The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Method: 0 00000 00 Results 0000000

Path Integral-Enabled Methods within the Stochastic Representation of Wavefunctions

Liam Bernheimer

THE COHEN GROUP

School of Chemistry Faculty of Exact Sciences
Tel Aviv University

TREX Symposium on Bridging Quantum Monte Carlo and

High-Performance Simulations Esch-sur-Alzette, Luxembourg February 2024

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Method: 000000 00 Results 0000000

Outline

Introduction

The Stochastic Representation & Path Integration

Methods Symmetry Enforcement Energy Estimation

Results

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Method: 000000 00 Results 0000000

Introduction

The Stochastic Representation & Path Integration

Aethods Symmetry Enforcemen Energy Estimation

Results

The problem

• Finding the ground state of many-body quantum systems is hard.

$$\left[-\frac{\hbar^{2}}{2m}\nabla^{2}+V\left(\mathsf{R}\right)\right]\psi_{n}\left(\mathsf{R}\right)=E_{n}\psi_{n}\left(\mathsf{R}\right)$$

• Analytical solutions for systems beyond the Hydrogen atom are rare.

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 0000000

Curse of dimensionality

Straight forward numerically accurate approximations suffer from impractical scaling.

 $\label{eq:https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/$

Convoluted approximations are required!

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 0000000

The variational principle

We can find for the ground state by searching for the global minimum of the energy. Lower is always better.

$$\mathcal{E}\left(\psi_{\boldsymbol{\theta}}\left(\mathsf{R}\right)\right) = \frac{\left\langle\psi_{\boldsymbol{\theta}}|\hat{H}|\psi_{\boldsymbol{\theta}}\right\rangle}{\left\langle\psi_{\boldsymbol{\theta}}|\psi_{\boldsymbol{\theta}}\right\rangle} = \sum_{n}|c_{n}|^{2}E_{n} \geq E_{0}$$

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 0000000

Optimization

Global optimization is also hard. Derivatives with respect to all parameters and spatial coordinates are needed.

 $\nabla^2 \psi_{\theta} \left(\mathsf{R} \right)$

$$\boldsymbol{\theta} \rightarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{E} \left(\psi_{\boldsymbol{\theta}} \left(\mathsf{R} \right) \right)$$

The Stochastic Representation & Path Integration 0000000

Methods 0 00000 00 Results 0000000

Imaginary Time Propagation / Stochastic Reconfiguration¹

Imaginary time propagation bypasses optimization issues but is computationally impractical for large ansatzes with existing methods.

$$\psi(\mathsf{R},\tau) = \sum_{n=0}^{\infty} c_n \varphi_n(\mathsf{R}) e^{-\frac{1}{\hbar} E_n \tau} \xrightarrow{\tau \to \infty} E_0 \leq E_1 \leq \dots \leq E_n} \psi(\mathsf{R},\tau) \propto \varphi_0(\mathsf{R})$$

$$heta_{lpha} o heta_{lpha} - \eta \sum_{eta} S_{lphaeta}^{-1} f_{eta}$$

The Stochastic Representation & Path Integration $\bullet \texttt{ooooooo}$

Methods 0 00000 00 Results 0000000

Outline

Introduction

The Stochastic Representation & Path Integration

Aethods Symmetry Enforcement Energy Estimation

Results

The Stochastic Representation & Path Integration $\circ \bullet \circ \circ \circ \circ \circ \circ$

Methods 0 00000 00 Results 0000000

The Stochastic Representation²

Given a tractable ansatz $\psi_{s}^{(0)},$ we should be able to:

The Stochastic Representation & Path Integration $\circ \bullet \circ \circ \circ \circ \circ \circ$

Methods 0 00000 00 Results 0000000

The Stochastic Representation²

Given a tractable ansatz $\psi_s^{(0)}$, we should be able to:

• Select a set of sample coordinates R_i.

The Stochastic Representation & Path Integration $\diamond \bullet \circ \circ \circ \circ \circ$

Methods 0 00000 00 Results 0000000

The Stochastic Representation²

Given a tractable ansatz $\psi_s^{(0)}$, we should be able to:

- Select a set of sample coordinates R_i.
- Obtain the set of numbers $\psi_s^{(1)}(\mathsf{R}_i) \equiv e^{-\tau \hat{H}} \psi_s^{(0)}(\mathsf{R}_i)$, so we have pairs $\left\{\mathsf{R}_i, \psi_s^{(1)}(\mathsf{R}_i)\right\}$.

The Stochastic Representation & Path Integration $\diamond \bullet \circ \circ \circ \circ \circ$

Methods 0 00000 00 Results 0000000

The Stochastic Representation²

Given a tractable ansatz $\psi_s^{(0)}$, we should be able to:

- Select a set of sample coordinates R_i.
- Obtain the set of numbers $\psi_{s}^{(1)}(\mathsf{R}_{i}) \equiv e^{-\tau \hat{H}} \psi_{s}^{(0)}(\mathsf{R}_{i}), \text{ so we}$ have pairs $\left\{\mathsf{R}_{i}, \psi_{s}^{(1)}(\mathsf{R}_{i})\right\}$.
- Interpolate over the samples to result in a new, propagated tractable ansatz $\psi_s^{(1)}(\mathsf{R})$.

The Stochastic Representation & Path Integration $\circ 0 \bullet 0 \circ 0 \circ 0$

Methods 0 00000 00 Results 0000000

The Stochastic Representation

Repeating this will eventually result in the wavefunction at long imaginary time, i.e., the ground state. Consequently, the optimization problem transitions into a supervised regression task.

The Stochastic Representation & Path Integration $_{000000}$

Methods 0 00000 00 Results 0000000

Previous Works

Similar ideas were devised before us:

- D. Kochkov and B. K. Clark, arXiv:1811.12423 (2018).
- I. L. Gutiérrez and C. B. Mendl, Quantum 6, 627 (2022).
- J. Gacon, J. Nys, R. Rossi, S. Woerner, and G. Carleo, arXiv:2303.12839 (2023).

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 0000000

Path Integration

• Simplest way: Euler method, $e^{-\Delta \tau \frac{\hat{H}}{\hbar}} \simeq 1 - \Delta \tau \frac{\hat{H}}{\hbar}$. Requires taking spatial derivatives, e.g. $-\frac{\hbar^2}{2m} \nabla_i^2 \psi_s^{(0)}(\mathsf{R}_i)$.

• Another way: perform path integration. No derivatives needed!

$$e^{-\tau \frac{\hat{H}}{\hbar}}\psi(\mathsf{R}_{0}) = \lim_{N \to \infty} \left(\frac{mN}{2\pi\tau\hbar}\right)^{\frac{Nd}{2}} \\ \times \int_{\left(\mathbb{R}^{d}\right)^{N}} \exp\left\{-\frac{1}{\hbar}\sum_{j=1}^{N}\varepsilon\left[\frac{m}{2}\left|\frac{\mathsf{R}_{j}-\mathsf{R}_{j-1}}{\varepsilon}\right|^{2}+V(\mathsf{R}_{j-1})\right]\right\} \\ \times \psi(\mathsf{R}_{N})\,d\mathsf{R}_{1}d\mathsf{R}_{2}\cdots d\mathsf{R}_{N} \\ \varepsilon = \frac{\tau}{N}$$

The Stochastic Representation & Path Integration $_{000000}$

Methods 0 00000 00 Results 0000000

Path Integration

• Path integration for long times is limited by sign problems, but shorter times can be evaluated approximately, N = 1 $(\Delta \tau \equiv \varepsilon)$.

$$e^{-\Delta au \frac{\hat{H}}{\hbar}}\psi(\mathsf{R}_0)\simeq \left(\frac{m}{2\pi\Delta au\hbar}\right)^{\frac{d}{2}}\int_{\mathbb{R}^d}\exp\left\{-\frac{1}{\hbar}S^{\mathsf{L}}_{\mathsf{E}}(\mathsf{R}_0,\mathsf{R}_N,\Delta au)\right\}\times\psi(\mathsf{R}_N)d\mathsf{R}_N$$

• Can be carried out with Monte Carlo!

The Stochastic Representation & Path Integration 000000

Methods 0 00000 00 Results 0000000

Regression

https://onlinelibrary.wiley.com/doi/10.1002/adts.202000269

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Results 0000000

Introduction

The Stochastic Representation & Path Integration

Methods

Symmetry Enforcement Energy Estimation

Results

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 0000 Results 0000000

Introduction

The Stochastic Representation & Path Integration

Methods Symmetry Enforcement Energy Estimation

Results

Exchange Symmetry of Identical Particles

The spatial wavefunction is (anti)symmetric to exchange of identical bosons (fermions).

- Bosons are relatively easy to treat due to the lack of nodes
- Fermions are hard more sign problems

Results 0000000

Fermionic Symmetry

Fermionic symmetry is usually enforced via Slater determinants,

$$\psi(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(\mathbf{r}_{1}) & \chi_{2}(\mathbf{r}_{1}) & \cdots & \chi_{N}(\mathbf{r}_{1}) \\ \chi_{1}(\mathbf{r}_{2}) & \chi_{2}(\mathbf{r}_{2}) & \cdots & \chi_{N}(\mathbf{r}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{1}(\mathbf{r}_{N}) & \chi_{2}(\mathbf{r}_{N}) & \cdots & \chi_{N}(\mathbf{r}_{N}) \end{vmatrix}$$

The time complexity for computing a determinant is of the order $\mathcal{O}(N^3)$ (or $\mathcal{O}(N^2)$ for Vandermonde ansatzes).

The Stochastic Representation & Path Integration 0000000

Results 0000000

Inexpensive Symmetry Enforcement

To enforce symmetry of N particles, order their coordinates lexicographically and consider the sign change in the corresponding space subset. ³

 $r_i < r_j$ if $x_i < x_j$, or $x_i = x_j$ and $y_i < y_j$ or $x_i = x_j$ and so on.

$$\psi\left(\{\mathsf{r}_1,\ldots,\mathsf{r}_N\}\right) = \sigma\left(\bar{\pi}\right)\psi_{\frac{1}{N!}}\left(\left\{\mathsf{r}_{\bar{\pi}(1)},\ldots,\mathsf{r}_{\bar{\pi}(N)}\right\}\right)$$

For example, 2 fermions in a 1D box:

³M. Hutter, ArXiv:2007.15298 [Quant-Ph] (2020).

The Stochastic Representation & Path Integration 0000000

Results 0000000

Inexpensive Symmetry Enforcement

To enforce symmetry of N particles, order their coordinates lexicographically and consider the sign change in the corresponding space subset. ³

$$r_i < r_j$$
 if $x_i < x_j$, or $x_i = x_j$ and $y_i < y_j$ or $x_i = x_j$ and so on.

$$\psi\left(\{\mathsf{r}_1,\ldots,\mathsf{r}_N\}\right) = \sigma\left(\bar{\pi}\right)\psi_{\frac{1}{N!}}\left(\left\{\mathsf{r}_{\bar{\pi}(1)},\ldots,\mathsf{r}_{\bar{\pi}(N)}\right\}\right)$$

Using quicksort lowers the symmetrization complexity to $\mathcal{O}(N \log N)$, with a small prefactor!

³M. Hutter, ArXiv:2007.15298 [Quant-Ph] (2020).

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Results

Inexpensive Symmetry Enforcement

Diverging derivatives are treatable only via the path integral approach!

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Results 0000000

Introduction

The Stochastic Representation & Path Integration

Methods Symmetry Enforcement Energy Estimation

Results

Results 0000000

Energy estimation

A non-variational energy estimation can be extracted immediately.

• At long imaginary times we can write

$$e^{-\Delta au rac{\hat{H}}{\hbar}} arphi_{0}\left(\mathsf{R}
ight) = e^{-\Delta au rac{E_{0}}{\hbar}} arphi_{0}\left(\mathsf{R}
ight)$$

$$E_{0} = -\hbar \frac{\ln \left(\frac{e^{-\Delta \tau \frac{\hat{H}}{\hbar}\varphi_{0}(\mathsf{R})}}{\varphi_{0}(\mathsf{R})}\right)}{\Delta \tau}$$

• At each step we check if the "decay" estimation has converged

$$E_{\mathsf{decay}}\left(\psi\right) = -\hbar \frac{\ln\left(\frac{e^{-\Delta\tau \frac{\hat{H}}{\hbar}\psi(\mathsf{R}_{\mathsf{i}})}{\psi(\mathsf{R}_{\mathsf{i}})}\right)}{\Delta\tau}$$

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results •000000

Outline

Introduction

The Stochastic Representation & Path Integration

Aethods Symmetry Enforcemen Energy Estimation

Results

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 000000

Non-interacting fermions in a 2D harmonic trap

$$\hat{H} = \frac{1}{2m}\nabla^2 + \frac{1}{2}m\omega^2\sum_i r_i^2$$

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 0000000

Spin polarized interacting fermions in a 2D harmonic trap

$$\hat{H} = \frac{1}{2m}\nabla^2 + \frac{1}{2}m\omega^2\sum_i r_i^2 + \sum_{i>j}\frac{\lambda}{r_{ij}}, \lambda = 8$$

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Method: 0 00000 00 Results 0000000

Fidelity

The quality of the regression decreases slower than exponentially.

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Results 0000000

Wigner crystallization for N = 6

We shed light on the different transitions to a Wigner molecule of the ground-state and spin-polarized cases.

Summary

- SRW is an alternative to variational Monte Carlo that enables more robust optimization with scalable imaginary time propagation.
- **Path integration** obviates the need for **spatial derivatives**, enabling utilization of non-differentiable or even discontinuous ansatzes.
- Non-differentiable ansatzes are **helpful in machine learning**, and enable **highly efficient (anti)symmetry enforcement** by lexicographic sorting of coordinates.

The Stochastic Representation & Path Integration $_{\rm OOOOOOO}$

Methods 0 00000 00 Results 000000

Thank You!

Trust-IT Services communicating to markets

Bonus A - linear euclidean action

$$\mathsf{R}^{L}\left(t
ight)=\left(1-rac{t}{\Delta au}
ight)\mathsf{R}_{0}+rac{t}{\Delta au}\mathsf{R}_{N}$$

$$S_{\mathsf{E}}^{\mathsf{L}}(\mathsf{R}_{0},\mathsf{R}_{N},\Delta\tau) = \int_{0}^{\Delta\tau} \left[\frac{m}{2} \left| \frac{\mathsf{R}_{N} - \mathsf{R}_{0}}{\Delta\tau} \right|^{2} + V\left(\mathsf{R}^{L}\left(t\right)\right) \right] dt$$
$$= \frac{m}{2\Delta\tau} \left|\mathsf{R}_{N} - \mathsf{R}_{0}\right|^{2} + \int_{0}^{\Delta\tau} V\left(\mathsf{R}^{L}\left(t\right)\right) dt$$

$$e^{-\hat{H}\Delta\tau/\hbar}\psi\left(\mathsf{R}_{0}\right)\simeq\left(\frac{m}{2\pi\Delta\tau\hbar}\right)^{d/2}\frac{1}{n_{s}}$$
$$\times\sum_{\mathsf{R}_{i}\sim\mathcal{N}_{\mu,\sigma^{2}}}\frac{\exp\left\{-\frac{1}{\hbar}S_{\mathsf{E}}^{\mathsf{L}}\left(\mathsf{R}_{0},\mathsf{R}_{i},\Delta\tau\right)\right\}}{\mathcal{N}_{\mu,\sigma^{2}}\left(\mathsf{R}_{i}\right)}\psi\left(\mathsf{R}_{i}\right)$$

Bonus B - derivative-free variational energy estimation We can avoid the differentiation of the wavefunction by convoluting it with a Gaussian.

$$\psi(\mathsf{R}) \to \widetilde{\psi}(\mathsf{R}) = \psi(\mathsf{R}) * \mathcal{N}_{0,\sigma^{2}}(\mathsf{R})$$
$$= \int_{\mathbb{R}^{d}} \psi(\mathsf{R} - \mathsf{k}') \mathcal{N}_{0,\sigma^{2}}(\mathsf{k}') d\mathsf{k}'$$

$$E = \frac{\left\langle \widetilde{\psi} \left| \hat{H} \right| \widetilde{\psi} \right\rangle}{\left\langle \widetilde{\psi} \left| \widetilde{\psi} \right\rangle} \simeq \frac{\sum_{\mathsf{R},\mathsf{k}',\mathsf{k}''} A(\mathsf{R},\mathsf{k}',\mathsf{k}'')}{\sum_{\mathsf{R},\mathsf{k}',\mathsf{k}''} B(\mathsf{R},\mathsf{k}',\mathsf{k}'')} \ge E_0$$

$$A(\mathbf{R},\mathbf{k}',\mathbf{k}'') \equiv B(\mathbf{R},\mathbf{k}',\mathbf{k}'')$$
$$\times \frac{\mathbf{R}''^2 - \sigma^2 + \sigma^4 V(\mathbf{R})}{\sigma^4}$$
$$B(\mathbf{R},\mathbf{k}',\mathbf{k}'') \equiv \frac{\psi^*(\mathbf{R} - \mathbf{k}')\psi(\mathbf{R} - \mathbf{k}'')}{|\psi(\mathbf{R})|^2}$$

Bonus C - 2D harmonic oscillator energy levels

 $https://www.researchgate.net/figure/energy-levels-and-number-of-electrons-for-shell-closings-of-the-2d-harmonic-oscillator.fig7_306243994$

00000

Bonus D - Scaling results

34/30

Bonus E - Runtime scaling

35/30