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Abstract—The effect of time-periodic oscillations of the Rayleigh-
Bénard system on the heat transport in dielectric liquids is in-
vestigated by weakly nonlinear analysis. We focus on stationary
convection using the slow time scale and arrive at the real Ginzburg-
Landau equation. Classical fourth order Runge-kutta method is used
to solve the Ginzburg-Landau equation which gives the amplitude of
convection and this helps in quantifying the heat transfer in dielectric
liquids in terms of the Nusselt number. The effect of electrical
Rayleigh number and the amplitude of modulation on heat transport
is studied.

Keywords—Dielectric liquid; Nusselt number; Amplitude equa-
tion.

NOMENCLATURE

Latin symbols

B Amplitude of streamline perturbation
CV E effective heat capacity at constant

volume and electric field
−→
D electric displacement
−→
E electric field
−→
E0 root mean square value of the

electric field at the lower surface
−→g gravitational acceleration (0,0,-g)
−→
ǵ gravity modulation
h depth of the fluid layer

(̂i, ĵ, k̂) unit vectors in the x,y
and z directions respectively

k dimensional wave number
k1 thermal conductivity
Nu Nusselt number
−→
P dielectric polarisation
Pr Prandtl number
−→q velocity vector(=(u,v,w))
R thermal Rayleigh number
RE electric Rayleigh number
t time
T temperature
T0 constant temperature of the upper boundary
ΔT temperature differences between the

lower and upper surfaces

∇2 three dimensional laplacian operator

(= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
)

Greek symbols

α thermal expansion coefficient
χe electric suscptibility
δ2 amplitude of gravity modulation
ε0 electric permittivity of free space
εr relative permittivity
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μ1 reference viscosity
Ω scaledup frequency
Φ electric scalar potential
ψ Stream function
Ψ Dimensionless stream function
ρ fluid density
ρ0 reference density
∇ Differential operator
Subscripts

b basic value
c Critical value
Superscripts

′ perturbed quantity
∗ Dimensionless quantity

I. INTRODUCTION

THE convective instability of a fluid in a horizontal layer

of dielectric liquid due to a time dependent gravity is of

practical importance. The regulation of convection is important

from the applications point of view and thermogravitational

vibration(called gravity modulation or g-jitter) is known to

be an effective means of controlling instabilities. It is also

of importance in the large-scale convection in atmosphere.

Existence of adverse density variations within the fluid and

a body force are the necessary conditions to initiate natural

convection. The idea of using mechanical vibration as a tool

to improve the heat transfer rate has received much attention.

In the present paper the effect of time-periodic gravity modu-

lation of the Rayleigh-Bénard convection problem on the heat

transport in dielectric liquids is studied by weakly nonlinear

analysis. Here the critical Rayleigh number is a function of

the electrical Rayleigh number. We derive the real Ginzburg-

Landau equation for slow time scale. The solution of the

Ginzburg-Landau equation gives the amplitude of convection

and we proceed to determine the Nusselt number. The effect of

electrical Rayleigh number and the amplitude of modulation

on Nusselt number is numerically studied and pointed out. We

survey the literature pertaining to the problem.
Gresho and Sani [1] and Greshuni et al. [2] were the first

to study the effect of gravity modulation in a fluid layer.

They used small amplitude approximation and found that the

system may be stabilized in the same manner as an inverted

pendulum is stabilized by vertical oscillation. In addition to

that Gresho and Sani predicted that certain combinations of the

flow parameters may stabilize or destabilize the development

of convective flow for stable and unstable configurations
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respectively. Biringen and Peltier [3] investigated non-linear

three dimensional Rayleigh-Bénard problem under gravity

modulation by numerical solutions of full Navier-Stokes equa-

tions and confirmed the result of Gresho and Sani. Wheeler

et al.[4] used the averaging method and the Floquet theory

to analyze the stability of directional solidification problem

under high frequency gravity modulation. Later Cleaver et

al.[5] performed a detailed non-linear analysis of the problem

and presented the stability limits to a much wider region of

parameter space. Cleaver et al.[6], Rogers et al. [7], Aniss et

al. [8], [9], Bhadauria et al. [10], [11] showed that gravitational

modulation, acts on the entire volume of liquid and may have a

stabilizing or destabilizing effect depending on the amplitude

and frequency of the forcing. Here the onset of convection

presents a competition between harmonic and subharmonic

modes. Li[12], Pau and Li[13] show that gravity and magnetic

fields represent different mechanisms of flow reduction and

that they may be combined to further suppress the convection

in a modulated gravity field. Malashetty and Padmavathy [14]

studied the effect of small amplitude gravity modulation on the

onset of convection in fluid and fluid-saturated porous layers.

They found that low frequency oscillations have significant

effect on the stability of the system. Skarda [15] studied the

effect of gravity modulation in a Marangoni-Bénard problem.

He observed that the instabilities are strongly influenced by

the Prandtl number in Marangoni-Bénard problem while it is

weakly affected by Prandtl number in the case of Rayleigh-

Bénard problem. The linear stability theory of Govender[16],

[17] showed that increasing the frequency of vibration sta-

bilizes the convection in a gravity modulated homogeneous

porous layer heated from below and same effect was seen

in a gravity modulated cylindrical porous layer heated from

below and in addition the aspect ratio was found to influence

the stability of convection. Shu et al.[18] examined the effect

of modulation of gravity and thermal gradients on natural

convection in a cavity numerically and experimentally. They

found that for low Prandtl number fluids, modulations in

gravity and temperature produce the same flow field both

in structure and in magnitude. The linear stability theory of

Govender[19] showed that increasing the excitation frequency

rapidly stabilizes the convection upto the transition point

from synchronous to subharmonic convection beyond which

slowly destabilizes the convection in a homogeneous gravity

modulated porous layer heated from below. Siddavaram and

Homsy [20], [21] analysized the effect of harmonic gravity

modulation on fluid mixing and later on they studied the

effects of stochastic gravity modulation. They have com-

pared the flow regimes and instabilities obtained with that

of harmonic modulation. As the gravity modulation stabilized

convection, the inverted pendulum with an oscillating pivot

point also stabilizes the motion in a porous layer heated

from below was studied by Saneshan Govender[22] Boulal

et al.[23] focussed attention on the influence of gravitational

modulation on the convective instability threshold and pre-

dicted that the threshold of convection corresponds precisely

to quasi-periodic solutions. Siddheshwar and Annamma [24]

investigated the thermal instability of dielectric liquid when

the boundary of the layer is subjected to small amplitude

time-periodic body force and this results in the delay of

convection. The effect of gravity modulation on heat transport

in the problem of magnetoconvection in a Newtonian fluid was

analysed by Siddheshwar et al. [25].

A. Mathematical Formulation

Consider an infinite horizontal layer of a Boussinesquian di-

electric liquid of depth ‘h’ that supports a temperature gradient

and an ac electric field in the vertical direction. The upper and

lower boundaries are maintained at constant temperatures T0

and T0 + ΔT (ΔT > 0 ) respectively. The schematic of the

physical configuration is shown in Figure 1. For mathematical

tractability we confine ourselves to two-dimensional rolls so

that all physical quantities are independent of y, a horizontal

co-ordinate. Further, the boundaries are assumed to be free

and perfect conductors of heat. In this paper we assume the

effective viscosity μ to be constant and the reference viscosity

μ1 will be used to denote the constant viscosity.

Fig. 1. Physical configuration of the Rayleigh-Bénard convection in a
dielectric liquid with imposed time periodic gravity modulation.

The Governing equations describing the Rayleigh-Bénard in-

stability situation in a constant viscosity dielectric liquid with

gravity modulation are

∇.�q = 0, (1)

ρ0

[
∂−→q

∂t
+ (−→q .∇)−→q

]
= −∇p− ρ(g + g′)k̂

+(
−→
P .∇)

−→
E + μ1∇

2−→q , (2)

ρ0CV E

[
∂T

∂t
+ (−→q .∇)T

]
= k1∇

2T. (3)

The density equation of state is

ρ = ρ0 [1− α(T − T0)] . (4)

The electrical equations are

∇.
−→
D = 0, ∇×

−→
E = 0, (5)

where

−→
D = ε0

−→
E +

−→
P ,

−→
P = ε0(εr − 1)

−→
E , (6)

The equation of state for dielectric constant εr is

εr = ε0r − e(T − T0), (7)

where
−→
E is an ac electric field, which is assumed to oscillate

sufficiently rapidly so as to make the body force on any

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:1, 2013 

120International Scholarly and Scientific Research & Innovation 7(1) 2013 scholar.waset.org/1307-6892/9929

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, M

at
he

m
at

ic
al

 a
nd

 C
om

pu
ta

tio
na

l S
ci

en
ce

s 
V

ol
:7

, N
o:

1,
 2

01
3 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
99

29

http://waset.org/publication/Effect-of-Gravity-Modulation-on-Weakly-Non-Linear-Stability-of-Stationary-Convection-in-a-Dielectric-Liquid/9929
http://scholar.waset.org/1307-6892/9929


free charges in the liquid inconsequential and the rest of the

quantities have their usual meaning. We note here that the

assumed strength of
−→
E is such that it does not induce any

non-Newtonian characteristics in the dielectric liquid. It is

expedient to write ε0r = (1 + χe), where χe is the electric

susceptibility, for it enables us to arrive at the conventional

definition
−→
P = ε0χe

−→
E in the absence of the temperature

dependence of εr, that is, when e = 0. We continue using

Eq.(7) with ε0r replaced by (1 + χe). In writing Eq.(7) we

have assumed that εr varies with the electric field strength

quite insignificantly (Stiles et al., 1993).

We restrict ourselves to the two-dimensional analysis so

that all physical quantities are independent of y, a horizontal

co-ordinate. The electric boundary conditions are that the

normal component of the electric displacement
−→
D and

tangential component of the electric field
−→
E are continuous

across the boundaries.

Taking the components of polarization and electric field in

the basic state to be [0, Pb(z)] and [0, Eb(z)], we obtain the

quiescent state solution

−→q b = (0, 0), Tb = T0 +
(
1− z

h

)
�T,

ρb = ρ0

[
1− α

(
1− z

h

)
�T

]
,

−→
E b =

[
(1+χe)E0

(1+χe)+e(1− z

h )�T

]
k̂,

−→
P b = ε0E0(1 + χe)

[
1− 1

(1+χe)+(1− z

h )�T

]
k̂,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8)

where E0 is the root mean square value of the electric field

at the lower surface. On this basic state we superpose finite

amplitude perturbations of the form:

−→q = −→qb + (u′, w′), T = Tb + T ′, P = Pb + P ′,

ρ = ρb + ρ′,
−→
P =

−→
Pb + (P ′

1, P
′
3),−→

E =
−→
Eb + (E′

1, E
′
3),

⎫⎪⎬
⎪⎭ (9)

where the prime denotes perturbation. The second of Eq.(6)

now leads to

P ′
1 = ε0χeE

′
1 − eε0T

′E′
1,

P ′
3 = ε0χeE

′
3 − eε0T

′E′
0 − eε0T

′E′
3,

}
(10)

where it has been assumed that e�T � (1 + χe). Since we

consider only two-dimensional disturbances, we introduce the

stream function ψ′

u′ =
∂ψ′

∂z
, w′ = −

∂ψ′

∂x
, (11)

which satisfy the continuity equation (1) in the perturbed

state. Introducing the perturbed electric potential Φ′ through

the relation
−→
E′ = ∇Φ′, eliminating the pressure p in

Eq.(2), incorporating the quiescent state solution, and non-

dimensionalizing the resulting equation, using the following

scaling

(x∗, z∗) =
(x
h
,
z

h

)
, t∗ =

κ

h2
, Ψ∗ =

ψ′

κ
,

T ∗ =
T ′

�T
, Φ∗ =

(1 + χe)

eE0�Th
Φ′,

we obtain the dimensionless form of the vorticity and heat

transport equations as

1
Pr

∂
∂t

(∇2Ψ) = −(R+RE)(1 + gm)∂T
∂x

+RE
∂2Φ
∂x∂z

+∇4Ψ +REJ(T, ∂Φ
∂z

) + 1
Pr
J(Ψ,∇2Ψ),

(12)

∂T
∂t

= −∂Ψ
∂x

+∇2T + J(Ψ, T ), (13)

∇2Φ− ∂T
∂z

= 0, (14)

where gm = g′(t)
g

. g is the acceleration due to gravity,

g′ is the time-dependent gravity modulation due to the

vibration of the Rayleigh-Bénard setup. ∇2 is the Laplacian

operator, the Prandtl number Pr = ν
κ

, the thermal Rayleigh

number R = αgΔTh3

νκ
and the electric Rayleigh number

RE = ε0(eE0ΔTh)2

μ1κ(1+χe) . In the above equations, the asterisks

have been dropped for simplicity.

The boundary conditions to solve equation (12) - (14) are

Ψ =
∂2Ψ

∂z2
= T =

∂Φ

∂z
= 0 at z = 0, 1. (15)

B. Non-Linear Theory

We now use the following asymptotic expansion in equa-

tions (12)-(14)

R = R0 + ε2R2 + ε4R4 + ......

Ψ = εΨ1 + ε2Ψ2 + ε3Ψ3 + ......

T = εT1 + ε2T2 + ε3T3 + ......

Φ = εΦ1 + ε2Φ2 + ε3Φ3 + ......

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (16)

where R0 is the critical value of the Rayleigh number at which

stationary convection sets in when the gravity modulation is

absent. We use the time variations only at the slow time scale

s = ε2t and gm(s) is taken as gm(s)=ε2δ2 cos(Ωs).

At the lowest order we have

⎡
⎢⎢⎢⎢⎣

∇4 (R0 +RE) ∂
∂x

−RE
∂2

∂x∂z

∂
∂x

−∇2 0

0 − ∂
∂z

∇2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ψ1

T1

Φ1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎦ .

(17)

The solution of the first order system is given by

Ψ1 = A(s) sin kcx sinπz
T1 = B(s) cos kcx sinπz
Φ1 = C(s) cos kcx cosπz

⎫⎬
⎭ , (18)

where

A(s) = −
δ2

kc

B(s), C(s) = −
π

δ2
B(s), δ2 = k2

c + π2.

The system (17) gives us the critical Rayleigh numbers for

stationary onset and their expression is given as

R0 =
δ6

k2
c

−
REk

2
c

δ2
. (19)
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At the second order, we have

⎡
⎢⎢⎢⎢⎣

∇4 (R0 +RE) ∂
∂x

−RE
∂2

∂x∂z

∂
∂x

−∇2 0

0 − ∂
∂z

∇2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ψ2

T2

Φ2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

R21

R22

R23

⎤
⎥⎥⎥⎥⎦ ,

(20)

where

R21 = RE

[
∂T1

∂x
∂2Φ1

∂z2 −
∂T1

∂z
∂2Φ1

∂x∂z

]

+ 1
Pr

[
∂Ψ1

∂x
∂
∂z

(∇2Ψ1)−
∂Ψ1

∂z
∂
∂x

(∇2Ψ1)
]

R22 = ∂Ψ1

∂x
∂T1

∂z
− ∂Ψ1

∂z
∂T1

∂x

R23 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

The second order solution can be obtained as

Ψ2 = 0

T2 = − δ2

8π
sin 2πz B2

Φ2 = 0

⎫⎬
⎭ . (22)

The horizontally-averaged Nusselt number, Nu, for the

stationary mode of convection (the preferred mode of

convection in this problem) is given by

Nu(s) =

[
kc

2π

∫ x= 2π

kc

x=0 (1− z + T2)zdx

]
z=0[

kc

2π

∫ x= 2π

kc

x=0 (1− z)zdx

]
z=0

. (23)

Substituting equation (22) in equation (23) and completing the

integration, we get

Nu(s) = 1 +
δ2

4
B2. (24)

At the third order we have

⎡
⎢⎢⎢⎢⎣

∇4 (R0 +RE) ∂
∂x

−RE
∂2

∂x∂z

∂
∂x

−∇2 0

0 − ∂
∂z

∇2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ψ3

T3

Φ3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

R31

R32

R33

⎤
⎥⎥⎥⎥⎦ ,

(25)

where

R31 = − 1
Pr

∂
∂s

(∇2Ψ1)−R0

(
R2

R0

+ δ2 cos(Ωs)
)

∂T1

∂x

+RE

[
∂T1

∂x
∂2Φ2

∂z2 −
∂T1

∂z
∂2Φ2

∂x∂z
− ∂T2

∂z
∂2Φ1

∂x∂z

]

R32 = ∂Ψ1

∂x
∂T2

∂z
− ∂T1

∂s

R33 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

Substituting Ψ1, T1, T2,Φ1 and Φ2 from equations (18) and

(22) into equations (26), we get

R31 = −δ4

Prkc

dB

ds
−RE

kcπ2

4 sin kcx sinπz cos 2πzB3

+R0

(
R2

R0

+ δ2 cos(Ωs)
)
kc sin kcx sinπzB

R32 =

[
−
dB

ds
+ δ4

4 cos 2πzB3

]
cos kcx sinπz

R33 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(27)

The adjoint system corresponding to the system (17) is

−(R0 +RE)∂T̂1

∂x
−RE

∂2Φ̂1

∂x∂z
−∇4Ψ̂1 = 0

−∂Ψ̂1

∂x
−∇2T̂1 = 0

∇2Φ̂1 + ∂T̂1

∂z
= 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (28)

The eigenfunction of this adjoint system are given by

Ψ̂1 = − δ2

kc

B(s) sin kcx sinπz

T̂1 = −B(s) cos kcx sinπz

Φ̂1 = − π
δ2B(s) cos kcx cosπz

⎫⎪⎬
⎪⎭ . (29)

Substituting equations (27) and (29) in the solvability

condition and completing the integration, we get on

simplification the real Ginzburg-Landau equation for

stationary instability in the form:

[
δ6

Prk2
c

+ (R0 +RE)
] dB
ds

= −
[
(R0 +RE) δ4

8 −
δ2π2RE

8

]
B3

+R0

(
R2

R0

+ δ2 cos(Ωs)
)
δ2B.

(30)

The solution of equation (30) subject to the initial condition

B(0) = a0, where a0 is a chosen amplitude of convection is

obtained by using classical fourth order Runge-Kutta method.

In our calculations we have assumed R2 = R0 to keep the

parameters to the minimum.

II. RESULTS AND DISCUSSION

Here we deal with the effect of time-periodic vertical oscil-

lations on the heat transport in dielectric liquids. The effect of

the time-periodic vertical oscillations comes through the am-

plitude of modulation (δ2) and the effect of the applied electric

field comes through the electrical Rayleigh number(RE). It

is well known from the linear theory that the effect of time-

periodic vertical oscillations on convection is to delay the onset

( see Siddheshwar and Abraham, 2007). From the linear theory

we have obtained the values for critical Rayleigh number, Rc

and critical wave number, kc for different values of RE and

are documented in Table I. Further, since stationary convection

is the preferred mode of onset in dielectric liquids, the Prandtl

number has no effect on onset.

The weakly nonlinear theory gives us the Nusselt number.

The variation of Nu with time ‘t’ for various parameters is

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:1, 2013 

122International Scholarly and Scientific Research & Innovation 7(1) 2013 scholar.waset.org/1307-6892/9929

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, M

at
he

m
at

ic
al

 a
nd

 C
om

pu
ta

tio
na

l S
ci

en
ce

s 
V

ol
:7

, N
o:

1,
 2

01
3 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
99

29

http://waset.org/publication/Effect-of-Gravity-Modulation-on-Weakly-Non-Linear-Stability-of-Stationary-Convection-in-a-Dielectric-Liquid/9929
http://scholar.waset.org/1307-6892/9929


Fig. 2. Nusselt number Nu(s) vs slow time s for different values of Prandtl
number and fixed value of electrical Rayleigh number RE , amplitude of
modulation δ2.

Fig. 3. Nusselt number Nu(s) vs s for different values of RE .

Fig. 4. Nusselt number Nu(s) vs s for different values of δ2.

shown in figures 2-4. From these figures it is clear that the

Nusselt number oscillate with time.

The solution of the Ginzburg-Landau equation gives us the

amplitude of convection which helps in quantifying the Nusselt

number. From the results of nonlinear stability analyses, we

may conclude the following:

1) Nu(Pr = 3) < Nu(Pr = 5).
The Nusselt number vs s curves levels off after

sometime. This result is seen when the amplitude of

modulation is quite small.

2) Nu(RE = 0) > Nu(RE �= 0)

3) Nu|δ2=0.2 < Nu|δ2=0.4 < Nu|δ2=0.6

III. CONCLUSION

The effect of increasing electric Rayleigh number is to

reduce the amount of heat transfer whereas increasing the

amplitude of modulation results in increase in the amount

of heat transport. Thus it is possible to regulate heat transfer

with the help of time-periodic vertical oscillations and applied

electric field.

TABLE I
CRITICAL VALUES OF RAYLEIGH NUMBER AND WAVE NUMBER FOR

DIFFERENT VALUES OF RE .

RE kc Rc

0 2.22 657.511

25 2.24 649.143

50 2.25 640.703

100 2.28 623.609

200 2.34 588.540
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