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A Comparison of Some Thresholding Selection
Methods for Wavelet Regression

Alsaidi M. Altaher, Mohd T. Ismail

Abstract—In wavelet regression, choosing threshold value is a
crucial issue. A too large value cuts too many coefficients resulting
in over smoothing. Conversely, a too small threshold value allows
many coefficients to be included in reconstruction, giving a wiggly
estimate which result in under smoothing. However, the proper
choice of threshold can be considered as a careful balance of these
principles. This paper gives a very brief introduction to some
thresholding selection methods. These methods include: Universal,
Sure, Ebays, Two fold cross validation and level dependent cross
validation. A simulation study on a variety of sample sizes, test
functions, signal-to-noise ratios is conducted to compare their
numerical performances using three different noise structures. For
Gaussian noise, EBayes outperforms in all cases for all used
functions while Two fold cross validation provides the best results in
the case of long tail noise. For large values of signal-to-noise ratios,
level dependent cross validation works well under correlated noises
case. As expected, increasing both sample size and level of signal to
noise ratio, increases estimation efficiency.

Keywords— wavelet regression, simulation, Threshold.

. INTRODUCTION

STIMATING a regression function using wavelet

methods is an issue that has received great attention over

the last two decades. Many theorems and methods are
introduced with  emphasis on problems of the choice of the
smoothing parameter. The basic idea behind wavelet
estimation is to get a relatively small number of wavelet
coefficients to represent the underling regression function. A
value called (Threshold) is used to kill or keep the wavelet
coefficient. Hence, Estimation quality depends strongly on
how efficient threshold value would be chosen.

Many different schemes have been proposed for choosing a
threshold value begging by Donoho and Johnstone [6, 7],
Nason[14], Barber and Nason [3], Johnstone and Silverman
[10, 11], Oh, Kim and Lee [12], Silverman [19], Kim and
Lee[13]. However, Abramovich et al. [2] and Vidakovic [22]
give a review of some of these. In this paper, it would be
given a brief description of some of the standard thresholding
rules.

As usual, whenever a method is created or developed, a
series of investigations comes along with the new
development. The main goal of this paper is to investigate and
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compare the latest methods with previous ones. The remainder
of this paper is organized as follows:

Section 2 gives a brief review to wavelet regression and
thresholding rules including soft and hard threshold. Then, a
brief introduction to: universal, Sure, Ebays, Two fold cross
validation and level dependent cross validation. Section 4
examines simulations to investigate the practical performance
of the methods mentioned above. Section 5 provides the
conclusion of this work.

Il. WAVELET REGRESSION

Suppose a data set Y,, Y,,..., Y, observed from the model:

y,=f(x)+eg ,i=12,.n=2 @)

[
Where {¢} are iidN(0,6%), X =—, and fis the
n

function to be estimated.
Wavelet estimation of model (1) can be performed in three
steps: first, take the discreet wavelet transform of ;. Next, a

“soft” or a “hard” thresholding rule is used to threshold the
coefficients. Finally the coefficients are inversely transformed

back to the signal space to obtain the estimated ;".

Given a wavelet coefficient W and threshold value A , the
hard threshold value of the coefficient can be written as:

77hard (W’ ﬂ') =wl ( |W| > /1)
while the soft threshold value is
Moo (W, A) =sgn(w) ( [w]—2) 1( |w]>2)

where | is the usual indicator function. In other words, “hard”
means “keep or Kill” while “soft” means “shrink or Kill”.

I1l. THRESHOLDING SELECTION METHODS
This section is devoted to introduce theoretical descriptions
of some thresholding selection methods.
A. Universal Thresholding Methods

The universal threshold method was introduced by Donoho
and Johnstone [6]. It is given by
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A

universal

=0+/2log(n)

where N is the total number of data points (equivalently the
number of wavelet coefficients) and & is the standard
deviation of noise level which almost is unknown and it is
usually replaced by a robust estimate, & such as the median
absolute deviation of the wavelet coefficients at the finest

level ( j =log(n)-1)

6= median(‘wj—l,k — median(wj_lyk)‘ )

Using the universal threshold yields the largest thresholds
and thus an estimate of regression function with a relatively
high degree of smoothing.

B. Sure Thresholding Method

This method was introduced by Donoho and Johnstone [7]
which was achieved by the principle of minimizing the Stein’
Unbiased Risk Estimation (SURE) for each wavelet level j .

Let X~ N (g 1) be multivariate Gaussian observations

with mean vector 4 and diagonal covariance matrix | .
Stein [19] showed that if:

AX) = X+g(X)

Where £2(X) is a particular fixed estimator of zz and
g= (gi)ip:1 RPinto R’
assumed to be weakly differentiable, then

is a function from which is

E, [ a(X- )] = p+E o) +2v.g(X)}

Where
V. 9
9=259

The insight of Donoho and Johnstone [7] was to apply
Stein’s result in [20] using a soft threshold.

In this case:
-x if |x|<2
g(x)=9-4 if x >4
A if x <A
Then:
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SURE(4;,w;,) = p—2.#{i:|x|< /1}+Zp:(|xi|/\/1)2
i=1

is an unbiased estimate of the risk. This means:
E, H[N) (X) - ,uH = E,SURE(4, )

So the SURE threshold can be written as:

A min(4,,w;)

= arg 0<A<y/2logn

j,sure

C. Two fold Cross Validation

Cross validation is a popularly used method in a wild range
of statistical procedure; see for example Stone [21], Silverman
[18], Green and Silverman [9].

Since the fast wavelet transform methods require input data

vectors that are of length N =2 | leaving out a data point
makes the data length is no longer a power of two and thus
classic cross validation cannot be done to estimate regression
function. For this, Nason [14] proposed dropping half of the
data points which whose size is still a power of two. Here is a
description of Nason two fold crosses validation.

Let Y, Y5,. Yy, represent the odd data points and

ylE , y2E yoeey ynE/2 represent the even data points.

Let f°, fF denote the wavelet estimators based on the odd

index points and even index points respectively. Using the
removed odd indexed data, an interpolated version of the odd
noise data is formed:

s Voia+ Vo) +1=12,..5-1

0

Yi =

N|s

%(yn—1+y1) ] |=
For the even data noise, let:

(Yo +Yy) 1=2,..5
yiE =

ty,) 0=l
The full cross validation estimate for the risk M (A1) is:

M(A) =D {(F5 (@) - §0)2 + (7, (32 - yF)*}

If A, minimizes M (A1) then the final threshold is given by
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_ Iog 2)_1/22@

A =(1
logn 2

n

which can be computed numerically .

D. Level Dependent Cross Validation

Various existing methods for level dependent cross
validation have been developed by Donoho and Johnstone [7],
Johnstone and Silverman [10]. Oh, Kim and Lee [13]
proposed a new method for level dependent cross validation in
which a data point is imputed rather than expelling data. A
fast imputation method is used to obtain the CV wavelet

estimation f () when the i" observation is deleted. Cross
validation estimator is given by

V(1) = %i[yi — ()T @

Two algorithms can be used to obtain f () : “Leave one

” “ ” n
out CV” or “k-fold CV”. Suppose dataset{X,,Y,}_,. To
apply” Leave one out algorithm” first, remove the data point
(X, y;)to be considered as a test dataset. This will leave
Yors =1Yir Yor-os Yiigs Visrseeos Yo} @S @ training dataset.
For Yy, . Mallat’s fast algorithm cannot be used since the new

data length is no longer a power of 2. To overcome this
limitation, Oh, Kim and Lee [13] suggested inputting a data

point ¥, using an iterative imputation procedure to get a new
training dataset Y, ,,; ={Yops ¥; }With length a power of 2.
Now, for a given threshold value A, wavelet estimate

ﬂ (x,) at every design point X, must be found and then,

f(x) is evaluated. Finally, CV (1)is computed over a
certain range for A, thus, level dependent cross validation

threshold A that minimize (3).
Traditional “K-fold cross validation “can also be used to

obtain f(X,) .Suppose data sets with sizen. Divide the

dataset into M blocks, where each block has % size. Then,

“leave M blocks out CV)” can be performed by dropping m
blocks as test data. In general, leave M blocks-out with block

size b is as if we perform a k-fold CV with block size b ,

n
where k= .
mxb
Oh, Kim and Lee [13] showed that level dependent
thresholds according to levels are obtained by minimizing the
level dependent cross validation:

(4, A, A))=argminCV (4, 4,,..., 4,)

Where

International Scholarly and Scientific Research & Innovation 4(2) 2010

13 k(i
CV(/’li,ﬂg,--u/%) :HZ(yi - fzi,k/l(z,)...,zj)z
i=1

Where f ﬂ; ';ii) 4 represents the wavelet estimate based on
2 j

the thresholds A, 4,,..., 4, after removing the k™ part of the

data. Here A, represents threshold value at resolution
level | .

E. Ebayes Thresholding Methods

Recently various Bayesian approaches are introduced to
choose a threshold value. See for example Abramovich et al.
[2], Clyde and George [4, 5]. In this paper, we are interested
in describing the approach that introduced by Johnstone and
Silverman [11].

In this approach, given a single observation X, subject to
noise &; we can write
Xi = +g
Where X,

i Is drawn

independently from a normal

distribution with mean £ and variance o and &, ~ N(0,1).

An achieving a threshold value using this approach involves
three main aspects.

1) First, a Bayesian model is used for the parameters 4. In

this model 44 is assumed to be =zero with

probability (1—7) and with probabilityz to be drawn
from a symmetric heavy-tailed density y such Laplace or

Cauchy density. Define the prior distribution of 24 as
fprior (:u|) = (l_ 7)50 (/u| ) + 17/(/'4) (4)

Here ¢, is the Dirac function.

2) Given a sequence observations, the weight 7 s
automatically chosen from the data using a marginal
maximum likelihood approach. The marginal maximum

likelihood estimator 7 of 7 maximizes the marginal log
likelihood and it can be written as

1(7) = X og{{L-D)B(X,)+ 79 (X,)}

Where g denotes the convolution of the density y with the
standard normal &

3) After obtaining 7 , an estimate for 44 is found by

substituting 7 back into the prior (4) and taking the posterior
median of 4 given X, = X; . In this case, let :
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/Ali = :&(Xi ' z’:)
Where £i(X,7) is the median of the posterior distribution
of x given X, =X .However, we can use also the mean of
the posterior distribution as an estimate for £4 . For any fixed

7 <1, the posterior median will be a thresholding rule, in that
there exists a threshold t(z) > 0 such that z(x;,7) =0

with the constrain |Xi| <t(r). Hence, the estimated value 7

gives an estimated threshold t(7) =1 .

IV. SIMULATION

In this section, a simulation study was conducted to
compare the five methods:
1) Universal: Donoho and Johnstone procedure [6].
2) Sure: Donoho and Johnstone procedure [7].
3) Two fold CV: two fold cross validation of Nason [14].
4) Ebayes: the empirical EBayes procedure of Johnstone and
Silverman [11].

5) Level dep. CV : level dependent cross validation
introduced by Oh, Kim and Lim [13].

Four test functions were used. Heavsine, Doppler which
introduced by Donoho Johnstone [6]. Fgl of Fan and Gijbels
[8], Piecewise polynomial of Nason and Silverman [15].

Three different kinds of noise were used:

1) Independently distributed normal noise,
2) Independently distributed Student’s t noise with three
degrees of freedom.
3) Correlated normally distributed deviates from AR (1) of lag
1 with parameter 1/2 as in Nason [14]. All errors have zero
mean and constant variances.

Five levels of signal to noise ratio (Snr) were used:

snr =2,5,7,9and 10. Also two different sample sizes were
chosen: N=512,1024. For every combination of test

function, noise structure, level to noise and sample size, 1000
samples were generated. For each generated data sets, the five
methods were applied to get an estimate for the test functions
and then the mean squared error was computed.

For addition information regarding this simulation: mother
wavelet N =6 was used in every wavelet transform, Soft
thresholding was used for every method, the formula (2) was
used to find the variances for Universal and Ebayes, Laplace
density with the median of posterior were used for Ebayes, all
simulation results were carried out using the waveThresh
package of Nason [16] in R.

Table I, Table 1l and Table Il report the average of the
mean squared error under 1000 replications. Having closed
look at these tables, the following major interpretation can be
made: For Gaussian noises, the Ebayes method provides the
best results in all cases without any exception. It is remarkable
to notice that for (snr = 2),
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Universal and Sure have the same mean squared errors
though the equality disappears when snr increases. Two fold
cross validation does the best in the case of Student’s t noise
(long tail noises t(3)).

For Correlated noises from AR (1) of lag 1 with parameter
1/2, we noticed that: Two fold cross validation and Ebayes
perform badly because of the correlation structure within the
data set. In most cases large values of snreg. (snr =9,10)

seems to make level dependent cross validation do better
while it does poorly when snr becomes less and less.

For level dependent cross validation 32 blocks were left out
with block size 4. Coming back to Oh, Kim and Lim’ results
[13], they left 64 blocks out with block size 2. The result was
not similar to theirs but the same conclusion has been found.

In this work, a different block size is used to show how
strongly level dependent cross validation depends on the
block sizes. However, finding a good block size for level
dependent cross validation is left for further research. Finally,
it was expected to notice that increasing sample size and level
of signal to noise ratio, improves estimation efficiency of all
used methods and this suits theoretical considerations.
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