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Abstract— In this work, a method for human fall detection
is presented based on Recurrent Neural Networks. The ability
of these networks to process and encode sequential data, such
as acceleration measurements from body-worn sensors, makes
them ideal candidates for this task. Furthermore, since such net-
works can benefit greatly from additional data during training,
the use of a data augmentation procedure involving random 3D
rotations has been investigated. When evaluated on the publicly
available URFD dataset, the proposed method achieved better
results compared to other methods.
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I. INTRODUCTION AND RELATED WORK

A fall is defined as an event that results in a person com-
ing to rest inadvertently on the ground or floor or other lower
level [1]. The people more susceptible to falls are usually the
elders. The frequency of fall events is even higher in elders
who suffer from chronic illnesses [2] (e.g. Parkinson, Arthri-
tis, Osteoporosis). Moreover, in many cases, a fall may im-
mobilize a person and make him/her unable to call for assis-
tance. Thus, the presence of carers at home becomes neces-
sary, resulting in increased expenses for the patient and the
health-care system.

In this paper, a method that automatically detects a fall is
presented. Although a fall detection system does not prevent
the fall, the information that provides is valuable and can be
used by both carers and medical professionals. The necessity
for continuous presence by caregivers of chronic illness pa-
tients due to the risk of fall, can be relaxed if a fall detection
system is installed, since, in the case of a fall, it can alert
them in order to assist the patient. This technology can ease
the life of caregivers (professional or patient relatives) and,
at the same time, contribute to the decrease of the health-
care system expenses. Regarding medical professionals, the
detailed reports that the fall system can provide, give valu-
able information (e.g., frequency of falls per time of the day,
increase/decrease of incidents, etc.), since they can be corre-
lated with medication changes and, hence, contribute to the

medication scheme definition.
Several methods that detect falls have been presented in

the literature using a variety of sensors. The most common
sensors that are used are accelerometers [3]-[8], RGB cam-
eras [9, 10], depth or infrared cameras [11]. Other technolo-
gies such as floor-vibration sensors [12, 13] and Wireless
Sensor Networks [14] have been employed as well.

The fall detection method presented in [15] uses accelera-
tion measurements from two devices placed at the trunk and
thigh of the users. A threshold value on the acceleration mag-
nitude is used in order to determine if a fall has occurred or
not. Two variations of this approach are presented: one that
signals a fall event if the acceleration magnitude exceeds a
certain threshold and another that signals a fall if the acceler-
ation magnitude goes below a different threshold.

In [16] a fall detection method is proposed that uses data
acquired from an accelerometer, placed near the pelvis re-
gion of the users, and depth cameras. The system assumes
that there is no fall if the acceleration magnitude is below
a certain threshold, regardless of the depth camera input. If
the acceleration magnitude exceeds the threshold value, then
the input from the depth camera is analyzed. The method de-
tects the person from the depth image along with the floor
plane equation, and then extracts features related to the per-
son’s body position (e.g., distance of body’s centroid from
the floor, ratio of the person’s bounding box dimensions, etc).
A Support Vector Machine (SVM) classifier, based on these
features, produces the final decision.

The authors in [17] propose three different methods that
rely on a Kinect device and two wearables placed to the per-
son’s wrist and waist. The methods use the body skeleton cap-
tured by Kinect and the wearable devices’ acceleration and
orientation. The best method of the three relies on the rapid
downward movement of the spine base joint of the human
body, on the distance of said joint from the floor and on the
acceleration magnitude.

In [18] a variety of machine learning models has been
tested on features extracted from the acceleration measure-
ments of a wearable device and a mobile phone. The features
extracted in the time domain include the mean, variance, kur-
tosis, etc., while the frequency domain features were the au-



tocorrelation coefficients and the total spectral power in dif-
ferent frequency bands. The best results were obtained using
a Decision Tree ensemble for both the wearable sensor and
the mobile phone.

Despite the fact that, generally, the use of RGB or depth
cameras increases the accuracy of fall detection methods
compared to ones that use only accelerometers, cameras have
two significant disadvantages: cost and limited coverage area.
Thus, if we wish to apply a method that includes them in a
house set-up, we have to install cameras in every room, in-
creasing the total system cost. The proposed method detects
falls using only data acquired from a body-worn accelerom-
eter, keeping the total system cost low, and at the same time,
having a large spatial range where the method can be applied.
Additionally, the proposed method is capable of identifying
falls without false positive detections, as indicated by the
evaluation results on the UR Fall Detection (URFD) dataset
[16]. In Section II the proposed method is described in de-
tail. The experimental evaluation is illustrated in Section III,
where the proposed method is compared not only to methods
that use acceleration as the only modality, but also to ones that
employ accelerometer and depth cameras. Finally, in Section
IV conclusions are drawn.

II. PROPOSED METHOD

The proposed fall detection method takes advantage of the
Recurrent Neural Networks’ (RNNs) ability to process and
encode the inherent information contained in sequential data.
Traditional machine learning models, such as the Multi-layer
Perceptron (MLP) or the Support Vector Machine (SVM),
process their input without any notion of sequential order,
and thus cannot take advantage of this information. Recurrent
Neural Networks process their input in a sequential manner,
accumulating more information after each time step about
the sequence being presented to them. The Long Short-Term
Memory variant of RNNs (LSTM [19, 20]), which is adopted
in this work, further improves the basic RNN architecture, by
enabling the network to retain information from many time
steps back into the past, thus giving the network the ability to
encode and learn longer sequences.

In order for a Recurrent Neural Network to process the
input signal as a sequence, the sequence length n must be de-
termined from the beginning. Then, the signal is divided into
time windows of length n and the network processes each
window independently. Fig. 1 shows the network architec-
ture used in this work. Variables X1, . . . ,Xn denote the multi-
dimensional input signal that spans n time steps. The first
LSTM layer (first blue row) processes the input signal and
produces an output at each time step t = 1, . . . ,n. The second

LSTM layer, in the same way, processes the output of the
first LSTM layer at each time step, but produces an output
only at the last time step n. Then, a traditional feed-forward
neural network (first cyan rectangle) processes the output of
the second LSTM layer and, finally, a second feed-forward
neural network produces the final decision Y , which in our
case is the probability that a fall incidence has occurred. As
with all supervised machine learning techniques, in order for
the network to learn the output probabilities, besides the in-
put signal at each time step, a label must also be provided,
which indicates whether an incidence has occurred or not.
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Fig. 1: Proposed model architecture.

Due to the beneficial impact of additional training data on
model generalization and performance, the effectiveness of
a data augmentation procedure involving random rotations
has been evaluated as well. Given the acceleration vector
a(t) = [ax(t),ay(t),az(t)] at time t, that contains the accel-
eration along the x, y and z axes of the device respectively, a
new vector ar(t) can be obtained by rotating a(t) by θ radi-
ans about the x axis, φ radians about the y axis and ψ radians
about the z axis:

ar(t) = Rz(ψ) ·Ry(φ) ·Rx(θ) ·a(t) (1)

where (·) denotes matrix multiplication, Rx(θ), Ry(φ) and
Rz(ψ) are the rotation matrices about x, y and z axes respec-
tively:

Rx(θ) =

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 ,θ ∈ [0,2π) (2)

Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 ,φ ∈ [0,2π) (3)



Rz(ψ) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ,ψ ∈ [0,2π) (4)

and a(t) is considered a 3× 1 matrix in (1), in order for the
multiplication to be well-defined.

III. EXPERIMENTAL EVALUATION

A. The Dataset

The proposed method has been evaluated on the publicly
available UR Fall Detection (URFD) dataset [16, 21], which
contains measurements from an accelerometer, placed near
the pelvis area of the human body, as well as depth images,
and features extracted from those images, acquired from two
Kinect cameras. In total, the dataset contains 40 sequences
with activities of daily living and 30 sequences with falls.

The accelerometer data from the body-worn device at time
t consist of the 3D acceleration a(t) = [ax(t),ay(t),az(t)] as
well as the norm of the acceleration vector (also called the
magnitude or in some cases the total sum vector):

‖a(t)‖=
√

a2
x(t)+a2

y(t)+a2
z (t) (5)

Regarding the Kinect camera measurements, the authors of
the dataset have provided features extracted from the Kinect
depth images, such as the width to height ratio of the per-
son’s bounding box in the depth image, the height of the per-
son’s centroid, etc. The measurements from the accelerom-
eter and the Kinect camera have been temporally synchro-
nized, so that at each time step information from all sensors
is available.

B. Parameter Selection and Evaluation Protocol

The proposed method, denoted as LSTM-Acc, consists of
the network architecture presented in Section II that pro-
cesses sequences of length n = 30, which corresponds to
a time span of one second. The two LSTM layers and the
first feed-forward layer of the network have 200 units each,
while the last feed-forward layer has 2. The proposed method
was trained and evaluated using only acceleration data. Fur-
thermore, we augmented the training data with one rotated
version of the original measurements by a random angle of
θ ,φ ,ψ ∈ [−10,10] degrees about x, y and z axes, using the
procedure discussed at the end of Section II. In doing so, we
increase the number of available samples for training and also
force the model to learn representations that are more robust
to rotations. This second approach is denoted as LSTM-Acc
Rot.

Two methods were chosen and implemented for compar-
ison purposes. The first method was proposed in [15] and is
denoted as UFT. It uses a threshold on the acceleration mag-
nitude ‖a(t)‖ in order to determine if a fall has occurred or
not. In training, the threshold is determined as the minimum
of the magnitude peaks during the fall instances. In testing,
the same threshold is used for separating fall instances from
non-fall ones.

The second method was proposed in [16] and is denoted
as Acc + SVM-Depth. It uses a threshold value of 3g on the
acceleration magnitude ‖a(t)‖ in order to initiate a fall de-
tection procedure, which consists of an SVM model that has
been trained on the extracted depth features giving the final
decision. The depth features were scaled so that they have
zero mean and unit variance.

Regarding the UFT and Acc + SVM-Depth methods, there
was no point in using the augmented dataset discussed previ-
ously, since they rely on the acceleration magnitude ‖a(t)‖,
which is invariant to rotations.

The evaluation was performed using a 10-fold cross-
validation procedure, in which the dataset is split into ten
parts, nine of which are used for training and one for testing.
The procedure is repeated ten times, so that all possible test
parts have appeared once. Since this dataset consists of 40 se-
quences with activities of daily living and 30 with falls, each
fold contained 4 sequences from the first group and 3 from
the second. Finally, the results were evaluated on a sequence
level using four metrics: accuracy, precision, sensitivity and
specificity. The evaluation on sequence level means that for a
non-fall sequence to be correctly classified, the models had to
produce zero alerts during the whole sequence. On the other
hand, in order for a fall sequence to be classified correctly, the
models had to produce at least one fall alert, starting from one
second before the beginning of fall and onward, not before.

C. Experimental Results

The experimental results on the URFD dataset are shown
in Table 1. Starting from the simplest method of the four,
UFT, it is evident that it produces the highest amount of false
positives (detecting a fall when no fall has occurred), as it has
the lowest specificity score (90%). Overall, it has the same
accuracy as the Acc + SVM-Depth method, which however
has higher specificity, but lower sensitivity. This means that
the Acc + SVM-Depth method produces fewer false positives,
but also finds fewer actual falls. Next, the proposed LSTM-
Acc method is equal to or better than the previous methods in
all evaluation metrics. It has the same sensitivity as the UFT
method (96.67%), the same specificity as the Acc + SVM-
Depth method (95%) and higher precision and accuracy than



both. Lastly, the LSTM-Acc Rot approach has produced the
best results. Even though it relies only on acceleration in-
formation, it has not produced a single false positive result
(specificity = 100%), while the sensitivity of 96.67% corre-
sponds to not detecting one fall event.

Table 1: The fall detection results (%) on the URFD dataset.

LSTM-
Acc

LSTM-Acc
Rot

Acc +
SVM-Depth

UFT

Accuracy 95.71 98.57 92.86 92.86
Precision 95.00 100 94.17 90.00
Sensitivity 96.67 96.67 90.00 96.67
Specificity 95.00 100 95.00 90.00

IV. CONCLUSIONS

In this work, a Recurrent Neural Network-based approach
to fall detection has been presented. By leveraging the ability
of such networks to process sequential data, as well as data
augmentation in the form of random rotations of the input
acceleration signal, the proposed method was able to find all
but one fall event, while at the same time producing no false
alarms when tested on the URFD dataset.
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