

))
xk+1−i

and

Hk+1(x) = Hk(x) + Ik+1(x)

=

k∑
i=0

((
2k − i
i

)
xk−i +

(
2k + 1− i

i

)
xk+1−i

)

+

k∑
i=0

((
2k − 1− i

i

)
xk−i +

(
2k − i
i

)
xk+1−i

)

= 1 +

k∑
i=0

(
2k + 2− i

i

)
xk+1−i +

k∑
i=0

(
2k + 1− i

i

)
xk+1−i

=

k+1∑
i=0

((
2k + 2− i

i

)
+

(
2k + 1− i

i

))
xk+1−i.

The result follows by induction.
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The main difference between the cases u ≥ v ≥ 2 and (the current) u ≥ v = 1

is expressed by Lemma 8 above. The failure of the inequality 2v ≤ 1 + uv in the

proof of Proposition 3 means that we must consider two sets of families of matrices

as candidates for the maximal left column entry of odd depth. While a little more

work is involved, we obtain the desired result with the propositions that follow.

Definition 3. If f(x) is a polynomial over N0, we let [f ]n denote the coefficient of

f associated with xn. If n > deg(f), then [f ]n = 0.

Proposition 4. For any n ≥ 1, we have that:

(a) In(x) 4 Hn(x) 4 Gn(x),

(b) Hn(x) + In(x) 4 Fn(x) +Gn(x).

Proof. Since, for any n ≥ 1, (R1Lu)nLu is v-UD, it follows that In(x) 4 Hn(x).

Let 0 ≤ k ≤ n. By Lemma 8 and Lemma 6 with x = 1,

∑
i≥k

[Hn]i =

n−k∑
i=0

((
2n− i
i

)
+

(
2n− 1− i

i

))
=

n−k∑
i=0

(
2n+ 1− i

i

)
+

(
n+ k − 1

n− k

)
and, by Lemma 7,

∑
i≥k

[Gn]i =

n−k+1∑
i=0

(
2n+ 1− i

i

)
=

n−k∑
i=0

(
2n+ 1− i

i

)
+

(
n+ k

n− k + 1

)
.

To complete the proof of (a), it is enough to show that
(
n+k−1
n−k

)
≤
(
n+k
n−k+1

)
. Note

that, for k = 0, we have that the desired inequality holds trivially. For k ≥ 1, since

n− k + 1 ≤ n+ k,(
n+ k − 1

n− k

)
≤
(
n+ k − 1

n− k

)
· n+ k

n− k + 1
=

(
n+ k

n− k + 1

)
,

as desired.

By Lemma 6 with x = 1 and Lemma 8,

∑
i≥k

[Hn + In]i =

n−k∑
i=0

((
2n− i
i

)
+

(
2n− 1− i

i

)
+

(
2n− 1− i

i

)
+

(
2n− 2− i

i

))

=

n−k∑
i=0

((
2n− i
i

)
+

(
2n+ 1− i

i

))
+

(
n+ k − 2

n− k

)
+

(
n+ k − 1

n− k

)
.
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As in the proof of (a), it can be shown that
(
n+k−2
n−k

)
≤
(
n+k−1
n−k+1

)
for 0 ≤ k ≤ n. This

is enough to obtain (b) since, by Lemma 7,

∑
i≥k

[Fn +Gn]i =

n−k∑
i=0

((
2n− i
i

)
+

(
2n+ 1− i

i

))
+

(
n+ k

n− k + 1

)
.

Proposition 5. For any n ≥ 1, we have that:

(a) 2xHn(x) + In(x) 4 Gn+1(x),

(b) Fn(x) + 2Gn(x) 4 Hn+1(x),

(c) xFn(x) +Gn(x) = In+1(x).

Proof. By Lemma 6 with x = 1, Lemma 7 and Lemma 8, for 0 ≤ k ≤ n, we have

that ∑
i≥k

[2xHn + In]i =
∑
i≥k

[xHn + In+1]i

=

n−k∑
i=0

((
2n− 1− i

i

)
+ 2

(
2n− i
i

)
+

(
2n+ 1− i

i

))

=

n−k+1∑
i=0

((
2n+ 1− i

i

)
+

(
2n+ 2− i

i

))
−
(
n+ k − 1

n− k + 1

)
−
(

n+ k

n− k + 1

)
=

n−k+2∑
i=0

(
2n+ 3− i

i

)
−
(
n+ k − 1

n− k + 1

)
−
(

n+ k

n− k + 1

)
−
(

n+ k

n− k + 2

)
=

n−k+2∑
i=0

(
2n+ 3− i

i

)
−
(
n+ k − 1

n− k + 1

)
−
(
n+ k + 1

n− k + 2

)

≤
n−k+2∑
i=0

(
2n+ 3− i

i

)
=
∑
i≥k

[Gn+1]i,

proving (a).
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By Lemma 6 with x = 1, Lemma 7 and Lemma 8, for 0 ≤ k ≤ n, we have that

∑
i≥k

[Fn + 2Gn]i =

n−k∑
i=0

((
2n− i
i

)
+ 2

(
2n+ 1− i

i

))
+ 2

(
n+ k

n− k + 1

)

=

n−k∑
i=0

((
2n+ 2− i

i

)
+

(
2n+ 1− i

i

))
+

(
n+ k

n− k

)
+ 2

(
n+ k

n− k + 1

)
=

n−k∑
i=0

((
2n+ 2− i

i

)
+

(
2n+ 1− i

i

))
+

(
n+ k + 1

n− k + 1

)
+

(
n+ k

n− k + 1

)
=

n−k+1∑
i=0

((
2n+ 2− i

i

)
+

(
2n+ 1− i

i

))
=
∑
i≥k

[Hn+1]i,

which gives (b).

Part (c) follows quickly from Lemma 7 and Lemma 8:

xFn(x) +Gn(x) =

n∑
i=0

(
2n− i
i

)
xn+1−i +

n∑
i=0

(
2n+ 1− i

i

)
xn+1−i

=

n∑
i=0

((
2n+ 1− i

i

)
+

(
2n− i
i

))
xn+1−i

= In+1(x).

Proposition 6. Suppose that M ∈ T (u,1)(I2, 2n + 1) is given by M =

[
a ∗
c ∗

]
.

Then max{a, c} ≤ Cn and a′ + c′ ≤ An + Cn, where An and Cn are as defined in

Proposition 2.

Proof. By Lemma 5 we have that, for any n, a = f(u) and c = g(u) for some

polynomials f(x) and g(x) over N0. By Lemma 4 and Proposition 4, to prove the

proposition, it is enough to show that f(x) 4 Fn(x) and g(x) 4 Gn(x) if M is u-LD

and g(x) 4 In(x) and f(x) 4 Hn(x) if M is 1-UD.

As in the proof of Proposition 3, the above claim is trivially true for n = 0.
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Suppose that the statement is true for all matrices of depth 2k+1, for some k ≥ 0.

Let M ∈ T (u,v)(I2, 2k+3). Then M ∈ T (u,v)(M ′, 2) for some M ′ ∈ T (u,v)(I2, 2k+1)

with M ′ =

[
f(u) ∗
g(u) ∗

]
for some polynomials f(x) and g(x) over N0. It follows that

M =



[
f(u) ∗

2uf(u) + g(u) ∗

]
if M = L2

uM
′,[

f(u) + g(u) ∗
uf(u) + (1 + u)g(u) ∗

]
if M = LuR1M

′,[
(1 + u)f(u) + g(u) ∗
uf(u) + g(u) ∗

]
if M = R1LuM

′,[
f(u) + 2g(u) ∗

g(u) ∗

]
if M = R2

1M
′.

If M ′ is u-LD, then g(x) < xf(x). Furthermore, by assumption, it follows that

f(x) 4 f(x) + g(x)

4 Fk(x) +Gk(x)

= Fk+1(x)

and

2xf(x) + g(x) = xf(x) + xf(x) + g(x)

4 xf(x) + g(x) + g(x)

4 xf(x) + (1 + x)g(x)

4 xFk(x) + (1 + x)Gk(x)

= Gk+1(x).

This shows that our claim holds if M is u-LD in this case.

By assumption and Proposition 5 part (b) and (c), we have that

(1 + x)f(x) + g(x) 4 f(x) + 2g(x)

4 Fk(x) + 2Gk(x)

4 Hk+1(x)

and

g(x) 4 xf(x) + g(x)

4 xFk(x) +Gk(x)

= Ik+1(x).
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This shows that our claim also holds if M is 1-UD in this case.

If M ′ is 1-UD, then f(x) < g(x). Furthermore, by assumption, Proposition 4

parts (a) and (b), and Proposition 5 part (a), we have that

f(x) 4 f(x) + g(x)

4 Hk(x) + Ik(x)

4 Fk(x) +Gk(x)

= Fk+1(x),

2xf(x) + g(x) 4 2xHk(x) + Ik(x)

4 Gk+1(x),

and

xf(x) + (1 + x)g(x) 4 xHk(x) + (1 + x)Ik(x)

4 Gk+1(x).

This shows that our claim holds if M is u-LD in this case.

Finally,

f(x) + 2g(x) 4 (1 + x)f(x) + g(x)

4 (1 + x)Hk(x) + Ik(x)

= Hk+1(x)

and

g(x) 4 xf(x) + g(x)

4 xHk(x) + Ik(x)

= Ik+1(x).

This shows that our claim also holds if M is 1-UD in this case.

Proposition 3 and Proposition 6 show that, for u ≥ v, the left column entries

of any descendant of Lu of depth 2n + 1 are bounded above by Cn. Further-

more, the propositions show that the upper bound is achieved by the (2, 1) entry of

(LuRv)
nLu. To complete the proof of (1) we must show that:

(A) the right column entries of any descendant of Lu of depth 2n+ 1 and

(B) all entries of any descendant of Rv of depth 2n+ 1
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are bounded above by Cn.

A proof by induction of (A) follows quickly by noticing that the right column

entries of any descendant M of Lu (including Lu itself) are bounded above by the

corresponding left column entries of M (see Figure 2). In fact, the same argument

generalizes in the following way.

Lemma 9. Let M =

[
a b
c d

]
. If M is a vertex in L(u,v) (M is a vertex in R(u,v)),

then µ(M) = max{a, c} (µ(M) = max{b, d}).

In the case where M = (RvLu)n or M = (LuRv)
nLu for some n ≥ 0, we can

deduce Lemma 9 directly by noting the following relationship between the entries

in the first column with the entries in the second column.

Proposition 7. Let n ≥ 0. If M = (RvLu)n, then M =

[
bu+ d b
bu
v d

]
for some

integers b and d. If M = (LuRv)
nLu, then M =

[
d b

u
v (b+ vd) d

]
for some integers

b and d.

Proof. Suppose M = (RvLu)n. The result is true for n = 0. Suppose that n = k

and M =

[
bu+ d b
bu
v d

]
. Then

(RvLu)k+1 = RvLuM

=

[
1 + uv v
u 1

] [
bu+ d b
bu
v d

]
=

[
(1 + uv)(bu+ d) + bu b(1 + uv) + vd

u(bu+ d) + bu
v bu+ d

]
.

It is easy to see that this matrix has the desired form, proving the first part of the

proposition.

Suppose M = (LuRv)
nLu. The result is true for n = 0, where M =

[
1 0
u 1

]
.

Suppose that n = k and M =

[
d b

u
v (b+ vd) d

]
, then

(LuRv)
k+1Lu = LuRvM

=

[
1 v
u 1 + uv

] [
d b

u
v (b+ vd) d

]
=

[
d+ u(b+ vd) b+ vd

du+ u
v (1 + uv)(b+ vd) bu+ d(1 + uv)

]
.

It is easy to see that this matrix has the desired form, proving the second part of

the proposition.
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Given Proposition 7 and Corollary 2 below, we can also show that (LuRv)
n =[

d b
bu
v bu+ d

]
and (RvLu)nRv =

[
d b+ vd
bu
v d

]
for some integers b and d.

It remains to prove (B).

Proposition 8. Let M ∈ T (u,v)(I2;n). Then

(a) M =

[
f1(uv) f2(uv)
f3(uv) f4(uv)

]
where fi(X) ∈ N0[X] and deg(fi) ≤ n for i =

1, 2, 3, 4.

(b) Futhermore,

f1(X) =
∑
i

aiX
αi ,

f2(X) = v
∑
i

biX
βi ,

f3(X) = u
∑
i

ciX
γi , and

f4(X) =
∑
i

diX
δi .

Proof. (a) The statement is clearly true in the case where M = I2.

Suppose that the statement holds for all matrices in T (u,v)(I2; k) for some

k ≥ 0. Let M ∈ T (u,v)(I2; k + 1). Then M ∈ {LuM ′, RvM ′} for some

M ′ ∈ T (u,v)(I2; k). In particular, by assumption, we have that

M ′ =

[
f ′1(uv) f ′2(uv)
f ′3(uv) f ′4(uv)

]
where f ′i(X) ∈ N0[X] and deg(f ′i) ≤ k for i = 1, 2, 3, 4. It now follows that

M =



[
f ′1(uv) f ′2(uv)

uf ′1(uv) + f ′3(uv) uf ′2(uv) + f ′4(uv)

]
if M = LuM

′,[
f ′1(uv) + vf ′3(uv) f ′2(uv) + vf ′4(uv)

f ′3(uv) f ′4(uv)

]
if M = RvM

′.

(3)

It is clear that, in either case, the statement holds for M and therefore the

result follows by induction.

(b) The statement is clearly true in the case where M = I2.

Suppose that the statement holds for all matrices in T (u,v)(I2; k) for some

k ≥ 0. Let M ∈ T (u,v)(I2; k + 1). Then M ∈ {LuM ′, RvM ′} for some
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M ′ ∈ T (u,v)(I2; k). Suppose M = LuM
′. By assumption, we have that

f ′1(X) =
∑
i

aiX
αi ,

f ′2(X) = v
∑
i

biX
βi ,

f ′3(X) = u
∑
i

ciX
γi , and

f ′4(X) =
∑
i

diX
δi .

Using (3), it follows that

f1(X) = f ′1(X)

=
∑
i

aiX
αi ,

f2(X) = f ′2(X)

= v
∑
i

biX
βi ,

f3(X) = uf ′1(X) + f ′3(X)

= u
∑
i

aiX
αi + u

∑
i

ciX
γi , and

uf ′2(X) + f ′4(X) = uv
∑
i

biX
βi +

∑
i

diX
δi .

Note that since

uf ′2(uv) + f ′4(uv) = uv
∑
i

bi(uv)βi +
∑
i

di(uv)δi

=
∑
i

bi(uv)βi+1 +
∑
i

di(uv)δi ,

the statement holds with f4(X) =
∑
i biX

βi+1 +
∑
i diX

δi .

A similar argument applies in the case when M = RvM
′.

Having exhausted all possibilities, the statement holds for M and therefore

the result follows by induction.

The following proposition serves two purposes. It addresses the case v > u by

showing that µ(T (u,v)(I2;n)) = µ(T (v,u)(I2;n)) and it is needed for the proof of

(B).
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Proposition 9. Let n ≥ 1 and i ∈ {1, . . . , 2n}. If c
(u,v)
I2

(n, i) =

[
a b
c d

]
, then

c
(v,u)
I2

(n, 2n + 1− i) =

[
d c
b a

]
.

Proof. We have that

c
(u,v)
I2

(1, 1) = Lu =

[
1 0
u 1

]
, c

(v,u)
I2

(1, 2) = Ru =

[
1 u
0 1

]
,

c
(u,v)
I2

(1, 2) = Rv =

[
1 v
0 1

]
, c

(v,u)
I2

(1, 1) = Lv =

[
1 0
v 1

]
.

This shows that the result is true when n = 1. Suppose that it is also true for all

matrices in the kth row. Take an odd i in {1, . . . , 2k+1}. Assume that c
(u,v)
I2

(k, (i+

1)/2) =

[
a′ b′

c′ d′

]
. Then

c
(u,v)
I2

(k + 1, i) = Lu · c(u,v)I2
(k, (i+ 1)/2)

=

[
a′ b′

ua′ + c′ ub′ + d′

]
and

c
(v,u)
I2

(k + 1, 2k+1 + 1− i) = Ru · c(v,u)I2
(k, (2k+1 + 1− i)/2)

= Ru ·
[
d′ c′

b′ a′

]
=

[
ub′ + d′ ua′ + c′

b′ a′

]
,

since 2k+1 + 1− i is even and (2k+1 + 1− i)/2 = 2k + 1− (i+ 1)/2. When i is even,

the proof follows in a similar way. The result follows by induction.

Let M be a vertex in R(u,v). By Proposition 9, there is a matrix M ′ that is a

vertex in L(v,u) whose entries and depth are the same as M . By Proposition 8 part

(a), the entries of M ′ are polynomials in u and v. Interchanging uv, we immediately

obtain a relationship between the entries of matrices in L(u,v) andR(u,v) of the same

depth. Corollary 2 makes the above relationship precise (see Figure 4).

Corollary 2. Let n ≥ 1 and i ∈ {1, . . . , 2n}. If c
(u,v)
I2

(n, i) =

[
f1(uv) f2(uv)
f3(uv) f4(uv)

]
,

then c
(u,v)
I2

(n, 2n + 1− i) =

[
f4(uv) vf3(uv)

u
uf2(uv)

v f1(uv)

]
.

We are now in a position to prove (B).
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[
1 0
0 1

]
[
1 v
0 1

]
[
1 2v
0 1

][
1 v
u 1 + uv

]
[
1 0
u 1

]
[
1 + uv v

u 1

][
1 0
2u 1

]
(a) The first three rows of T (u,v)(I2).[

1 0
0 1

]
[
1 u
0 1

]
[
1 2u
0 1

][
1 u
v 1 + uv

]
[
1 0
v 1

]
[
1 + uv u

v 1

][
1 0
2u 1

]
(b) The first three rows of T (v,u)(I2).

Figure 4: A side-by-side comparison of the first three rows of T (u,v)(I2) and
T (v,u)(I2).

Proposition 10. Let M = c
(u,v)
I2

(n, i) for some 1 ≤ i ≤ 2n−1 and

M ′ = c
(u,v)
I2

(n, 2n + 1− i) with u ≥ v. Then µ(M ′) ≤ µ(M).

Proof. We have that M =

[
f1(uv) f2(uv)
f3(uv) f4(uv)

]
where fi(X) ∈ N0[X] for i = 1, 2, 3, 4

satisfy the conclusion of Proposition 8. By Corollary 2, M ′ =

[
f4(uv) vf3(uv)

u
uf2(uv)

v f1(uv)

]
.

By Lemma 9, µ(M) = max{f1(uv), f3(uv)} and µ(M ′) = max{f1(uv), vf3(uv)u }.
If M is u-LD, then M ′ is v-UD. In particular,

µ(M ′) =
vf3(uv)

u

=
v

u
· u
∑
i

ci(uv)γi

≤ u
∑
i

ci(uv)γi

= f3(uv)

= µ(M).
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If M is v-UD, then M ′ is u-LD. In particular,

µ(M ′) = f1(uv)

= µ(M).

Proof of Theorem 1. The proofs of (A) and (B) using Lemma 9 and Proposition 10,

respectively, complete the proof of (1) for all u and v.

Applying Proposition 3 to the matrix Rv = Rv

[
0 1
1 0

]
, we get that, for n ≥ 0,

µ(T (u,v)(Rv; 2n+ 1)) = µ(T u,v(Rv; 2n+ 1))

= µ((LuRv)
nLuRv)

= µ((LuRv)
n+1)

since right multiplication by

[
0 1
1 0

]
simply exchanges the columns of a matrix.

Note that, by Proposition 10, µ((RvLu)n+1) = µ((LuRv)
n+1).

Suppose that there exists an M ∈ T (u,v)(I2; 2n+2) with µ(M) > µ((RvLu)n+1).

Proposition 10 shows that we can assume that M is a vertex in L(u,v), so there is an

i such that 1 ≤ i ≤ 22n+1 and M = c
(u,v)
I2

(2n+2, i). Let M ′ = c
(u,v)
I2

(2n+2, 22n+2 +

1− i). (Note that M ′ is a vertex in R(u,v).) By Corollary 2 and Proposition 10, we

obtain a contradiction if M is v-UD. Assuming that M is u-LD, M =

[
a ∗

ua+ c ∗

]
where

[
a ∗
c ∗

]
, the parent of M , is some matrix satisfying the result of Proposition 3.

That is, either a ≤ An and c ≤ Cn (with ua ≤ c) or a ≤ v
uCn and c ≤ An. In either

case it follows that

µ(M) = ua+ c

≤ An + vCn

= µ((RvLu)n+1),

a clear contradiction. Therefore, no such M exists, completing the proof of (2)

when u ≥ v > 1.

For u ≥ v = 1, (2) follows from Proposition 6 and Proposition 4 part (c) since,

for n ≥ 0,

µ(T (u,1)(I2; 2n+ 2)) ≤ uFn(u) +Gn(u)

= µ(Lu(LuR1)nLu).

Finally, (2) follows for v > u using a similar argument to (A) and (B).
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Appendix - Examples of PLFT (u, v)-Calkin-Wilf Trees
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