
  

Abstract— Localization of lumbar discs in magnetic 
resonance imaging (MRI) is a challenging task, due to a 
vast range of diversity in shape, size, number, and 
appearance of discs and vertebrae. Based on a review of 
the cutting-edge methods, the majority of applied 
techniques are either semi-automatic, extremely sensitive 
to change in parameters, or involve further modification of 
the results. All of the above represents a motivation for 
implementing deep learning-based approaches for 
automatic segmentation and classification of disc 
herniation in MRI images. This paper proposes a complete 
automated process based on deep learning to diagnose 
disc herniation. The methodology includes several steps 
starting from segmentation of region of interest (ROI), in 
this case disc area, bounding box cropping and 
enhancement of ROI, after which the image is classified 
based on convolutional neural network (CNNs) into 
adequate classes (healthy, bulge, central, right or left 
herniation for axial view and healthy, L4/L5, L5/S1 level of 
herniation on sagittal view). The results show high 
accuracy of segmentation for both axial view (dice=0.961, 
IOU=0.925) and sagittal view (dice=0.897, IOU=0.813) 
images. After cropping and enhancing the region of 
interest, accuracy of classification was 0.87 for axial view 
images and 0.91 for sagittal view images. Comparison with 
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the literature shows that proposed methodology 
outperforms state-of-the-art results when it comes to 
multiclassification problems.  A fully automated decision 
support system for disc hernia diagnosis can assist in 
generating diagnostic findings in a timely manner, while 
human mistakes caused by cognitive overload and 
procedure-related errors can be reduced. 

 
Index Terms — disc herniation, deep learning, 

segmentation, convolutional neural network, decision 
support system. 

I. INTRODUCTION 

Theoretical overview. Lumbar disc herniation is one of the 

most common intervertebral disc diseases (IDD), resulting in 

limited movement and unbearable pain levels. IDD is the 

cause of more than 90% of surgical spine operations [1]. The 

process by which the gel-like core in disc ruptures through a 

tear in the fibrous annulus is referred to as a "herniated disc". 

This gel substance activates the spinal neurons, creating 

mechanical and chemical irritation, which results in spinal 

nerve inflammation and edema. Herniated discs most often 

occur where the spinal nerves exit in between the lumbar 

vertebrae and recombine to create the sciatic and femoral 

nerves, which run down the anterior/posterior part of the thigh 

and leg [2]. Herniated discs are more common in adults 

between the ages of 30 and 40, with middle-aged and older 

people being somewhat more at risk if they engage in 

intensive physical activity. Lumbar disc herniation is a 

prevalent cause of lower back pain and leg discomfort, 

occurring 15 times more frequently than cervical herniation. 

Disc hernia is reported to occur 8% of the time in the neck 

(cervical) area and just 1–2% of the time in the thoracic area 

[3]. 

Herniation can progress in two ways: partial or total pain 

reduction or it can cause significant damage to nerves, which 

in result creates a necessity for surgery. As a result, doctors 

differentiate between different stages of herniation [2, 4]: 

• protrusion (disc bulge) - the annulus fibrosis remains intact, 

but it causes outpouching, which may impinge on the 

nerves; the annulus fibrosis of the disc bulges without 

rupturing, 

• prolapse - the nucleus pulposus relocates to the most outside 

fibers of the annulus fibrosis, 

• extrusion - genuine herniated disc (also called a slipped 

disc) happens when the disc ruptures, enabling the gel-
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like core to be squeezed out, 

• sequestration - if severe enough, there may be a free 

fragment, which indicates that there is a piece that has 

broken totally free from the disc material and entered the 

spinal canal. [2, 4]. 

Lumbar disc herniation is diagnosed using imaging 

techniques such as MRI, myelography, X-rays and CT. 

Magnetic Resonance Imaging (MRI), represents a non-

invasive imaging technique that employs radiofrequency 

radiation and magnetic field to offer a clear image of the 

spinal soft tissues. MRI images, unlike X-rays, reveal nerves 

and discs, making them the gold standard for disc herniation 

detection [5]. 

Related work. There exist many proposed approaches in 

intervertebral disc diagnosis of lumbar spine diseases. Peng et 

al. [6] recommended a visual and quantitative approach for 

image segmentation in order to extract six features in MRI 

images in patients. A similar approach based on features 

extraction (planar shape features, intensity and texture features 

derived from the Gray Level Co-Occurrence Matrix) was 

proposed by Ghosh et al. [7] using a majority voting system 

for the diagnosis of lumbar hernia. Neubert et al. [8] used 

signal intensity and shape features to diagnose herniation and 

degeneration in MRI images, towards classification of 

pathologies. Unal et al. [9] had the aim to diagnose disc 

abnormalities in the MRI axial view with a hybrid model that 

includes the use of the features manually extracted by 

technician. Additionally, Bhole et al. [10] developed a 

methodology for segmenting lumbar vertebrae and discs in 

MRI images using geometric data from T2 sagittal, T2 axial 

and T1 sagittal views. The achieved accuracy on the testing 

subset of 67 sagittal view images was 98.8%. Other 

approaches have also been proposed such as pyramidal 

histogram of directed gradients (HOG) by Oktay et al. [11], 

active contour model for segmentation of region of interest on 

spinal images by Koh et al. [12] or probabilistic models by 

Schmidt et al. [13]. All of these systems, however, are 

generally semi-automatic because they require user-expert 

interaction to set up initial conditions, manually extract 

characteristics, etc. This is visible, for example, in the research 

of Hoad et al. [14], who proposed a semi-automatic approach 

for MRI image segmentation of vertebrae and spinal cord. 

User intervention was required during the setup process to 

manually determine the midpoint of the spinal cord at each 

level of the spine or to manually choose four points for each 

vertebral body. Following that, an automated active contour 

algorithm was used to perform spinal canal segmentation.  

As a result, some fully automated methods have been 

investigated to overcome the drawbacks of traditional 

methods. Some authors [15] investigated a hybrid of 

traditional and novel strategies for detecting lumbar disc 

herniation in MRI images. Otsu thresholding was paired with 

feature extraction by measuring the form function, and then 

classification was performed using the multi-layer perceptron 

(MLP), Support Vector Machine (SVM) and K-Nearest 

Neighbor (KNN). The classification accuracies of the MLP 

being 91.90% and KNN being 92.38% proved to be the 

highest. Similarly, Chevrefils et al. [16] merged two 

approaches, morphological and watershed methods, in order to 

detect discs in MR images. This automatic method was 

proposed in order to control the initial values of the cluster 

centroid using intuitive fuzzy clustering. Although numerous 

articles have produced potentially useful data, the findings 

have been limited due to a lack of standardized magnetic 

resonance imaging of the phenotype of spinal degeneration 

[17].  

As a result, many researchers have abandoned traditional 

approaches in favor of deep learning techniques [18]. Jackson 

et al. [19] created deep learning methods for detecting and 

segmenting intervertebral discs and vertebrae in 2D images or 

volumetric data. Authors such as Simonyan et al. [20], He et 

al. [21], and Dou et al. [22] created several deep learning-

based methods to locate intervertebral discs (IVDs) and 

vertebrae in 2D images. Cai et al. [23] detected IVDs using a 

3D hierarchical model and segmented them using 

characteristics extracted from deep neural networks. In terms 

of segmentation, Chen et al. [24] and Suzani et al. [25] used 

deep learning algorithms, where Chen et al. focused on 

Convolutional Neural Networks (CNN) and Suzani et al. 

concentrated on feed forward neural networks. Harun et al. 

[26] developed a convolutional neural network approach that 

uses radiological ratings to distinguish intervertebral discs and 

vertebrae. Another study, such as that undertaken by Al-Kafri 

et al. [27], proposed using deep learning neural networks 

(specifically the SegNet architecture) and combined with 

delineating lumbar disc MRI information to aid clinicians in 

identifying lumbar spinal stenosis. Zhou et al. [28] created a 

novel detection method that employs a convolutional neural 

network to distinguish the spinal vertebrae, exceeding 

previous findings. Wang et al. [29] created a deep learning 

method for segmenting and labeling axial MRI slices. Mbarki 

et al. [30] proposed utilizing VGG16 CNNs to detect not only 

L1 to L5, and L5-S1 discs, but also the apophysis, and to 

differentiate between ruptured and normal discs. Although the 

authors reported 93.3% accuracy, still there were still some 

manual modifications to the image, i.e. cropping, in addition 

to the fact that they solely employ axial view to diagnose 

herniation (bulging, protrusion, extrusion or exclusion). One 

of the best proposed methodologies for automated lumbar 

vertebral segmentation and classification is the one by Lu et 

al. which uses deep learning for spinal stenosis analysis [31]. 

They analyzed both sagittal and axial MRI slices and used 

CNN for stenosis grading, achieving dice coefficient of 0.93 

and class accuracy of 80.4±1.6%. Another paper by Pan et al. 

[32] use 3555 MRI images to segment ROI, after which 

middle points of vertebral bodies were calculated, and 

classification was performed with respect to three classes - 

disc bulge, disc herniation, and normal discs. Average 

classification accuracy was 88.76%. Although the results seem 

promising, and the advantage is a three-class classification, the 

used network was ResNet101, without the exploration of other 

possible deep CNNs and optimization of network 

hyperparameters.  

Because of image resolution, presence of noise, but also 

disc differences in size, form, and appearance of vertebrae and 

discs, localization of lumbar discs is a difficult task for 

traditional image processing methods. This is especially true 

when the condition is coupled with a problem of diagnosing 

level and side of herniation. Additionally, traditional image 

processing methods are mostly dependent on selection of 
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manually set parameters [30], and their success relies on trial-

and-error process to decide which features best describe 

different classes, while CNNs have proven to be an efficient 

method in solving various image problems, have achieved 

high accuracy in medical field and require less fine-tuning and 

expert analysis [32]. Therefore, deep learning approaches 

should be prioritized over traditional segmentation and 

thresholding algorithms. Since, simple features do not exist 

[30], it is difficult and time-consuming to automate the 

segmentation and classification process in medical images.  

Technical significance. With the exception of Lu et al. 

[31], previous research on computer-aided diagnosis of spinal 

problems used either axial or sagittal MRI slices as inputs [33, 

34, 35]. However, due to the fact that distinct anatomical 

planes usually produce complementary information and non-

isotropic scan slice resolution is prevalent in clinical 

application, the interpretation of spinal MRI frequently entails 

a parallel analysis of both views. Only by examining both 

views (sagittal and axial), it is possible to accurately estimate 

the level of herniation, which is a direction that has received 

little attention. In addition, motivated by machine and deep 

learning-methodologies presented in the section Related work, 

we propose an automatic decision support system to diagnose 

disc bulging and herniation in MR images using convolutional 

neural networks (CNNs). For disc-level segmentation, we 

employ a U-Net architecture after which bounding boxes are 

created around the segmented region of interest. We then 

create a CNN for disc hernia diagnosis that is multi-input 

(sagittal and axial view) and multi-class (healthy, bulge, 

central, right or left herniation for axial view and healthy, 

L4/L5, L5/S1 level of herniation on sagittal view). By 

combining the input view and classification, it is possible to 

make a definitive diagnosis of disc herniation (i.e. L5/S1 disc 

herniation on the left side), which has not been done before. 

Additionally, we use a with limited dataset, and contrast it 

with a big data paradigm in order to achieve high quality 

results even with smaller amount of data that are usually 

required for deep learning models.  

Clinical relevance. The high frequency of disc herniation 

in the working and senior population necessitates the use of 

spinal MRI in medical treatment. However, reporting can be 

time-inefficient and subject to substantial inter-reader 

variability. By reducing the radiologists' workload while 

providing the consistency needed to produce standardized 

diagnosis reports, automated disc herniation analysis based on 

images will very certainly play an important role in 

interpretation of spinal MR imaging. Furthermore, the 

segmented results onto original images will enable more 

meaningful visual representations of the reported anatomy and 

disease, as well as big data for longitudinal analysis of patient 

data to improve the healthcare resource allocation. 

II. MATERIALS AND METHODS 

This section describes the dataset used for machine learning 

and proposed methodology, as well as the description of the 

evaluation metrics.  

A. Dataset for machine learning 

The dataset utilized in this study was a combination of 

publicly available database Lumbar Spine MRI Dataset 

obtained from Mendeley Data [36] and images obtained from 

23 patients from the Clinical Centre of Kragujevac, Serbia 

[37]. The use of imaging data was approved by the Ethics 

Committee of the Clinical Centre Kragujevac, decision 

number 01-11484 from September 8, 2016. Publicly available 

dataset consisted of 575 patients, however, only patients with 

L4/L5, L5/S1 or healthy spine were extracted (220 patients). 

Table I provides an overview of the number of images per 

view and diagnosis. 
TABLE I 

DESCRIPTION OF THE USED DATASET WITH NUMBER OF IMAGES PER VIEW 

AND HERNIATION DESCRIPTION 

 Number of 

patients 

Sagittal view 
Total 

 healthy L4/L5 L5/S1 

Mendeley Data 220 329 363 318 1010 

Local database 23 31 49 79 159 

Total 243 360 412 397 1169 

  Axial view 
Total 

  healthy bulge central left right 

Mendeley Data 220 205 56 67 85 49 500 

Local database 23 38 8 8 25 16 57 

Total 243 243 64 75 110 65 557 

B. Proposed system 

Similar to the general concept of preprocessing and main 

task performed in machine learning, the proposed workflow 

includes: 

1) Segmentation of region of interest (ROI) – in this step, we 

utilize U-net convolutional neural network to extract the 

disc area in both axial and sagittal view MRI images;  

2) Bounding box cropping – in this step, we perform contour 

recognition and create bounding boxes around the 

segmented area to reduce the search area for the CNN in 

the classification process; 

3) ROI Enhancement - in this step, we apply a variety of image 

processing techniques to improve the cropped image so 

that the contrast is improved and characteristic sections of 

the ROI are enhanced for the use in the diagnostic 

process; 

4) Data augmentation – in this step we perform data 

augmentation to enlarge the number of images for 

training; 

5) Classification – in this step, the image is classified into 

adequate classes (healthy, bulge, central, right or left 

herniation for axial view and healthy, L4/L5, L5/S1 level 

of herniation on sagittal view).  

The described concept of the proposed system is presented 

in Fig. 1. 

The processing hardware included NVIDIA Quadro RTX 

6000 GPU, 64GB of RAM and an Intel(R) Xeon(R) Gold, 

6240R, CPU running at 2.40GHz. The network was 

implemented using Tensorflow and Keras [38] in Python 

programming language. 
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Fig. 1. Proposed workflow of disc hernia diagnosis  

 

Segmentation of region of interest (ROI). The U-net 

neural network architecture has been demonstrated to be 

adequate for a wide range of medical image segmentation 

challenges [39, 40]. U-net architecture, adapted for the 

purposes of this study, is presented in Fig. 2. While it is 

explained using axial view images, the same workflow was 

applied on sagittal view images. 

 
Fig. 2. Architecture of the U-net. Number of channels is written 

horizontally above each green rectangle denoting multi-channel feature 

map (i.e. 3->16->16), while dimensions of an image are written 

vertically next to multi-channel feature map (i.e. 256x256) 

As shown in the figure, U-net consists of encoder 

(contraction path) and decoder (expansion path). First, the 

encoder consists of two 3x3 convolutional layers followed by 

two 2x2 max pooling layers at each level. This means that as 

the depth increases and more advanced features are retrieved, 

the size of the input image reduces. The red arrow depicts the 

max pooling, which decreases the picture size by half, where 

padding = "same" is utilized. Each level of the expansion route 

(decoder) employs two sequential 2x2 up-conv followed by 

two 3x3 convolutional layers. In the expansion path, retrieval 

of information from the original picture is performed. 

Transposed convolution is a sampling technique used to 

increase the image size. The image is then merged with the 

corresponding image from the encoder path after the 

transposed convolution. The goal of combining data from 

previous layers is to make a more accurate forecast. Following 

that, two convolutional layers are added. The decoder path 

restores the segmentation map's size but discards the 

localization information. As a result, cross-over connections 

are employed to provide localization information from the 

encoder to decoder by concatenating equally sized feature 

maps. The final step is to reconstruct the image so that it fits 

the prediction requirements. This shows that the last layer is a 

convolutional layer with one 1x1 filter. 

The training procedure was initially set to 100 epochs, and 

stochastic gradient descent was utilized with a predetermined 

learning rate and batch sizes that were varied in this study to 

determine their influence on the segmentation accuracy. The 

activation ReLU function was employed. The identical 

procedure was used for sagittal and axial view photographs 

separately. Hyperparameter optimization was performed in the 

following ranges: 

• batch size (BS) – examined range of BS=6 to 12, with an 

increment of 2; 

• learning rates (LR) -  examined values were LR=0.1, 

LR=0.01, and LR=0.001, and multiplication with 

numbers 2 to 9; 

• number of layers kernels – i.e. 8, 16, 32, 64 and 16, 32, 64, 

128; 

• dropout – examined range from 0.1 to 0.5 with an increment 

of 0.1; 

• number of epochs – up to 100. 

Bounding box cropping. Normalization of the ROI size 

was conducted by resizing the cropped images to 64x64. 

Classification was at first performed without the cropping of 

the bounding box area. However, due to a limited number of 

images, but also the diversity of cross sections and lots of 

details, CNNs were not able to learn the adequate features and 
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classify the images with high accuracy. Therefore, in order to 

reduce the search area, bounding boxes were automatically 

created using contour detection around the segmented region 

of interest (in both axial and sagittal images) and cropped out 

of the original image. Further analysis was performed on the 

cropped regions, and this pre-processing step proved efficient 

in the overall process of classification. It should be 

emphasized that 10% of increase in the size of the bounding 

box was performed in order to not to omit the relevant 

characteristics of the ROI.  

ROI Enhancement and Data augmentation. As machine 

learning tasks require a large number of images, in fields such 

as bio-medicine, where a large amount of bio-medical data is 

often not available [41], to improve segmentation 

performance, a procedure known as augmentation was used 

[42]. The augmentation method was employed to artificially 

increase the number of images in the training dataset [43], 

while the validation and test dataset contained only original 

and previously unseen images. In this specific study, several 

operations were utilized in the augmentation process, 

specifically: 

• horizontal flip (equivalent to the mirroring along the y axis) 

• brightness (HSV colorspace is utilized for this task, which 

means that the greater the values of saturation and value 

matrices are, the bigger the brightness. Therefore, in order 

to increase the brightness, matrices were multiplied by a 

value greater than 1 and to reduce brightness, matrices 

were multiplied by a value less than 1). Normalization of 

the intensity was conducted by contrast limited adaptive 

histogram equalization (CLAHE) algorithm with 

clipLimit=2.0, tileGridSize=(4,4).  

Only geometrical transformations that allowed for retaining 

the whole image data and avoiding to lose any information 

were employed. Other transformations, which might have 

resulted in the removal of crucial areas of the image, were 

unacceptable owing to the nature of the problem. Other 

techniques, such as the vertical flip, were also deemed 

improper since they had no physical significance. The entire 

dataset was divided into subsets of training, validation and test 

in the ratio of 80:10:10, respectively, for both views.  

Classification. After several preprocessing steps, we have 

used several CNNs to perform final automatic classification 

and diagnosis. It should be emphasized that 3-10 images for 

each patient were available at characteristic cross sections, 

meaning that in the cases of disc hernia diagnosis only several 

images are taken to diagnose hernia, not as standard MR 

imaging with i.e. 100 images per patient. The data are split 

based on patient identifier rather than individual images, 

because the images from the same patient are correlated. This 

implies that convergence is also achieved on a patient-based 

level. Additionally, due to the fact that segmentation was first 

performed and classification was introduced on segmented 

images, correlation between the images of one patient is 

reduced. The division of the number of patients into training, 

validation, test subsets was 195, 24, 24, respectively (division 

80:10:10). 

It should be noted that we also tested the system without the 

preprocessing steps, and the accuracy was not satisfying due 

to differences in images/cross sections, level of details, etc. In 

this research, in order to conduct multiclass classification - 

healthy, bulge, central, right or left herniation for axial view 

and healthy, L4/L5, L5/S1 level of herniation in sagittal view, 

eight different CNN architectures were used: 

• LeNet [44],  

• AlexNet [45], 

• VGG16 [20], 

• NiN [46], 

• GoogleNet [47], 

• DenseNet121 [48], 

• ResNet50 [21], 

• DiscNet (proposed architecture in this paper, specifically 

designed to suit the disc herniation classification, 

therefore named DiscNet) 

CNNs indicated above were chosen because of their record 

of high accuracy classification performance in similar 

scenarios [30, 31, 32]. CNN architectures such as LeNet, 

AlexNet, and VGG are all similar because they all involve 

extracting features via a series of convolution and pooling 

layers, followed by post-processing of the representations via 

fully-connected layers [49]. The advances made by AlexNet 

and VGG over LeNet are mostly viewed in how these 

subsequent networks broaden and deepen these two mentioned 

modules. AlexNet consists of nine layers, out of which the 

first five are convolutional, followed by pooling layers, and 

the final four layers are the fully connected layers [50]. The 

previously outlined trend of deeper CNN configuration has led 

to enhancements of the original AlexNet architecture. VGG16, 

which was introduced the year after, is one of these 

architectures. VGG16 is a deeper variant of AlexNet in which 

the nine-layer architecture is substituted with a 16-layer 

design, thus the name [20]. In comparison to AlexNet, one of 

the key advantages of VGG16 is the use of smaller kernels in 

convolutional layers. It is worth noting that the use of deep 

CNNs can lead to the reduction of classification accuracy as 

the depth of the CNN increases. He et al. [21] developed a 

deep residual network architecture to overcome this problem 

utilizing the residual block technique, which demonstrated a 

considerable accuracy impact on the ImageNet dataset. 

Therefore, we also included ResNet50 as one of the CNNs for 

classification. GoogLeNet won the ImageNet Challenge in 

2014, presenting a framework that represents a combination of 

the strengths of NiN and repeating block paradigm [47]. One 

of the major aims of the work was to determine the best size 

convolution kernels. After all, past successful networks have 

employed numbers ranging from 1x1 to 11x11. One finding 

from this study was that it may be beneficial to utilize a 

mixture of different-sized kernels. When CNNs become more 

complex and deeper, difficulties occur. This is due to the fact 

that the information route from the input layer to the output 

layer (and the gradient in the opposite way) gets so large that 

it might vanish before reaching the other side [48]. DenseNets 

simplify the connection pattern established in other 

architectures [48]. Additionally, and in contrast to deep 



Tijana Šušteršič et al. A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images 6 

architectures, DiscNet was proposed as a result of a large 

number of different networks that were tested in order to find 

the most suitable combination of layers, kernels, dropout 

layers, etc.  

No research before has investigated several CNNs in the 

process of multi-input, multi-class classification for the 

problem of discus hernia. All of the CNN architectures 

described above contain predetermined architecture and 

activation functions, but other hyperparameters such as solver, 

batch size and number of epochs can be optimized. Grid-

search process refers to an extensive search for the best 

answer in the hyperparameter space. In addition, we have also 

tested the use of transfer learning in classification of disc 

hernia. Transfer learning was proposed to tackle the problem 

of a lack of training data. The procedure included applying 

transfer learning on images from ImageNet [51]. We applied 

four Keras deep learning models (VGG16, VGG19, 

DenseNet121, Xception) to classify disc hernia. The procedure 

was as follows: 

• adopting layers from a previously trained model, except 

the last classification layer (VGG16, VGG19, 

DenseNet121, Xception), 

• freeze layers, in order to avoid destroying information 

obtained during future training, 

• adding new and trainable layers on top of the frozen 

layers. These layers will serve to learn to turn the old 

features into predictions using disc hernia dataset, 

• training new layers using disc hernia dataset. 

As a last step, fine-tuning was performed, which included 

unfreezing the whole model acquired above and re-training it 

on the new data with a very low learning rate (LR=0.00001). 

This has shown to improve the accuracy by incrementally 

adapting the pretrained features to the new dataset. It should 

be emphasized that fine-tuning was done after the model with 

frozen layers has been trained to convergence. 

C. Evaluation metrics 

In the process of segmentation, the proposed automated 

technique was compared with the manual segmentation 

performed by the neurologist. Evaluation measures such as 

dice, intersection over union (Jaccard coefficient), accuracy, 

precision and recall were determined throughout the training, 

validation, and testing in the segmentation stage. We 

calculated the overlapping areas between the automated 

segmentation area indicated as S and the ground truth area 

marked as G using the dice similarity coefficient D [47]:  

2 S G
D

S G


=

+
 (1) 

The Jaccard coefficient (JC), which represents the 

intersection over union (IOU), was calculated in the same 

manner as D and is commonly used to compare the similarity 

between original and automatically segmented regions. It is 

determined by dividing the total number of pixels in the 

intersection area by the total pixels number in the union area. 

S G
JC

S G


=


 (2) 

In the classification stage, standard evaluation measures 

such as confusion matrix, accuracy, F1 score, sensitivity 

(recall), specificity and precision were used. In addition, 

receiver operating characteristic curve was used, as well as 

precision recall (PR) curve. 

III. RESULTS AND DISCUSSION 

This section presents results in each of the methodological 

steps using a machine learning approach.  

A. Segmentation results  

In order to determine the influence of training parameters, it 

was investigated how the number of epochs, batch size, 

learning rate, as well as network depth influence the accuracy 

of training and validation subsets. It was found that LR=0.01, 

batch size 8, with the network depth up to 256 kernel features 

(starting with 8 kernel features) showed the highest accuracy 

for both sagittal and axial view images. Optimal number of 

epochs was 35, after which the model has converged. Fig. 3, 4 

and 5 show loss function, dice coefficient and IOU during 

training and validation, respectively.   

 
Fig. 3. Loss function during training and validation 

The results for dice coefficient showed 96.6% during training 

and 95.9% during validation for axial view images and 90.5% 

during training and 90.3% during validation for sagittal view 

images. The results for IOU (Jaccard coefficient) showed 

93.5% during training and 92.1% during validation for axial 

view images and 82.7% during training and 82.4% during 

validation for sagittal view images.  

 

 
Fig. 4. Dice coefficient during training and validation 
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Fig. 5. IOU during training and validation 

After finding optimal parameters, the results were evaluated 

on the unseen images – test subset and the results were 

reported in Table II. In our study, GPU memory occupation 

was 4% - 6% at all times and did not have larger deviation. 

The training time for axial images was roughly 5 minutes, 

whereas the test segmentation time was less than 56s (1s per 

image). The training time for sagittal pictures was roughly 9 

minutes, whereas the test segmentation time was less than 

120s (1s per image).  
TABLE II 

STATISTICAL MEASURES FOR TRAINING, VALIDATION AND TEST SETS FOR 

SEGMENTATION USING OPTIMIZED VALUES EP = 35, BS = 8, AND LR = 0.01 

  Statistical measure 

  accuracy dice IOU precision recall 

Axial 
view 

Training 0.997 0.966 0.935 0.992 0.960 
Validation 0.996 0.959 0.921 0.989 0.946 

Test 0.996 0.961 0.925 0.986 0.954 

Sagittal 
view 

Training 0.997 0.905 0.827 0.980 0.871 
Validation 0.997 0.903 0.824 0.977 0.871 

Test 0.997 0.897 0.813 0.976 0.860 

Fig. 6 shows the visual result of the segmentation for the 

patient with a herniated disc in axial view.  

 
Fig. 6. Original image (left), manually segmented disc (middle) and 
automatic segmented disc (right) for optimized hyperparameters EP = 
35, BS = 8, and LR = 0.01 on axial view images 

Fig. 7 shows the visual result of the segmentation for the 

patient with a herniated disc in sagittal view.  

 
Fig. 7. Original image (left), manually segmented disc (middle) and 
automatic segmented disc (right) for optimized hyperparameters EP = 
35, BS = 8, and LR = 0.01 on sagittal view images 

The utilization of a neural network makes the segmentation 

process fast and robust. It should be also noted that in the 

dataset for segmentation, both healthy and herniated discs 

were present in images, meaning that the system was able to 

segment both herniated and healthy discs with high accuracy. 

In conclusion of this step in the methodology, based on a 

machine learning, we provided a fast, accurate, and automatic 

segmentation approach for spinal (both sagittal and axial) 

images. This approach covers the initial phase in automated 

disc herniation diagnosis and analysis. The second step was to 

crop the segmented area to a size of 64x64 in pixels. This 

means that all the images were cropped and resized to the 

same size. It should be emphasized that 10% of increase in the 

size of the bounding box was performed in order to make sure 

that possible segmentation errors did not influence further 

classification. In addition, ROI enhancement using CLAHE 

histogram equalization enabled an improved visibility level of 

disc area from the surrounding tissue. 

Comparing obtained results with those found in the 

literature results, it was shown that the proposed methodology 

overcomes the state of the art (Table III). Taking into account 

that in most of the literature, only one view is used (either 

axial or sagittal), as well as the fact that the number of images 

in our dataset is smaller than in the most of the literature 

datasets, the proposed approach shows advanced results. 

B. Classification results  

After successful segmentation of the region of interest and 

cropping of the relevant bounding box, including ROI 

enhancement, we have focused on the classification of disc 

herniation (healthy, bulge, central, right or left herniation for 

axial view and healthy, L4/L5, L5/S1 level of herniation on 

sagittal view). In comparison to all trained networks (LeNet, 

AlexNet, VGG16, NiN, GoogleNet, DenseNet121, ResNet50, 

and proposed DiscNet), it was found that the best results were 

achieved with network that is not so deep as the state-of-the-

art networks. Large number of trainable parameters proved not 

be the best solution when having the proposed methodology of 

cropping the region of interest, therefore reducing the size of 

image and level of details. Therefore, proposed DenseNet 

architecture with total number of parameters being 342,691 

(trainable params: 256,163 and non-trainable params: 86,528) 

showed the best results. After using GridSearch to tune 

hyperparameters, it was found that DiscNet with the following 

architecture gave the best results: 

• Convolutional layer: filters=16, activation 

function=ReLU and kernel size=7x7, 

• Max pooling layer: kernel=3x3, stride=1, 

padding=’same’ 

• Convolutional layer: filters=32, activation 

function=ReLU and kernel size=3x3, 

• Convolutional layer: filters=64, activation 

function=ReLU and kernel size=4x4, 

• Average pooling layer, 

• Flatten layer (return a copy of the array collapsed into 

one dimension), 

• Dropout (0.4), 

• Batch normalization, 

• Dense layer with softmax activation function. 

The most optimal hyperparameters were shown to be: 

• sagittal view: Adam optimizer, learning rate 1e-5, 

β1=0.9, β2=0.9, ε=1e-08; 

• axial: Adam optimizer, learning rate 1e-5, β1=0.9, 
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β2=0.9, ε=1e-08. 

In our study, GPU memory occupation was 4-6% at all 

times and did not have a larger deviation. Since the final 

network was not as deep as the other proposed networks, 

training time was in order of seconds for DiscNet. 

 

 
TABLE III 

COMPARISON OF THE ACHIEVED RESULTS WITH THE LITERATURE RESULTS IN SIMILAR SEGMENTATION PROBLEMS. 

 
Kafri et al. 

[27] 
Mbarki et al. 

[30] 
Lu et al. [31] Ghosh et al. [7] Our proposed 

Investigated 

problem 

spinal 

stenosis 

herniated lumber 

disc 
spinal stenosis 

disc abnormalities (herniated, bulging, 

degenerated discs, etc.) 
herniated lumber disc 

Type of scan axial axial 
axial+ 

sagittal 
sagittal axial  sagittal 

Number of images 48 345 382 22 796 251 557 1169 

Performance metric IOU IOU Dice Dice Dice IOU Dice IOU 

Accuracy 0.92 0.93 0.93 0.82 0.961 0.925 0.897 0.813 

 

Loss function during training and validation are shown in 

Fig. 8a for axial view and Fig. 8b for sagittal view. Early 

stopping was used as a method to avoid overfitting, as well as 

introduction of dropout layers and regularization coefficients. 

 
a) 

 
b) 

Fig. 8. Loss function during training and validation a) axial view, b) 
sagittal view 

Accuracy curves during training and validation are shown 

in Fig. 9a for axial view and Fig. 9b for sagittal view. For 

axial view, average accuracy during validation was 0.87, 

macro average was 0.82, and weighted average was 0.87. All 

three types of accuracies are reported due to class imbalance. 

For sagittal view, average accuracy during validation was 

0.91, macro average was 0.91, and weighted average was 0.91. 

Detailed results of classification accuracy on the test subset 

are given in Table IV based on 10-fold cross validation results. 

 
a) 

 
b) 

Fig. 9. Accuracy function during training and validation a) axial view, b) 
sagittal view 

Average accuracy for axial view was 0.87 when five classes 

were target classes. However, an additional classification task 

was performed, since a disc bulge is often categorized as the 

first stage where annulus fibrosis of the disc stays intact and 

therefore can be challenging in distinguishing in comparison 

to other classes. This was also visible based on the confusion 

matrix (Fig. 10a). After eliminating one class (disc bulge), 

average accuracy increased by 3%. It should be noted that 

hyperparameter optimization was performed again for four-

class classification and the most optimal parameters were 

Adam optimizer, learning rate of 1e-4, β1=0.9, β=2=0.9, and ε 

=1e-08. Regarding the sagittal view, the results with three 

class classification showed average accuracy of 0.91.  

TABLE IV 
CLASS ACCURACY FOR DISC HERNIA DIAGNOSIS  

(AXIAL AND SAGITTAL VIEW) 
Disc hernia classification (axial view) (mean) 

healthy bulge central left right class average 

0.95 0.74 0.67 0.87 0.86 0.87 
healthy - central left right class average 

1.0 - 0.73 0.82 0.90 0.90 

Disc hernia classification (sagittal view) (mean) 

healthy L4/L5 level L5/S1 level class average 

0.90 0.91 0.92 0.91 

To account for other metrics except accuracy, confusion 

matrices are given in Fig. 10a for axial view and Fig. 10b for 

sagittal view. For axial view, it is visible that classes bulge and 

central are often misclassified meaning that disc bulge and 

central herniation were the hardest to distinguish from other 

classes.  

 
a) 

 
b) 

Fig. 10. Confusion matrix a) axial view, b) sagittal view 

Disc bulge is in three cases classified as heathy, which is 

understandable, as there is no rupturing of the annulus. An 

additional potential problem in the classification was the 

central classification, which achieved the lowest classification 

accuracy. This is mainly due to the dataset imbalance with a 

small number of images for central herniation, as it is also the 

case in real clinical practice where left and right herniation are 
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more likely to occur. Also, central protrusion often leans 

toward left/right paracentral protrusion, so it is understandable 

why this type of herniation caused some misclassifications 

(most often as left or right herniation as seen from Fig. 10a). 

ROC curves are given in Fig. 11a for axial view and Fig. 11b 

for sagittal view. It can be seen that plotting true positive rate 

versus false positive rate shows a successful classification.  

 
a) 

 
b) 

Fig. 11. ROC curve a) axial view, b) sagittal view 

Precision recall curves are shown in Fig. 12a for axial view 

and Fig. 12b for sagittal view. Detailed report on sensitivity 

(recall), specificity and precision for the test subset are given 

in Table V.   
TABLE V 

OTHER STATISTICAL MEASURES FOR DISC HERNIA DIAGNOSIS  
(AXIAL AND SAGITTAL VIEW) 

Disc hernia classification (axial view) 

 healthy bulge central left right 

sensitivity (recall) 1.00 0.70 0.64 0.82 0.90 
specificity 0.94 0.97 0.96 0.99 0.97 

precision 0.92 0.78 0.70 0.93 0.82 

 healthy - central left right 

sensitivity (recall) 1.00 - 0.73 0.82 0.90 
specificity 1.00 - 0.95 0.95 0.98 

precision 1.00 - 0.73 0.82 0.90 

Disc hernia classification (sagittal view) 

 healthy L4/L5 level L5/S1 level 

sensitivity (recall) 0.91 0.89 0.93 

specificity 0.95 0.96 0.95 

precision 0.89 0.93 0.90 

 

These results indicate that there are images that represent a 

borderline between the stages of herniation (i.e. healthy and 

bulge), and they will be the topic of further investigation in 

future research. 

 
a) 

 
b) 

Fig. 12. PR curve 
a) axial view, b) sagittal view 

After successful classification on each of the views 

separately, it was tested how successful the proposed 

methodology was when the model was tested on coupled axial 

and sagittal images. Assuming that both axial and sagittal 

images of one patient are available, we tested the model on 

100 images from patients that had both axial and sagittal 

images and were not used in the training and validation 

phases. The results show accuracy of 0.8 (Table VI). 

 

TABLE VI 
CLASS AVERAGE (MEAN) CLASSIFICATION RESULTS FOR ONLY AXIAL 

INPUT, ONLY SAGITTAL INPUT AND BOTH VIEW INPUTS  
Axial only (5 classes) Sagittal only (3 classes) Axial + Sagittal 

0.87 0.91 0.8 

The results from the transfer learning have been 

summarized in Table VII. The metric reported was accuracy 

for each class. 
TABLE VII 

RESULTS OF TRANSFER LEARNING (ACCURACY) WITH DIFFERENT BASE 

MODELS* 

Disc hernia classification (axial view) 
 

healthy bulge central left right 
class 

average 

VGG16 0.91 0.86 0.42 0.59 0.48 0.71 

VGG19 0.95 0.59 0.56 0.64 0.57 0.75 
DenseNet121 0.93 0.57 0.46 0.53 0.40 0.68 

Xception 0.93 0.54 0.20 0.44 0.15 0.62 

Disc hernia classification (sagittal view) 
 

healthy 
L4/L5 

level 

L5/S1 

level 

class 

average 

VGG16 0.86 0.90 0.89 0.88 

VGG19 0.84 0.89 0.86 0.86 
DenseNet121 0.81 0.85 0.87 0.85 

Xception 0.74 0.83 0.75 0.77 

*no pretrained AlexNet model is available in Keras 

It can be seen that transfer learning achieves competitive 

results in comparison to the newly designed CNN. It can be 

debated that optimal hyperparameters do have a wide range of 

search space (i.e. number of last layers that will be (un)frozen, 

the number of last layers retrained, number and type of new 

layers added). Therefore, obtained results in this study should 

serve as a guide for future analysis focused only on transfer 

learning applied for disc hernia diagnosis. Additionally, 

pretrained weights could be potentially loaded not only from 

ImageNet dataset, but also a dataset more similar to dataset 

used in this study (i.e. model trained on MRI spine images), in 

order to be able to compare the results and explore the 

possibility of negative transfer learning.  

Comparison of the obtained results from this paper with 

leading-edge results in similar problems are listed in Table 

VII. It can be seen that most of the available methods 

investigate only binary classification (healthy versus diseased) 

such as [33], [34]. Those that investigate multi-classification 

use only one view, such as [32] and [52] and achieve around 

87-88% accuracy on axial view images. However, it should be 

stated that the number of classes is smaller than in our 

investigation. With four classes, we achieved beyond state-of-

the-art accuracy. It should also be noted that a comparison 

cannot be made directly, as classes in the literature differ from 

classes used in this paper. Should the comparison be made, 

only one paper by Lu et al. [31] uses axial and sagittal view 

analysis and classification, though in spinal canal stenosis and 

achieves 80.4±1.6% of accuracy. By comparing Table VI and 

Table VIII, it can be concluded that the proposed method 

makes advancement in several directions – conducts analysis 

of both views (axial and sagittal), performs multiclass 

classification on relatively small datasets and achieves results 

comparable and even beyond state of the art.  

Nevertheless, there are several limitations of this work. 
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Dataset used does not contain images of L1-L3 disc level, 

meaning upper lumbar disc herniations, primarily because it is 

a less common diagnosis. The plan is to expand the 

methodology applied on lower lumbar herniations to upper 

levels in future. Additionally, the dataset used is rather small 

for the standard use of deep CNNs and also smaller in 

comparison to the datasets used in the other studies. Also, the 

dataset included images with both protrusion, extrusion and 

sequestration levels of herniation, so we were not able to 

divide the dataset into even smaller subsets, as the main focus 

was to distinguish the level (L4/L5 or L5/S1) and side (left, 

right, central, bulge) of herniation. Additionally, due to the 

fact that number of images in dataset is relatively small for 

deep learning, implementation of the bootstrap aggregation 

technique could be investigated. Our future effort will 

concentrate on two directions areas: (1) refining this system 

using a more focused technique that analyzes certain elements 

of MR images, (2) implementation of bootstrapping methods 

to perform additional validation of the obtained results (3) 

collecting more MR images in order to produce a completely 

automatic method and software for disc herniation diagnosis.  

IV. CONCLUSION 

An automated approach for diagnosing lumbar disc 

herniation using MRI axial and sagittal images is proposed in 

this paper. The goal is to develop a decision-making system 

that will aid clinicians in terms of diagnostic accuracy and 

speed. The dataset consisted of combined online available 

dataset and locally collected images in the Clinical Centre 

Kragujevac that resulted in 1169 sagittal view images and 557 

axial view images. Our methodology was comprised of several 

steps. The first step was to automatically locate and segment 

L4/L5 and L5/S1 vertebral discs using a U-net convolutional 

neural network. This was achieved with high accuracy on both 

views – axial (dice=0.961, IOU=0.925) and sagittal view 

(dice=0.897, IOU=0.813) images. CLAHE filter was used to 

increase the quality and contrast of the segmented region and 

bounding box was extracted to be forwarded to the final 

classification. Each cropped region with vertebral disc was 

classified based on the created convolutional neural network 

(CNNs) into adequate classes (healthy, bulge, central, right or 

left herniation for axial view and healthy, L4/L5, L5/S1 level 

of herniation on sagittal view). The accuracy of classification 

was 0.87 on axial view images and 0.91 on sagittal view 

images, while the accuracy was 0.8 when a combined axial 

and sagittal view was used. Compared to the accuracies in the 

state-of-the-art literature, our results showed roughly the same 

or even better accuracy, especially taking into consideration 

that multi-input and multiclass classification was performed.  

TABLE VIII 
OVERVIEW OF THE BEST PUBLISHED RESULTS IN SIMILAR PROBLEMS. PERFORMANCE METRIC IS OVERALL ACCURACY. 

 
Zhang et al. (2017) 

[33] 
Jamaludin et al. 

(2017) [34] 
Lu et al. (2018) [31] 

Salehi et al. (2019) 
[52] 

Pan et al. (2021) [32] 

Investigated problem Spinal canal stenosis Spinal canal stenosis Spinal canal stenosis Disc hernia Disc hernia 

Type of scan Axial Sagittal Axial+Sagittal Axial Axial 
Number of images 582 12018 22796 2329 3555 

Binary/Multi 

classification  

binary (healthy, 

diseased) 

binary 

(healthy, diseased) 

binary 

(healthy, 
diseased) 

multi (normal, 

mild, moderate, 
severe) 

multi (normal, 

bulge, protrusion, 
extrusion) 

multi (healthy, bulge, 

hernia) 

Performance 86.6±3.3 91.4 96.3±0.46 80.4±1.6 87±7 88.76±3.72 
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