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Abstract—The paper describes the futures trading and aims to
design the speculators trading strategy. The problem is formulated as
the decision making task and such as is solved. The solution of the
task leads to complex mathematical problems and the approximations
of the decision making is demanded. Two kind of approximation are
used in the paper: Monte Carlo for the multi-step prediction and
iteration spread in time for the optimization. The solution is applied
to the real-market data and the results of the off-line experiments are
presented.
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I. INTRODUCTION

The paper concerns with strategy design for futures con-
tracts trading. A futures contract is a contract to buy (deliver)
a specific amount of a commodity at a specific price and at
specified date in the future. A commodity is any stuff for
which there is a demand (e.g. basic resources and agricultural
products such as iron ore, coal, sugar, wheat). Each futures
contract has its own price, which reflects its actual demand on
the market.

Speculators try to earn money by strategical buying and
selling of contracts. They seem to play a game, where the
participant bets on the increase or decrease of price in future.
To design the trading strategy, speculators use various meth-
ods. The main streams are the fundamental analysis and the
technical one. The fundamental analysis assumes that actual
price does not reflect the real price, therefore bases predictions
on analysis of the market state, actual news and activities of
institutions. In contrast, the technical analysis deals primary
by price curves to predict the further price behavior.

Classical investing methods based on fundamental analysis
(e.g. value investing [1] or indexing [2]) serve primary for
stock trading and the for long-time investment in terms of
decades. The methods of technical analysis [3], unlike the
fundamental one, provides profit in short-time, as it rec-
ommends actions more often, i.e. one action per week or
month. However, there is no method of technical analysis,
which results in profitable strategy working for decades. The
viability of these approaches is about a year. Then, it should
be completely revised.

Beside, the successful methods, if any, are not advertised
everywhere and are kept in strict confidence. So up to the
author’s best knowledge, there is no known methodology how
to design optimal strategy for speculators.

The paper employs Bayesian decision making to design
speculator’s trading strategy. Bayesian decision making is a
well-developed methodology applicable to complex problems
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with significant uncertainty and partial knowledge. Its func-
tionality has been verified in natural, engineering and medical
applications. It was proved [4], that designed strategy is non-
domined. The paper proposes the reformulation of trading
task as decision making problem and subsequent solution. The
complexity of explicit solution calls for suitable approximation
that can be realized by existent tools.

The paper’s outline is as follows. Section II introduces ter-
minology of futures exchange, recalls main terms of decision
making (DM) theory and reformulates futures trading problem
as dynamic DM task. Section III contains approximation of
DM. Section IV presents the experimental results obtained
on real data. Section V addresses open questions as well as
possible directions of the approach’s improvement.

II. PRELIMINARIES

The following notations are used throughout: x∗ denotes a
set of all possible values of variable x. |x| is absolute value
of x. Conditioned expected value is

E(x|y) =
∫

x∈x∗
xf(x|y)dx, (1)

where f(x|y) denotes conditioned probability density function
(PDF). Index t ∈ t∗ = {0, 1, 2, . . . , T} labels discrete time
instances. xt denotes value of x at time t and XT

t =
{xt, xt+1, . . . , xT−1, xT }.

A. Trading futures

A futures contract gives the holder the obligation to buy or
sell and the term position means a commitment to buy or sell
a given amount of commodities. The basic types of position
are distinguished: short, long and flat.

A long position yields a trader’s benefit when the price
increases, and trader’s loss otherwise. This position refers to
the situation when

• a trader buys an option contract that he has not already
written (i.e. sold), he is said to be ’opening a long
position’.

• a trader sells an option contract that he already owns, he
is said to be ’closing a long position’.

A short position yields a trader’s profit when the price de-
creases, and trader’s loss otherwise. This position refers to the
situation when

• a trader sells an option contract that he does not already
own, he is said to be ’opening a short position’.

• a trader buys an option contract that he has written (i.e.
sold), he is said to be ’closing a short position’.

A flat position denotes the state when no other type of position
is active. Flat position means neither trader’s profit nor trader’s
lose with any price change.
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The opened position characterizes only potential gain, be-
cause the speculator holds the obligation, which price is
changing. The potential profit becomes real by closing the
position. The process from ’opening’ up to ’closing’ the
position is called trade. The term trade is interesting to analyze
designed strategy (Section IV-B).

The aim of trader is design such a strategy of positions
selecting, which ensures trader’s profit with minimal risk. The
strategy design is based on prediction of price behavior and
the quality of the strategy is very sensitive to small changes
in strategy.

B. Decision making under uncertainty

Decision maker is either a human being or a device aiming
to influence a part of the World he is interested in (so called
System). The influence desired is expressed by DM aim. To
reach this DM aim a decision maker designs and applies a
sequence of decisions xt. The decision typically influences
the system, therefore decision maker works with respect to
closed loop ’decision maker - system’.

All knowledge about system available to decision maker to
design the decision xt is called experience Pt. Ignorance Ft is
knowledge about system unavailable to decision maker. System
behavior consists of experience, decision and ignorance Q =
(Pt, xt,Ft).

The strategy is sequence of decision rules Rt, which maps
the knowledge to decision.

Rt : P∗
t → x∗t .

The available knowledge grows with time, because it is ex-
tended each time step by new system output yt and also by new
decision xt. The couple (xt, yt) is called innovation dt. Thus,
the experience could be expressed via Pt = (Xt−1

1 , Y t
1 ) =

(Dt−1
1 , yt).
Gain express the success of reaching the decision maker

aims with given decision making strategy. Gain is mapping
of system behavior to real non-negative number G : Q∗ →
[0,∞], which is not causal and it is necessary to measure the
potential strategy success. The expected value is functional
which returns the value of the gain independent on ignorance
for the given strategy and conditioned by experience. See [5]
for explanation of the method.

The decision maker chose the decision xt ∈ x∗ to maximize
of expected value of the gain G conditioned by experience:

xt = arg max
xt∈x∗ E

[
G(Q)

∣∣Pt, xt

]
, (2)

which is the idea based on principle of optimality - see [4].

C. Futures trades as DM task

This subsection reformulates futures trading task as a deci-
sion making problem, such as follows: The speculator as de-
cision maker tries to earn at the exchange, which is the system
of interest. The exchange provides a price of given contract as
system output yt. Speculator choses the short/long/flat position
as his decision to maximize his profit (gain).

The system is exchange with one kind of futures contract.
The system output yt is a price of the contract. We design the

strategy for discrete time starting from 1, finishing by horizon
T . The strategy starts and finishes with the flat position. We
assume that our role on the market is so small, that our
decision xt does not influence the future price sequence Y T

t+1.
The decision maker designs in each time t a number xt ∈ Z

as decision. The decision xt characterizes traders position, i.e.
|xt| characterizes count of contracts and sign(xt) characterizes
the type of position 1 long, -1 short and 0 flat. The flat position
at the beginning and at the horizon is expresses as: x0 = xT =
0.

The profit in time t ∈ {1, 2, . . . , T} is expressed via:

gt(Dt
t−1) = (yt − yt−1)xt−1 − C|xt−1 − xt|, (3)

where (yt − yt−1)xt−1 is profit/loss caused by the change of
price i.e. the decision xt−1 is profitable, when sign(xt−1) =
sign(yt −yt−1); C is normalized transaction cost and |xt−1 −
xt| is change of position.

The gain for the whole trading horizon can be expressed as
a sum of partial gains (3) over time t ∈ t∗. The gain function
Gt(.) expresses the profit in time interval t, . . . , T :

Gt(DT
t−1) =

T∑
k=t

gk(Dk
k−1). (4)

Easy to see, that the function Gt(.) is additive and backward
recursive

Gt(DT
t−1) =

t+h−1∑
k=t

gk(Dk
k−1) +Gt+h(DT

t+h−1), (5)

which is valid for h ∈ {1, 2, . . . T − t}.
To maximize the profit, the gain G1(.) over the decisions

x1, . . . , xT should be maximized. Using the optimality prin-
ciple (see [4] for details), the optimal gain for t ∈ {1, . . . T}
should be reached by maximization of admissible Bellman’s
function

Vt(Dt
0, yt) ≡ max

xt,...xT

E
(
Gt(DT

t−1)
∣∣∣Dt

0, yt

)
. (6)

The expected value must be used to respect the fact that Gt(.)
is function of the future data DT

t+1. The expression (6) can be
written as follows:

Vt(Dt
0, yt) = max

xt,...xt+h−1
E
[ t+h−1∑

k=t

gk(Dk
k−1)

+ max
xt+h,...xT

E
(
Gt+h(DT

t+h−1)
∣∣∣Dt+h

0 , yt+h

)
︸ ︷︷ ︸

Vt+h(Dt+h
0 ,yt+h)

∣∣∣Dt
0, yt

]
,

where the second term is formally same as the original
expression (6) with the time shift t→ (t+ h).

Then the Bellman’s function holds the shape:

Vt(Dt
0, yt) = max

xt,...xt+h−1
E
[ t+h−1∑

k=t

gk(Dk
k−1)

+Vt(Dt+h
0 , yt+h)|Dt

0, yt

]
. (7)
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III. APPROXIMATION OF DECISION MAKING

Using the linearity of the expected value, the equation (7)
results in:

Vt(Dt
0, yt) = max

xt,...xt+h−1

[
gt(Dt

t−1)

+ E
( t+h−1∑

k=t+1

gk(Dk
k−1)|Dt

0, yt

)
︸ ︷︷ ︸

(∗)

+ E
(
Vt+h(Dt+h

0 , yt+h)|Dt
0, yt

)
︸ ︷︷ ︸

(∗∗)

]

(8)

The term (∗) models the expected multi-step gain to time
t + h − 1. Let assume that xt = xt+1 = . . . = xt+h−1.
This assumption corresponds fact that often-trading systems
lost almost of capital at transaction cost. On the other hand,
the maximal generality can be hold by h = 1. Using the
assumption, equation (3) and properties of expected value, the
term (∗) can be written as follows

(∗) =
(
E(yt+h−1|Dt

0, yt)︸ ︷︷ ︸
ŷt+h−1

−yt

)
xt. (9)

The last unknown term is expected value of yt+h−1. To express
it using (1), the PDF of yt+h−1 is required. The PDF can be
written in the parameterized form:

f(yt+h−1|Dt
0, yt) =

∫
θ∈θ∗

f(yt+h−1|θ,Dt
0, yt)f(θ|Dt

0, yt)dθ,

(10)
where θ is a vector of model parameters, f(θ|Dt

0, yt) is the
density of model parameters and f(yt+h−1|θ,Dt

0, yt) is the
model of the of price yt+h−1.

The assumed model is selected as nth order autoregressive
and has following shape:

yt = a1yt−1 + a2yt−2 + . . .+ anyt−n + b+ εt, (11)

where θ = (a1, . . . , an, b) are model parameters and εt is
white noise with distribution N(0, σ2). The one-step predic-
tion based on equation (11) can be written in following shape:

ŷt+1 = P

⎡
⎢⎢⎢⎣
a1 . . . an−1 an b
1 0 0

. . .
...

...
1 0 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
M(θ)

⎡
⎢⎢⎢⎣
yt

...
yt−n+1

1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Ψn,t

,

where P = [1 0 . . . 0] projects the first element from the
vector M(θ)Ψt and Ψn,t is so called regressor of n length.
Then, the multi-step prediction is expressed by

ŷt+h = P[M(θ)]hΨn,t. (12)

The PDF of model parameters f(θ|Dt
0, yt) is estimated

Bayesian filtration [6] and the results are first and second
moments of PDF, which fully characterize it. With knowledge
of the distribution f(θ|Dt

0, yt), random samples θ1, . . . , θs can

be generated with the demanded distribution and multi-step
prediction can be calculated:

ŷt+h =
1
s

s∑
i=1

P[M(θi)]hΨn,t. (13)

The used algorithm corresponds with classical Monte Carlo
algorithm.

Let approximate the term (∗∗) of the equation (8). The main
problem of calculating the term is backward character of
equation (7), where the future value of Bellman’s function
Vt+h(.) is needed to calculation the Vt(.). To solve this
problem the generalized shape of Bellman’s function is de-
manded. The generalized shape can be obtained two ways:
either expressing the generalized shape as formal solution of
(7) or approximation by suitable shape.

Formal solution of equation (7) must be valid for all
sequences DT

0 . However, this task is very complex and it
seems impossible to find the generalized shape directly.

The approximation of Bellman’s function is more promising
way. Following design assumes, that Bellman’s function shape
does not vary. The approximation shape must be suitable for
further computing, therefore the following shape has been
chosen:

Vt(Dt
0, yt) ≈ Vt(xt−1, Y

t
t−m+1) ≡ p(xt−1)Ψm,t, (14)

where p(.) is vector function p : x∗ → R1,m and Ψm,t is
regressor. p is assumed to be independent on time t. Then, the
expected value (**) can be written as follows:

E
(
Vt+h(Dt+h

0 , yt+h)|Dt
0, yt

)
= p(xt−1)E

(
Ψm,t|Dt

0, yt

)
,

(15)
where expected value of regressor E

(
Ψm,t|Dt

0, yt

)
contains

multi-step predictions designed above.
Let focus at design function p(.). The support of p(.) is

x∗, which is the bounded subset of whole numbers x∗ ⊂ Z .
Therefore, the function is characterized by matrix k×m, where
m is dimension of regressor Ψm,t and k is count of values x∗.
Moreover, the set x∗ is optional parameter of trading system
chosen by user.

Substitution of (14) into equation (7):

p(xt−1)Ψm,t + et = max
xt,...xt+h−1

E
[ t+h−1∑

k=t

gk(Dk
k−1)

+p(xt+h−1)Ψm,t+h|Dt
0, yt

]
, (16)

where et is a non-preciseness generated by the approximation.
The equation (16) holds for each t and h.

Let denote Xn
opt = {xo

1, . . . x
o
n} the best strategy at known

data sequence Y n
0 . It is experimentally proven that: For each

dataset Y T
0 , there is a finite number q ∈ N that for each

n ∈ {q+1, . . . T}, sequences Xn
opt and XT

opt have first (n−q)
elements the same.

Using this claim in time t, the optimal strategy Xt
opt has

first (t−q) actions identical as the best strategy XT
opt designed

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:3, No:10, 2009 

2007International Scholarly and Scientific Research & Innovation 3(10) 2009 scholar.waset.org/1307-6892/9435

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

co
no

m
ic

s 
an

d 
M

an
ag

em
en

t E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
10

, 2
00

9 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

94
35

http://waset.org/publication/Futures-Trading:-Design-of-a-Strategy/9435
http://scholar.waset.org/1307-6892/9435


at whole sequence including the ignorance. Therefore, for first
τ ∈ {1, . . . , t− q} can be equation (16) written as follows:

p(xo
τ−1)Ψm,τ + eτ =

τ+h−1∑
k=τ

gk((Dopt)k
k−1)

+p(xo
τ+h−1)Ψm,τ+h, (17)

where Dopt = (Y t
1 , X

t
opt). The expected value dismissed, be-

cause all used variables are known, maximum was realized by
using the elements of the best strategy at whole data sequence.
The obtained equation system for τ ∈ {1, . . . , t− q} contains
function p(.) and other terms are known or calculable. Thus,
the system can be used for estimation the values characterizing
the function p(.).

The system enlarges about one equation in each time step
and due to approximation of Bellman’s function, could lost
the solubility, when count of equations overgrows the count
of free parameters characterizing p(.). Thus, the least squares
method was used, with minimization over the non-preciseness:

min
p(.)

t−q∑
τ=1

e2τ , (18)

where eτ is expressed from equation (17).

IV. EXPERIMENTAL PART

This section describes the experimental setup, data and
results obtained. The trading strategy is designed at discrete
time t ∈ {1, 2, . . . , T}. The time step [t, t + 1] corresponds
with interval of 24 hours.

The data used as Y T
0 are so-called close prices, which are

collected once a day. It is the last price, when the exchange
closes trading. The economic specialists grant that close price
is the most stable price. The transaction costs C were defined
to the same values as at the real exchanges.

The general design presented above does not specify the
restriction to decision xt. In real market, the restrictions
depend on the trader’s account, as traders must own money
to buy or sell contract at the exchange and the range of
contracts to position is limited by owned money. Following
values of decision xt ∈ {−1, 0, 1} were used for our academic
experiments.

The order of model (see (11)) is set to n = 2, because
this value generated best values in the previous research.
Predictions are generated by Monte Carlo method. The count
of Monte Carlo samples s (13) is chosen dynamically: the
decision is final, when it is not influenced by new Monte Carlo
samples. Bellman’s function (14) is approximated by regressor
of length m = 5.

A. Used data

The available dataset contains 35 price sequences for the
experiments. The sequences contain prices for more than
15 years, i.e. about 3900 trading days in each sequence.
The experiment set is too wide to present all results here,
therefore the following five futures contracts were chosen as
reference markets: Cocoa - CSCE (CC), Petroleum-Crude Oil
Light (CL), 5-Year U.S. Treasury Note (FV2), Japanese Yen

- FOREX (JY) and Wheat - CBT (W). The reference markets
were chosen by economic specialist to include all typical
kind of markets - i.e. cocoa and wheat are typical agriculture
product, petroleum-crude oil is mined material, Japanese Yen
is typical foreign currency and treasury note stands for bond
markets.

B. Results

There are many ways, how evaluate the quality of designed
strategy. The main criterion is net profit P (1, T ). The net profit
over the time t1, ..., t2 is calculated by:

P (t1, t2) =
t2∑

k=t1

g(Dk
k−1). (19)

Secondary criteria are gross loss (sum of the profit over lost
trades), gross profit (sum of the profit over won trades) and
count of winning and losing trades.

The main non-quantitative pointer is the plot of cumulative
gain depending on time:

Gc(t) = P (1, t) =
t∑

k=1

g(Dk
k−1), (20)

which increases, in the ideal profitable case.
The results overview is in Table I. Results in upper part of

table contains values in $1000 USD and the lower part contains
count of trades. (A trade starts in time t1 with choosing non
zero decision xt1 and finishes by choosing another value xt2

in time t2.)

The reached results are quite good. Three markets were
profitable, two have net profit around zero.

CL, FV2 and W are profitable and their cumulative gain
steady increases. The results of FV2 and W are depicted at
Fig. 1 and Fig. 2. The interesting is behavior of the system
W after time 1500, where the price upward trend finishes and
then is changed by downward trend. The system in this period
starts oscillating and then sets again the profitable position. But
in the oscillation between profitable intervals, the cumulative
gain decrease due to transaction cost.

Cocoa (CC) and Japanese Yen (JY) are not as profitable
as other markets, but the cumulative gain levels off around
the zero. As can be seen from gross profit and gross loss,
the difference between profitable and non-profitable trades is
minimal, therefore this two markets are said to be around zero.

There are not any non-profitable market in the presented
set.

TABLE I
RESULT OVERVIEW

CC CL FV2 JY W
Net profit -4.28 36.78 26.17 5.07 26.33
Gross profit 82.54 292.86 75.25 339.74 100.27
Gross loss -86.82 -256.08 -49.08 -334.68 -73.93
Transaction cost -6.16 -12.94 -2.92 -8.62 -4.68
Trades 308 647 146 431 234
Wining trades 165 356 74 227 129
Losing trades 143 291 72 204 105
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Fig. 1. Results on FV2: 1st chart is price yt scaled to points (1 pt =
$1000 USD), 2nd chart depicts decisions xt, 3rd chart depicts cumulative
gain Gc(t) with the same scale as is used in price (1 pt = $1000 USD).

V. CONCLUSION AND FUTURE WORK

The design of the speculator strategy is presented. The
strategy is designed using the Bayesian decision making. The
reformulation of the problem as decision making task leads to
generally unsolvable equations, therefore the approximations
are used. To find multi-step predictions, the Monte Carlo
method is used. And iteration spread in time, with approx-
imation of the Bellman’s function, is used for optimization.
The strategy design is tested at the real-prices data and the
basic result are presented.

This paper presents basic design and forms basis for further
approaches. The standalone basic solution supports the re-
search team, because researchers could deal only their special
part of system to improve. The functional basis gives quick
feedback, whether the improvement of special method leads
to profit or not.

The further research should be on two directions: prediction
model and optimization. The model should be extended about
the additional information channels, because the close price
is not enough to characterize all necessary market properties.
Following information is available and will be included: addi-
tional price statistics, count of trades per time and commitment
of traders information. Therefore the multidimensional model
should be designed first as autoregressive model and then
as general model if it would be necessary. The prediction,
connected with model, should be enrich by working with PDF,
not only with first moment of PDF, as is presented here.

The optimization consists of two closely related parts:
approximation of Bellman’s function and optimization. The
Bellman’s function used in present optimization demands
for improvement, the least squares should be changed to
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Fig. 2. Results on W: 1st chart is price yt scaled to points (1 pt =
$1000 USD), 2nd chart depicts decisions xt, 3rd chart depicts cumulative
gain Gc(t) with the same scale as is used in price (1 pt = $1000 USD).

weighted least squares. The optimization should cover the
multi-dimensional model with the multi-step prediction.
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