
 

 

  
Abstract—A reduced order modeling approach for natural 

gas transient flow in pipelines is presented. The Euler 
equations are considered as the governing equations and 
solved numerically using the implicit Steger-Warming flux 
vector splitting method. Next, the linearized form of the 
equations is derived and the corresponding eigensystem is 
obtained. Then, a few dominant flow eigenmodes are used to 
construct an efficient reduced-order model. A well-known test 
case is presented to demonstrate the accuracy and the 
computational efficiency of the proposed method. The results 
obtained are in good agreement with those of the direct 
numerical method and field data. Moreover, it is shown that 
the present reduced-order model is more efficient than the 
conventional numerical techniques for transient flow analysis 
of natural gas in pipelines. 
 

Keywords—Eigenmode, Natural Gas, Reduced Order Modeling, 
Transient Flow. 

I. INTRODUCTION 
HE dynamic behavior of long pipelines is characterized 
by large time constants, sometimes of as much as several 

hours, due to the resistance to flow in pipes and the large 
storage capacity of the pipelines. Transients in such complex 
and large scale systems can be satisfactorily described by the 
nonhomogeneous, nonlinear hyperbolic, inviscid Euler system 
of conservation laws in one dimensional form [1]. Under 
isothermal conditions the continuity and momentum equations 
together with an equation of state constitute the governing 
equations describing transient flow in natural gas pipelines.    

Traditional methods for the numerical analysis of system of 
governing equations are the Method of Characteristics (MOC) 
[2] and several finite difference schemes such as explicit finite 
differences [3] and implicit schemes [4]. Recent relevant 
studies used higher resolution explicit TVD Methods for the 
solution of sharp discontinuities fronts [5]. More recently the 
Method of Lines has been used with an adaptive mesh for 
solution system of governing equations of transient natural gas 
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flow [1]. However, one prefers a numerical method which is 
not only accurate but also with low computational cost.  

Reduced-order modeling (ROM) is recently known as a 
computational efficient technique for analysis of unsteady 
flows. Eigenmodes of the flow are used to construct reduced-
order models similar to the normal mode analysis commonly 
used in structural dynamics. The advantage of a modal 
approach is that one may construct a reduced-order model by 
retaining only a few of the original modes. This method has 
been used for unsteady aerodynamics and aeroelastic 
problems by several researchers [6] – [14].  

Although ROM based on the flow eigenmodes is a well-
known numerical technique, it is not yet applied for transient 
compressible flow analysis in the pipelines. In the present 
work this approach is chosen to achieve an efficient 
computational scheme for natural gas transient pipeflows. The 
nonhomogeneous Euler equations under isothermal condition 
are numerically solved using the implicit Steger-Warming flux 
vector splitting method (FSM) and their results are compared 
with the available experimental results. Next, they are 
linearized about the steady state condition and the linearized 
flow results are compared with the corresponding nonlinear 
ones. Then, the eigensystem of the linearized transient flow is 
derived and the eigenvalues and eigenvectors are calculated. 
Based on the above eigenanalysis, a few dominant 
eigenmodes are used to construct a reduced order model. 
Next, the results of the present ROM are compared with those 
of the direct numerical schemes and its accuracy and 
efficiency is discussed. Finally, the paper is concluded with 
some comments about the present eigenanalysis and ROM for 
natural gas transient flow in pipelines.  

II. GOVERNING EQUATIONS 
Under isothermal conditions the Euler equations along with 

a source term due to the pipe friction effect are governed the 
dynamics of the natural gas in a long pipeline [5]. In 
conservative form they are   
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In the above equations c  is isothermal sound speed, ρ  is 

the gas density, u  is the axial gas velocity, D  is diameter of 
the pipe and gf is the pipe friction factor. 

III. FINITE DIFFERENCE SCHEME 
The implicit Steger-Warming flux vector splitting method 

(FSM) has been used as the numerical scheme. This method is 
chosen, because it doesn't have the problem of numerical 
instability. In delta formulation, the finite difference form of 
the method is [15] 
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where subscript j indicates the spatial grid point, superscript 
n indicates the time level and 

(4) 1n n+Δ = −Q Q Q  

In relation (3), I  is the identity matrix, A and B  are 
Jacobean matrices which are defined as 

(5) ,
∂ ∂

= =
∂ ∂
E H

A B
Q Q

 

Moreover, +A and -A are respectively the positive and 
negative parts of the Jacobean matrixA , namely 
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In addition, +E and −E are the positive and negative parts 
of the flux vector E  which are represented as: 

(7) 
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When equation (3) is applied to each grid point, a block 

tridiagonal system of algebraic equations is obtained. This 
equations system is solved at each time step, which results in 
ΔQ  . Next, Q  at the advanced time step can be calculated 
using Eq. (4). 

IV. LINEARIZED FINITE DIFFERENCE EQUATIONS 
To do the eigenanalysis and construct an eigenmode based 

reduced order model, it is necessary to linearize the equations. 
For this purpose, the flow field variables at each time step are 
considered as 

(8) 1 1ˆn o nQ Q Q+ += +  

where oQ is the corresponding steady state value and Q̂ is a 

small perturbation about it. Substituting equation (8) into (3) 
and doing some manipulations yields 
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The above linearized equation can be represented as 

(10) ˆ ˆo n n n= +W Q IQ V+1 +1
 

where V is a vector consisting the imposed values by the 
boundary conditions and oW is made by the left hand side 
factors of Eq. (9).  

V. EIGENANALYSIS AND ROM 
For zero forcing function,V , one can set 

ˆ exp( )i i itλ=Q x and exp( )i iz tλ= Δ to obtain the 

following generalized eigenvalue problem 
(11) o

i i i=z W x Ix  

where iλ  and iz  are thi  eigenvalues in λ -plane and z -

plane, respectively, and ix  is the corresponding eigenvector. 
More generally Eq. (11) can be written as 

(12) =oZW X IX  
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where Z  is a diagonal matrix containing the eigenvalues and 
X  is a matrix with columns that are the right eigenvectors. 
On the other hand, the left eigenvectors satisfy the following 
relation 

(13) =o T(W ) YZ IY  

whereY is a matrix with rows that are the left eigenvectors. If 
the eigenvectors are normalized suitable, they satisfy the 
following orthogonality conditions 

(14) 
=

=

T o

T

Y W X I

Y IX Z
 

The dynamic behavior of the fluid can be represented as the 
sum of the individual eigenmodes, that is, 

(15) ˆ =Q Xc  
where c  is the vector of normal mode coordinates. 
Substitution of (15) into (10), premultiplying by TY  , and 
making use of the orthogonality condition gives a set of N 
uncoupled equations for the modal coordinates c , 

(16) 1 1n n T n+ += +c Zc Y V  

Now, one may construct a reduced-order model by retaining 
only a few of the original modes. 

VI. RESULTS AND DISCUSSIONS 
A 72259.5 m long pipeline of 0.2 m diameter is considered 

as a test case to verify the results of the present method. 
Figure 1 shows the test case schematically. The above test 
case which its experimental results are available, has been 
studied by Taylor et al. [16], Zhou and Adewumi [5], and also 
by Tentis et al. [1]. The pipeline transports natural gas of 
0.675 specific gravity at o10 C . The gas viscosity is 

-6

11.84×10  kg/ms while the pipeline wall roughness is 

0.617mm and isothermal sound speed equals 367.9 m/s. At the 
pipeline’s inlet, the gas pressure is kept constant at 4.21MPa, 
whereas the pipe’s mass flow rate at the outlet varies with a 
24-hour cycle, corresponding to changes in consumer demand 
within a day as is shown in Fig. 2.   

 

 
Fig. 1 Schematic of the pipeline and its B.Cs.  
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Fig. 2 Imposed mass flux at the outlet 

Fig. 3 illustrates the present results of FSM for pressure 
time changes at the pipe outlet, along with those of the others 
[1, 5, 16] and the experiments. There are some differences 
between the present nonlinear FSM results with those 
obtained by the others. However, when they are compared 
with the experiments, it seems that all of the numerical 
methods have the nearly similar errors. The interesting point is 
the accuracy of the results of the present linearized FSM. As is 
shown in Fig. 3, the linearized FSM can predict the transient 
behavior of the outlet pressure as nearly accurate as the 
nonlinear models. Thus, one can construct a reduced order 
model based on the linearized equations to estimate the 
transient gas pipeflows more efficiently. In figure 4 the gas 
pressure at some different points are presented and compared 
with those by Zhou and Adewumi [5]. It is observed that the 
present results are in relatively good agreement with those 
obtained by the above authors. Moreover, Fig. 4 shows that 
the present linearized FSM results in the gas pressure as 
accurate as the nonlinear model.  
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Fig. 3 Comparison of pressure time history at the outlet  
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Fig. 4 Pressure time history at different points of the pipe   

Next, the results of the present eigenanalysis are discussed. 
The eigenvalues of the present method are shown in Figs. 5 
and 6 inλ -plane and z -plane, respectively. In addition, the 
first 60 eigenvalues in λ -plane are illustrated in Fig. 7. As is 
shown in Fig. 5, this eigensystem has no any zero eigenvalue 
in the z -plane. Behbahani-Nejad et al. [17] have been shown 
that when there is no zero eigenvalue, there is no any 
quasisteady eigenmode and thus, it is likely to construct a 
reduced order model without the static correction requirement. 
On the other hand, Fig. 6 illustrates that the real part of all 
eigenvalues are negative. In physical point of view, it means 
that the present numerical technique is stable. Moreover, as is 
shown in Fig. 7, a few first eigenvalues corresponds the 
dominant eigenmodes, because their absolute real and 
imaginary parts are relatively small and therefore they are 
activated before the other eigenmodes. 
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The eigenvalues discussed in the preceding paragraph are 

used to construct a reduced order model. As there is no any 
zero eigenvalue, it is expected that the present reduced order 
model for natural gas transient flow gives satisfactory results 
without the static correction. Fig. 8 shows the pressure time 
history at the pipe outlet. It is observed that the results of the 
present ROM with only 4 or 5 eigenmodes are in excellent 
agreement with those obtained by the direct numerical 
method. The similar results are obtained for the pressure time 
changes at the other points along the pipe and are shown in 
Fig. 9. Finally, the efficiency of the present ROM are 
confirmed when its CPU times are compared with the direct 
numerical method. Table I indicates the computational times 
for the present ROM and the direct method. It is declared that 
there is about 70% reduction in CPU time when the present 
ROM is used.  
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Fig. 8 Results of the present ROM and the direct method for  
pressure history at the outlet  
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Fig. 9 Results of the present ROM and the direct method for 

pressure history at different points of the pipe   
 
 

TABLE I 
CPU TIMES FOR THE PRESENT ROM AND THE DIRECT METHOD 

ROM 5 
Modes 

ROM 4 
Modes 

Direct 
Simulation 

Method 

83 s  73s  253 s   CPU TIME 

67.2% 71.14% - 
Time saving 

 

VII. CONCLUSION 
The present ROM can be used to analyze the transient flow 

of natural gas in pipelines, efficiently. Since the linearized 
forms of the governing equations can give satisfactory results 
with an enough degree of accuracy in many natural gas 
transient pipeflows, they can be used to construct proper 
reduced order models. The present eigenanalysis show that 

there is no any zero eigenvalue in the z -plane and therefore it 
is likely to construct reduced order models without the static 
correction requirement. It is indicated that the proposed 
reduced order model can efficiently gives satisfactory results 
for natural gas unsteady flow problems as accurate as the 
other direct numerical finite difference methods. 
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