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Abstract— During last decades, worldwide researchers dedicate A monitoring network is composed by remote sensing

efforts to develop machine-based seismic Early \kgrisystems,
aiming at reducing the huge human losses and edondamages.
The elaboration time of seismic waveforms is tardduced in order
to increase the time interval available for theivation of safety
measures. This paper suggests a Data Mining madeka correctly
and quickly estimate dangerousness of the runraisgrsc event.

Several thousand seismic recordings of Japanese Itafidn
earthquakes were analyzed and a model was obthinetkans of a
Bayesian Network (BN), which was tested just ovke ffirst
recordings of seismic events in order to reducedésion time and
the test results were very satisfactory.

The model was integrated within an Early Warningst&m
prototype able to collect and elaborate data froseiamic sensor
network, estimate the dangerousness of the runegmthquake and
take the decision of activating the warning promptl

Keywords—Bayesian Networks,
Magnitude Classification, Seismic Early Warning t8ys

|. INTRODUCTION

stations that transmit in real-time to a centralgessor that
provides to calculate in real-time seismic paransegeich as
location, origin time, magnitude.The purpose ofehethquake
EW is to quickly announce people that an earthquake
occurred and inform them about the estimated seismi
intensity several seconds or more before the draf/atrong
tremors caused by the quake. The present papetilmEspart
of Data Elaboration Center included in the resegdject
“SIT_MEW - Integrated Network of broadband
communication with early warning methodologies lfovd and
emergency management in case of natural disastexded by
ltalian MIUR (Minestry of Education, University and
Research); the part described in the paper walsarge of the
authors. The project aimed at developing an EWesydioth

Decision Support Systemfor site-specific and regional warning, receivingissic

waveform from a monitoring sensor network placedthe
Irpinia region (southern Italy). The system was easKor
efficiently taking decision upon the opportunity aferting
people and infrastructures in the area of Naplgswehen an

VER the last few decades there has been ongoie@rthquake originated in Irpinia, reducing the aiuibity of

experimentation into seismic early-warning (EW)teyss
in several active seismic areas of the world. E\&tesys are
operating (active) in Mexico, Japan, Taiwan, Roraaand
Turkey; while other systems are under developméaty(
India, California, Greece, ...). Although the predtiot of
earthquakes is not yet practicable, current tecgyhllows
prompt identification of the onset of any dangersassmic
event. As it is well known, seismic EW concerns ¢apability
of estimating the destructive potential of an eguttke in the
seconds immediately following its generation. Suah
estimation can then be used in sending out an akarm
strategic sites in order to allow activities forithsecuring
before the arrival of the destructive seismic wakesddition
earthquake EW systems utilize the capability of erad
telecommunication systems to process and
information faster than seismic waves propagate.eWha
suitable seismic sensor network is available totgmto a
geographical area, or a specific site, fast pracgssethods
can be applied to locate an earthquake, calculseetent
magnitude, and estimate the distribution of groomation. A
seismic network could be distributed in the epicararea, or
localized around the area to be protected, if thieemter is
unknown.

G. Zazzaro, F.M. Pisano and G. Romano are with QlR#fian Aerospace
Research Centre), Via Maiorise sn, 81043 Capua (G&ly. (phone:
00390823623558; e-mail {g.zazzaro, f.pisano, g.mop@cira.it).
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missed and false alarms.With such requirementssyséem
was designed in order to match the pressing tinmstcaint of
assuring at least a time interval of 20 second#hi@iactivation
of automatic safety measures (e.g. traffic lighdsprevent
transit on threatened structures, shutdown of figglines and
dangerous tanks, isolation of hospital operatirgns, etc.) in
the urban area of Naples. In order to do that, eaep from
the data collection to the warning decision waseftaly
designed to assure a limited time-consumption. dnendetail,
the data analysis step had to take into accourit eéhary
earthquake is recorded by more than one seismgogseand
each sensor produces at least three accelerogramasfor
each coordinate axis; such complex physical phenome
makes Data Mining (DM) worthy for application besatof its

transnaibility to work with many variables and data. Adlyain

some recent papers [7], DM algorithms such as [mtis
Trees, Clustering and Association Rules were agpiethe
seismic classification for post-processing analy$iss work
was carried out through the realization of the Kleulge
Discovery in Database (KDD) process according te th
standard model process conceived by the Crossthydus
Consortium Standard Process for DM (CRISP-DM) [Tle
process is finalized to create a numerical models&ismic
magnitude classification based on an appropridecten of
seismic parameters of the earthquake.This workpaeasof the
algorithm-based analytical core of a prototype esysfor the
application of seismic EW methods, for real-timeigaition of
earthquake effects
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In this work Weka tool
Environment for Knowledge Analysis) was used ([H)],
[12]) to carry on DM analysis, from data exploratim model
evaluation.

Il. BUSINESSUNDERSTANDING

A.Early Warning Definition

EW is widely defined as all the actions that cantddeen
during the lead time of a catastrophic event. Taalltime is
defined as the time elapsing between the instargnwine
occurrence of a catastrophic event in a given pl&ce
reasonably certain and the moment it actually accddi.
Typical lead times are of the orders of secondgetts of
seconds for earthquakes, minutes to hours for tsism&tc.

B.Early Warning Principle

Tremors extend out from the seismic focus in a wikee
motion. When an earthquake occurs it releases grierthe
form of waves that radiate from the earthquake c®un all
directions. The principle on which EW systems assea
exploits the consideration that seismic waves trawvith
velocity less than electromagnetic signals, useiatasmit the
seismic information about the incoming event frdra sensor
networks to the elaboration centre. In additiorréhare two
main types of seismic waves: P-waves (Primary) nitiai
tremors (not destructive), and S-waves (Secondaityich
cause stronger tremors and damages. P-waves
compressional waves that are longitudinal in natGrgvaves
are slower than P-waves and move at about halfspesd
of P-waves. Vertical ground motion generated byayeg is
highly damaging to the structures. An EW systerhased on
the different propagation velocities between P &ngaves.

TABLE |
DIFFERENCES AMONGP AND S-WAVES AND ELECTROMAGNETIC WAVES

Traveling speed of seismic waves

P-waves cause rattling tremors around 7km/s

cause larger, more

powerful tremor around 4km/s

S-waves

around
300000km/s

Electromagnetic

to spread the seismic aleft
waves

The time interval from the arrival of P-waves ame tS-
waves may be used to activate security measuresattsr of
fact, the goal is to exploit the time delay of Pves with
respect to S-waves in order to forecast the efiéthe latter
based on the automatic elaboration of the former.

Assuming that the warning time provided by the E)ftem
is sufficient for the activation of the protectioneasures,
based on the predictions from the first few secasfdB-wave
observation, an effective decision has to be madettver to
activate the alarm or not.
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Fig. 1 EW system can save a lot of lives
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Since prediction is uncertain in making this demisifalse
and missed alarms are possible. As a consequerkey a
element of an EW system is a better understandfnthe
parameters that play a fundamental role in thistamnty. As
a result performance-based approach to EW systeigrdand
decision models is a mandatory necessity.

A decision model is then presented to take a d&tisi a
real-time scenario based on the expected conseesieard
savings coming from the decision itself.

If the magnitude threshold is exceeded, a warniggas is
transmitted through an area-wide transmitter aa toonitored
target site. The message contains information @fithoming
event. As the event evolves, more data are availabdrder to
confrm and increase the accuracy of the infornmatio
processed starting from the incoming signals.

C.Data Mining Goals

In order to predict the level of danger of an egutike
when it is running and to distinguish dangerousmfroon-
dangerous seismic events, a lot of data miningnigcies have
BERN applied to create a numerical model of ciaasion.

In order to recognize a seismic event as dangesoust
while it's running many different DM techniques weapplied
to create a successful model which, once deployatisfied
the strict time constraint for classification.

The problem of seismic events classification waedaby
means of Bayesian Networks, whose objective isuitdup a
model able to classify a seismic event, represebyea set of
significant parameters, as dangerous by associttimgyalue
YES to the binary target value; the classificatisncorrect
only if the magnitude of the event is higher thae thosen
threshold.

The Business goal was the prediction of the magdaitf an
earthquake in progress, so it was translated irtata mining
goal consisting of the classification of the magdé of
seismic events. In particular, the classificatiena binary
classification and the target class is the magaithdeshold.

The threshold is fixed to 5, because an earthquake
considered dangerous (in Irpinia area of Italy [&D]) if its
magnitude is greater than 5.

If the value of the expected magnitude exceedshiteshold
value, then a warning message could be given.

I1l. DATA UNDERSTANDING

A.Data Source

For the present work two data sources were used:
1) JAPAN, called J from KIK database [14], is aadat of
seismic registration from Japan KIKnet.
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2) RISSC, called R from RISSC database [15], istaskt of
southern Italy seismic registration from ISnet ifiig
Seismic network).

B.Data Format

The original data format was SAC which stands for

"Seismic Analysis Code". It was originally devedap to
analyze data in time series, especially seismia.dats one of
the most widely used data formats for data storagéhe
seismological research community [13].

Every SAC file contains a fixed length header secti

followed by one or two data sections. The headetntains
floating point, integer, logical, and characteidie

The following table shows some of the contentshef $AC
binary data file header. For example, Name of tagas, date
of the seismic event, magnitude and event locakwery SAC
file contains 133 fields, some defined and someefindd (set
to “-12345").

The second section of a SAC file contains the tiees of
the dependent variable (acceleration or velocijgted to the
header, registered by a seismic sensor.

The following is a SAC file header of a Japaneséhgaake
of magnitude 4 occurred in 2006, February 18. Tibzder has
32 defined fields.

TABLE Il
SAC HEADER EXAMPLE
FILE: AIC0010602181621.UD.se 1

NPTS = 600

B = 0.000000e+00

E = 5.999000e+01

IFTYPE = TIME SERIES FILI
LEVEN = TRUE

DELTA = 1.000000e-02
DEPMIN = -3.949165e+00
DEPMAX = 2.167225e-01
DEPMEN =-1.835354e+0
AMARKER = 9.19
TOMARKER = 15.418
KZDATE = FEB 18 (049), 2006
KZTIME = 16:21:26.00
KSTNM = AIC001

STLA = 3.529440e+(

STLO = 1.367530e+02

STEL = 6.000000e+00
KEVNM = NONE

EVLA = 3.568500e+0

EVLO = 1.364210e+02

EVDP = 1.300000e+01

DIST = 5.277971e+01

AZ = 1.450985e+0

BAZ = 3.252903e+0

GCARC = 4.746583e-01
LOVROK = TRUE

USER1 = 4.100000e+00
NVHDR = 6

NWFID = 19¢

LPSPOL = TRUE

LCALDA = TRUE

KCMPNM = Q

(-0)
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The header parameters have the following meanit@js [

TABLE IlI
MEANINGS OF SAC HEADER PARAMETERS

NPTS Number of points per data component

B Beginning value of the independent variable

E Ending value of the independent vale

IFTYPE Type of file

LEVEN TRUE if data is evenly spaced

DELTA Increment between evenly spaced sampleg

DEPMIN Minimum value of dependent varia

DEPMAX Maximun value of dependent varial

DEPMEN Mear value of dependent varial

AMARKER First arrival time (seconds relative {o
reference time) — P-wave arrival time

TOMARKER | Second arrival time (seconds relative |to
reference tim) — S-wave arrival tim

KZDATE Alphanumeric form of GMT reference d

KZTIME Alphanumeric form of GMT reference time

KSTNM Station name

STLA Station latitude

STLO Station ongitude

STEL Station elevatio

KEVNM Event name

EVLA Event latitude (degrees)

EVLO Event longitude (degrees)

EVDP Event depth below surface (mett

DIST Station to event distance (k

AZ Event to station azimuth (degrees)

BAZ Station to event azimuth (degrees)

GCARC Station to event great circle arc length
(degrees

LOVROK TRUE if it is okay to overwrite this file on
disk

USER1 User defined variable storage arga.
Magnitude event in this header

RNVHDR Header version numk

NWFID Waveform IC

LPSPOL TRUE if station components have a positive
polarity

LCALDA TRUE if DIST, AZ, BAZ, and GCARC are
to be calculated from station and event
coordinates

KCMPNM Component nam

The other header fields are undefined.

C.Earthquake Magnitude

Usually, the SAC field number 39 called MAG stotke
earthquake magnitude.

The magnitude is a parameter used by seismologists
quantify the earthquake size. The Richter magnitadale
summarizes the amount of seismic energy releasedrby
earthquake. It is obtained by calculating the ldagar of the
combined horizontal amplitude of the largest disptaent
from zero on a seismometer output. Measurements hav
limits and can be either positive or negative [10].

D.Japan DataBase

The initial dataset consisted of 8208 files in Sfgtmat,
representing 2736 seismic events occurred in JAPROL.
each event the dataset contained three files:iteefbr the
EW component (east-west), the second for the NSooent
(north-south) and the third for the UD (up-down) tbie
acceleration of registration of seismic events.
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1. Japan Data Exploration

Userl attribute of SAC file header stores magnitade
seismic events whose histogram over the datas&#tasn in
Figure 4. The minimum value taken from this fietddi, while
the maximum is 7.3, the average is 4,915 whilestiaadard
deviation is 0,766.

3. Irpinia Seismic Events
In the last years no dangerous seismic event hagred in

(time and location), magnitude estimations and Viawves. A
waveform object for each sensor that recorded #nthguake
is also linked to the event object and stored atpoito a SAC
file.

Selected attribute

Narne! ussr]
Missing: 0 {0%)

Distinck; 32

Type: NUmeric
Unique: 1 {0%)

Irpinia, thankfully.
A total of 38763 SAC files, related to events ofwlo
magnitude occurring between 2005 and 2009, were

Statistic Value
Minimum 4
Maximum 7.3
Mean 4.915
StoDev 0.768

Class: userl (Mur) v \[ visualize Al

247

Fig. 2 Userl=mag statistical distribution

E.RISSC DataBase

1. Irpinia Seismic Network

Irpinia Seismic Network (ISNet) is a local netwarkstrong
motion and it was designed in 2002. ISNet coversuaa of
approximately 100 km x 70 km along Campania-Lucania
Appennine chain in Irpinia and is deployed along #Httive
fault responsible for the 1980, November 23, Ma@ 6.
Campania—Lucania earthquake [4]. ISNet consists28f
seismic stations, each of which is connected wdal-time
communication to a Local Control Center (LCC) that
generally located in an urban area. The six LCCkenfast
elaborations over the incoming data from seisnatians.

Fig. 3 Topology of communication system of Irpiiaismic
Network (ISNet) in southern Italy

2. The Waveforms and Events Database

RISSC (http://www.rissclab.unina.it/) keeps track the
events detected by ISNet and the relative wavefoaoarded
by the sensors.

After the request for permission it is possibleatwess the
database RISSC (http://dbserver.ov.ingv.it:8080gsp).
This database stores objects for events, origirmasbns
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4, RISSC Data Exploration
MAG attribute of SAC file header stores the magaétof

downloaded from online RISSC database. The filesriged
1297 earthquakes. For each event the dataset wedttiree
files: the first for the up-down component (0), sexcond for
= the north-south component (1) and the third for east-west
(2) of the acceleration of registration of seiseients.

seismic events whose histogram over the datasgtasn in
Figure 4. The minimum value recorded in this figd0.4,
while the maximum is 5.7, the average is 1.745 evhiie
standard deviation is 0,752.

Selected attribute

Hame: mag
Missing: 0 (0%)

Distinct: 4%

Unique: 1 (0%)

Type: Numetic

Statiskic
Minimum

Value
0.4

Mazimim

5.7

Mean

1.745

StdDev

0.752

Class: mag (Hum)

o [ isualiz=

prwol b wsc 0o
J

T
3085

57

Fig. 4 mag statistical distribution

From data exploration analysis of the dataset its wa

observed that few earthquakes with magnitudes grélaan 3
are related to distant earthquakes from the seismtw/ork
(dist > 200 km).

F.J + R Dataset

From data exploration step it is observed that dapeents

have higher magnitude than RISSC events.

TABLE IV
COMPARISON BETWEENDATASETSJAND R
JAPAN RISSC
8208 files 38763 files
# SAC 2736 UD, NS and EW 12921 0, 1 and 3
component componenti
Events dates From 1996 to 2006 From 2005 to 2009
# recorded 2736 12690
events
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samples (Hertz)

JAPAN RISSC
# undeflned 102 78
fields
# fields in final
dataset 26 26
# seismic events| 337 1297
In userl SAC header|
Event field (mag field is | " Mag SAC
i ! header field
Magnitude undefined) 0.4, 5.7]
[4,7.3] e
LRSS In delta SAC header| In delta SAC
between evenly fi )
spaced ield header field
0.01 Hertz 0.008 Hertz

Station to event
distance (km)

In dist SAC header|
field

In dist SAC header
field

[2.07, 59.86] [0.32, 427.4]
Event depth In evdp SAC header| In  evdp SAC
below surface | field header field
(Km) [0, 50] [0.7, 459.8
IV. DATA PREPARATION
A.Time-check

The numberat =t, -a is calculated for each record, where
a andt, are contained in the SAC file headers; in paréigul
is the S-wave temporal marker (seconds relative tQ

reference time), whilea is the P-wave temporal marker (first
arrival time — seconds relative to reference tinfd)e check
requires thatAt >4 seconds [Fig. 5]. All those records, for
which the time interval elapsing between the atrdfahe first
wave (P-wave longitudinal, no-destructive seismaves) and
the second wave (S-wave transversal, destructivemse
waves) is less than 4 seconds, are excluded frerdataset. In
fact, if At<4seconds the S-wave covers the P-wave and the
signal to be analyzed will be corrupt and unusabl@. the
sake of clarity, all seismic parameters will beca#dted in the
first 4 seconds of P-waves in order to reduce the tof
warning. Making a recap, if the beginning of thev®+e is too
close to the beginning of the P-wave, time series ais
covered by the time series of S and it is not fissb use the
first 4 seconds of the initial P-wave in order tegict the
trend of S-wave as expected from an Early Warniygjesn.

The number of J + R records in the dataset that fees
time-check is 11196 corresponding to about 76% 3111
seismic events) of the original dataset.

B.Seismic Attributes

On kind suggestion of an expert on seismology,rabar of
physical indicators were selected and thresholdhagnitude
distinguishing events as dangerous or not waodet t

These parameters were extracted from the timessasieg
an “ad hoc” developed JAVA procedure for real-ticiata
integration.

TABLE V
SEISMIC DERIVATE ATTRIBUTES WITH FORMULAS AND MEANINGS
Attribute Description

Where PD is the module of tipeak

displacementmeasured in the first 4 seconds
of initial P-wave.

LOG is a base-10 logarithm.
Where TP is the maximum, within 4 seconds|of
the initial P-wave, of theredominant
period Tp of the vertical component

LOG(PD)

waveform.

t
[VZ(9ds
LOG(TP) o= |2 z

t 2
[az(9ds
0

Where v, and a, are the vertical component
of speed and acceleration, and 0 is the arrival
of P-wave
Where TD is the maximum, within 4 second
of the initial P-wave, of theredominant

periodr, , of the vertical component
waveform.

a

2

LOG(TD) () =

1%

Where v, and u, are the vertical component

of speed and displacement, and 0 is the arriyal
of P-wave
Where IV is the peak of speed integral, within 4
seconds of the initial P-wave. V2 is IV to
square
PD2 is PD to square

@

LOG(IV2)

LOG(PD2/1V2)
LOG(IV2/PD)

Where R is calculated from the paramettiss
andevdpfound in the SAC file header.

R= \/dist2 + evdp2

IF MAG<5 THEN THRESHOLD_5 = ‘NO’
ELSE THRESHOLD_5 = ‘YES’
Where MAG is the earthquakeagnitude

LOG(R/10)

THRESHOLD_5

——

-]
—f—

P

-
s

Amplitude VNS2+EW2+UD?
B

T

Time (sec)

Fig. 5 Time Interval between P-wave and S-wave
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In particular, R parameter is the Euclidean distaffrom
recording station to earthquake hypocenter:

. Station
Epicentre
PIc dist

Ground

evdp

= dist* +evdp®

Hypocenter

Fig. 6 R seismic parameter
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TABLE VI

SEISMIC ATTRIBUTES WITH TYPES
# Name_Attribute Type
1 LOG(PD) Numeric
2 LOG(TP) Numeric
3 LOG(TD) Numeric
4 LOG(IV2 Numeric
5 LOG(PD2/IV2 Numeric
6 LOG(IV2/PD) Numeric
7 LOG(R/10) Numeric
8 THRESHOLD 5 NomindlYES,NO}

Vol:6, No:4, 2012

In particular, Cluster number 1 has 9147 (82% df fu
dataset) records, while Cluster 2 has 2049 (18%grds.

2. Cluster’s Evaluation

Starting from the dataset consisting of 11196 saf J +
R described by 10 attributes (7 seismic attributes
THRESHOLD_5 + MAG + ORIGIN) two groups called
Clusterl and Cluster2 were obtained. The above WEKA
printout shows three obtained centroids: the finsé for the
full dataset and the others for two centroids.

Fixing Class attribute=ORIGIN, choosing Test

THRESHOLD_5 is the target attribute for all the ®at mode="Classes to clusters evaluation on traininga’da
Mining classification procedures.

From Table VII, the target class has an unbalanced
distribution. In addition, for any registration afangerous
seismic event in the dataset, there are aboutregiStrations

TABLE VII
THRESHOLD_5TARGET CLASS DISTRIBUTION

THRESHOLD 5 class

Value

Count

Sl

887

No

1030¢

of events that are not dangerous (with MAG<5).

C.J + R Clustering

In order to explore the complete dataset J+R andetk

possible outliers, a clustering algorithm was agapli

1. K-Means
The k-means algorithm is one of the most widelyduse
algorithms for data clustering. Using WEKA tookifig k=2,

k-means gave the following results:

Instances: 11196

Cluster centroids:
Attribute

MAG
LOG(PD
LOG(TP,

LOG(TD)
LOG(IV2)

LOG(IV2/PD)
LOG(R/10)

1 9147 (82%)
2 2049 (18%)

02045 | J
9147 4|R

Cluster 1 <--R

LOG(PD2/IV2)

Clustered Instances

Classes to Clusters:
1 2 <--assigned to cluster

=== Run information ===

Full Data
(11196)
2.388
-0.11¢
-0.60¢
-0.190:
0.586¢
-0.8149
0.7008
0.774

Class attribute: ORIGIN

1
(9147)
1.8298
0.282:
-0.525¢
-0.132:
1.250¢
-0.6858
0.9681
0.7984

Cluster 2 <--J
Incorrectly clustered instance 4.0 0.0357 ¢

Test mode: Classes to clusters evaluation on trgidata
=== Model and evaluation on training set ===

2
(2049)
4388
-1.883
-0.95:
-0.448¢
-2.37¢
-1.391
-0.4925
0.6653
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WEKA showed the distribution of JAPAN and RISSCaet
over the two classes, represented in Table VIII:

TABLE VIl
CLUSTERING MATRIX
1 2
0 2045 | J

9147 AN R

TABLE IX
INSTANCENUMBER 75550F J+ R

1 LOG(PD! -3.98014-
2 LOG(TP -0.90481:
3 LOG(TD) -0.701155
4 LOG(IV2) -6.335259
5 LOG(PD2/IV2) -1.625029
6 LOG(IV2/PD) -2.35511!
7 LOG(R/10 1.10569!
8 THRESHOLD_5 NO

9 MAG 2.7
10 ORIGIN R
11 CLUSTEFR cluster:

In particular the four red-highlighted records e tmatrix
belonged to R but they were attributed to J byalgerithm.
So these four records could be outliers. In stesisan outlier
is an observation that is numerically distant frive rest of the
data. These four records were removed from thesdbR+ J.

The table IX shows one of the records (instance barm
7555 of the original dataset).

3. Cluster's Representation

In Fig. 7 and in Fig. 8 below, the clusters arerespnted in
planes LOG(IV2),LOG(IV2/PD) and LOG(PD),LOG(TD),
respectively.

Fig. 7 Clusters in LOG(1V2), LOG(IVZ/PD) plane
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Class colour

clusterl
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Fig. 8 Clusters in LOG(PD), LOG(TD) plane

In addition Clusterl is the blue one while Clusterthe red
one. The outliers are circled in blue and we cam their
distance from the centroids of the obtained clgster the
considered plans.

D.HoldOut Method with Stratified Remove Folds Filter

In order to carry on the modeling phase of the GRIBM,
R and J datasets were split into a selection afesisb

Business and Data Understanding phases showeeahht
earthquake was recorded by many stations withinséigmic
network.

To facilitate rapid prediction of the earthquakedra that
is running, it was decided to split the datasettd fwo subsets
IJ and NIJ, containing respectively all of the tfircaveforms
(time-check passed) of the seismic events anduhsesjuent
ones. Accordingly, the same splitting for the detaR was
made and the subsets IR and NIR were obtained.

Using a sequence of Stratified Remove Folds fifeweka
tool, it's possible to apply HoldOut Method [8] ¢drtain some
subsets from original dataset J+R.

The following Fig. 9 and Fig. 10 show the splittiofJ and
R datasets.

5% STORE 18
T 25% TEST 74
347 10% VALIDATION 33
5% STORE 85
NIJ 15% VALIDATION 231
1698

Fig. 9 Splitting of JAPAN dataset
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5% STORE 44
B 25% TEST 188
877 10% VALIDATION 84
5% STORE 414
NIR 15% VALIDATION 1123
8274

Fig. 10 Splitting of RISSC dataset

In table X, the results obtained concerning thedatgion
of the original dataset are summarized. In additibe
descriptions and uses of these subsets are atz. lis

TABLE X
USES ANDDESCRIPTIONS OFDATASETS
Dataset Name Description Use Cardinality
First and no-first To build the
TRAINING registrations classificatio 8898
from J and R datast n model:
First and no-first -Lzsste:]fggter;:
VALIDATION registrations varving the 1471
from J and R datasetg rving
parameters
First registrations To test the
TEST from J and R datasetg selected 262
models
First and no-first For new
STORE registrations records if 561
from J and R datasety necessary
without 4 outliers (they were in training set) 11192
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V.MODELING

In order to classify dangerous earthquakes, various
modeling techniques were selected and applied, thed
parameters were calibrated to optimal values. Iniquaar,
many WEKA algorithms were applied MultilayerPeraept
for Neural Networks, J48 for Inductive Decision &seand
BayesNet for Bayesian Networks. In general all it
classification models showed good results on thet set
consisting of only the first seismic recordingsthis paper we
show the results of applying an algorithm basedBagesian
Networks.

A.Bayesian Approach

As it is well known Bayesian classifiers are statd
classifiers. They can be Naive or (Belief) Networkainly.
They can predict class membership probabilitieshsas the
probability that a given sample belongs to a paldic class.
Bayesian classification is based on Bayes theorem.

Bayesian or Belief Network (BN) used in this work a
probabilistic graphical model that represents acfeindom
variables and their conditional dependencies vidiracted
acyclic graph (DAG). BN specifies joint conditional
probability distributions.
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Formally a BN is defined by two components [8]:

1) DAG (defined by its topology), where each nogleresents
a random variable and each arc represents a plistiabi
dependence (if an arc is drawn from a node A toderB,
then A is a parent of B, and B is a descendent)of A

2) Conditional Probability Table (CPT) for eaclriagble (the
CPT for a variable A specifies the conditional wligttion
P(A| Parents(A)), where Parents(A) is the set of pareits
A).

Each node is associated with a probability functtbat
takes as input a particular set of values for thdefs parent
variables and gives the probability of the variatdpresented
by the node.

B.WEKA BayesNet

WEKA tool provides several algorithms for bayesia
classification. In order to classify seismic eerggistrations,
in this work BayesNet algorithm of WEKA was applied

As it was already said, a BN is made up of two congmts:
the network topology and the conditional probapiiébles.

WEKA BayesNet algorithm [1] let to define such
components by means of the following parameters:

1) searchAlgorithm selects the method for searchietwork
topology; we fixed it to K2.

2) Estimator selects the algorithm for
conditional  probability tables. We
SimpleEstimator algorithm.

calculatinige
chose

concerning all the first registration of earthquakeSuch
metrics are traditionally the followings:
1) True Positive (TP) and True Negative (TN) rates.
2) False Positive (FP) and False Negative (FN)rate
3) ROC and ROC Area (AUC).
4) Confusion Matrix.
5) Total Cost.

In particular the overall (total) cost performanoetric is
defined as follows:

C = NppCl#,4)+ NepC(=+) + Ny C(--)+ Ny C(+,-)» fOr @ binary class
problem.

N, indicates the amount of positive cases correctly

classified by the modelN., describes the amount of negative
records misclassified as positive and so on. Maeeav(, j)

AS the cost of classifying a record in the i-thsslas a record of

the j-th class.
The next 2x2 cost matrix was fixed following domaixpert
advices for evaluating the models built:

TABLE Xl
COSTMATRIX
Positive | Negative
Positive 0 11.6
Negative 1 0

The cost C(+,-) = 11.6 of committing a false negagerror

theWas chosen taking into account the unbalancedlnision of

“THRESHOLD_5" attribute target (Table VII): the dosf

In the next table, WEKA BayesNet parameters ar(?ommitting a false negative error is 11.6 timegéarthan the

summarized.

TABLE XI
BAYESNET PARAMETERS

estimator SimpleEstimatc
searchAlgorithm | K2

A lot of bayesian models have been produced byyapp!
BayesNet algorithm, by changing the values of thgt two
parameters:

1) A = alpha parameter of the SimpleEstimator atgor

which sets the starting value for the calculatioh o

conditional probability.

2) P = maxNrOfParents parameter of K2 algorithnicivisets
the maximum value of the number of parents of ewde
in the network topology.

The performances of the built models were calcdlated
compared.

C.Model Performance Metrics

The Data Mining models test was designed with trpase
of selecting models with high performance resuftsarectly
recognizing dangerous seismic events (i.e. claegify
magnitude) elaborating only the first registratiai the
earthquake, so that the whole elaboration timehef Early
Warning System was appreciably reduced.

Performances of obtained models were estimatedsmgu
ad hoc metrics on the TEST dataset containing 262rds
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cost of committing a false alarm. In other wordasijufe to
detect any positive example is just as bad as ctingill.6
false alarms.

D.BayesNet Applications

The algorithm parameters were calibrated based hen t
model performance results over the VALIDATION sEbr
the sake of clarity, we set P and changed A. Thelt®of the
obtained models were compared. It was selectedribael
whose metrics got the best values correspondii®ytol, P =
2and P =3.

In the following boxes the results are shown. Tinst
section of every box contains the testing results o
VALIDATION set and the second one reports the testi
results on TEST set. In addition, the topologiea@) of the
networks (P = 1,2,3) are given.

LOG(TR)

Fig. 11 Bayes Network with P=1
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P=1 A=8.4

=== Evaluation on VALIDATION set ===

Correctly Classified Instances 1332 90.5506 %
Incorrectly Classified Instances 139 9.4494 %
Kappa statistic o35

Total Cost 322

Mean absolute error 0.0925

Root mean squared error 0.283

Relative absolute error 64.3528

Root relative squared error 105.8562 %

Total Number of Instances 1471
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision ROC Area Class
0.93 0.097 0.447 0.971 YES
0.903 0.07 0.994 0.971 NO
=== Confusion Matrix ===

a b <-- classified as

106 8| a=YES
131 1226| b=NO

=== Evaluation on TEST set ===

Correctly Classified Instances 219 83.5878 %
Incorrectly Classified Instances 43 16.4122 %
Kappa statistic B4

Total Cost 4.3

Mean absolute error 0.1609

Root mean squared error 0.3893

Total Number of Instances 262

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.938 0.178 0.423 0.959 YES
0.822 0.063 0.99 0.959 NO

=== Confusion Matrix ===
a b <-- classified as

30 2| a=YES
41 189| b=NO

LOG(TD)

LOG{PD)

=

LOG{PD2/IV2

LOG{V2)

LOG(TP)

LOG(IVZ/PD)

Fig. 12 Bayes Network with P=2
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P=2 A=11.3

=== Evaluation on VALIDATION set ===

Correctly Classified Instances 1413 96.0571 %
Incorrectly Classified Instances 58 3.9429 %
Kappa statistic @70

Total Cost 480

Mean absolute error 0.0454

Root mean squared error 0.1734

Relative absolute error 31.5909

Root relative squared error 64.8546 %

Total Number of Instances 1471

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.667 0.015 0.792 0.98 YES
0.985 0.333 0.972 0.98 NO

=== Confusion Matrix ===
a b <-- classified as

76 38| a=VYES
20 1337| b=NO

=== Evaluation on TEST set ===

Correctly Classified Instances 247 94.2748 %
Incorrectly Classified Instances 15 5.7252 %
Kappa statistic @13

Total Cost 6.8

Mean absolute error 0.0667

Root mean squared error 0.2044

Relative absolute error 36.7881

Root relative squared error 61.8782 %

Total Number of Instances 262

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.906 0.052 0.707 0.979 YES
0.948 0.094 0.986 0.979 NO

=== Confusion Matrix ===
a b <-- classified as

29 3| a=YES
12 218| b=NO

LOG(PD)

LOG(TP)

LOG(TD)

LOG(IV2/PD)

160

Fig. 13 Bayes Network with P=3
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P=3 A=3.27
=== Evaluation on VALIDATION set ===

Correctly Classified Instances 1413 96.0571 %

Incorrectly Classified Instances 58 3.9429 %
Kappa statistic @70

Total Cost 480

Mean absolute error 0.0429

Root mean squared error 0.1659

Relative absolute error 29.838

Root relative squared error 62.0562 %

Total Number of Instances 1471

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.667 0.015 0.792 0.983 YES
0.985 0.333 0.972 0.983 NO

=== Confusion Matrix ===
a b <-- classified as

76 38| a=YES
20 1337| b=NO

=== Evaluation on TEST set ===

Correctly Classified Instances 251 95.8015 %

Incorrectly Classified Instances 11 4.1985 %
Kappa statistic ma

Total Cost 2.3

Mean absolute error 0.0618

Root mean squared error 0.1947

Relative absolute error 34.0841

Root relative squared error 58.9282 %

Total Number of Instances 262

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.938 0.039 0.769 0.984 SI
0.961 0.063 0.991 0.984 NO

=== Confusion Matrix ===
a b <--classified as

30 2 | a=Sl
9 221] b=Nt

E.Models Comparison

The performances of the built models were calcdlated
compared.
In Table XIlI the results of the three previous ratsdare
summarized.
In the next Fig. 14 the ROC curves of the bestetmedels
obtained are compared.

TABLE Xl
SoME COMPARATIVE METRICS
AUC | Confusion
Nr Parameters 'Eoot:: on | Matrix on
TEST| TEST set
P=maxNrOfParents31 30) 2
LI a=aipha=sa | 842 | 09|71 T80
_ | 291 3
2 P—ma_erOﬂfarents- 246.8 0.97
A=alpha=11.3 121 218
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P=maxNrOfParents3 30) 2
A=alpha=3.27 82.210.984 9 [ 221

Plot:TEST

L T T

P=1
A=84

FP rate

Fig. 14 Bayes ROC curves

As it is well known, the closer the curve is to tipgper left
corner, the better the classifier performs becahee True
Positive rate dominates over the False Positive rat

In this case the classifier number 3, called RE&ssifier,
with P=3 and A=3.27 offers the best results. ltsegponding
AUC on the TEST set was higher and his total cest lower.

F.Models Test on Irpinia Earthquake

On November 23, 1980, a powerful earthquake deteabsta
the Irpinia area. Irpinia is a region of the ApgrMountains
around Avellino, a town in Campania, southern Ihpout 40
km east of city of Naples. Measuring 6.9 on thehRic Scale,
the quake, originated beneath the village of Corkiked
2.914 people, injured more than 10.000 and left.(3DD
homeless. This event produced vast damaging armhgstr
amplitude shaking on a wide area. This event martked
beginning of quantitative seismic hazard assessnient
southern ltaly [6].

It is well known that there are no real seismogréonghis
great energy event because ISNet (par. 11l E) westtive in
1980. In order to test the obtained data mining emd
synthetic seismic traces were used, that simulateel
waveforms recorded by the ISNet stations. Thesehsyin
seismograms are enclosed in 75 SAC files correspgnd 75
/ 3 = 25 records (25 stations). The records weaesformed
accordingly to activities described in the Data &msthinding
and Preparation phases, and the seismic parametnes
calculated from the first recording of the earthguahat
exceeds the time-check seconds and they weres sepat to
the RED classifier which correctly classified thipihia event
as dangerous. In other words, the record of the $iynthetic
registration of Irpinia earthquake was well classif in
TRESHOLD_5 class as “YES". In the following tablé\Xthe
7 seismic parameters of the first registrationsm@wn. The R
distance is about 25 km. And the first time-cheakged signal
was registered after 4.3 seconds from the origintref
earthquake.
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TABLE XIV
IRPINIA EARTHQUAKE FIRST RECORD
FIRST
REGISTRATION OF

IRPINIA SISMA
LOG(PD' -1.3345¢
LOG(TP) -0.41132
LOG(TD) 0.166463
LOG(IV2) -2.326%

LOG(PD2/V2] | -0.3428
LOG(IV2/PD) -0.99172
LOG(R/10) 0.409054

VI. DEPLOYMENT

The RED classifier was integrated within an EW eyst
able to connect to a seismic monitoring sensor ortwsing
the most widespread seismic data format via TCPpvtocol,
to receive the data and process them in order taaxthe
physical indicators and evaluate the level of damggness of
the running event just basing on the first regt&iraof the
earthquake. Flowing the synthetic data of the igih980

earthquake into such EW system, very good resultse w

obtained: the overall time interval from catchifg tevent to
the warning was 6.1 seconds and the probabilifaleé alarm
was less than 3%.

The EW system was enriched with advanced functitesl
for the multidimensional analysis of historical seic data,
based upon data warehousing technologies.

The logical architectural view of the cited EW systis
depicted in the following Fig. 15.

Dialog Management Systemn

B/
= ~ka User Interface g ’]

Iy

.
/| D N
[ % 1 \ Data Mining Application
Sensor 2 Querying OLA_P
Network 1 Engine Engine S
n Data Mining.
AA o Engine
A, $ (’ [~
Ak 2 N T - o Model Management System
A | == =
2 Da? DW
A DB-GIS i
Ii‘ \\\ 7//
\\ . Data Management System / Real-time
< "
/

Fig. 15 I:ogical Architectural View of Seismic EW Sgm

VII. CONCLUSION

In our knowledge,
techniques for seismic early-warning purposes isyerb fully
explored. Many future developments can be addrestseting
from the creation of models based on more
coming from the reduction of the time interval alkd for
passing the initial check, ending to the formulatiof the
estimation of the magnitude as a multiclass clasdibn
problem. In addition, other approaches can be gebcarry
on the model phase: for example Neural Network#lexging
the reduction of false alarms. Finally, it is wotthunderline
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the application of Data Mining

inforomati
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that one of the advantages assured by using Datang/i
analysis methods was the availability of well-knomissed
and false alarms probability.
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