Transcorrelation in a bi-orthonormal framework: a hidden gem for QMC ?

Abdallah Ammar, Anthony Scemama, Emmanuel Giner

Laboratoire de Chimie Th'eorique, CNRS
Laboratoire de Chimie et Physique Quantique, CNRS

Wednesday, 7 February 2024

SORBONNE UNIVERSITÉ

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC) large $|a|$ in $\Psi^{(0)}$

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi\left({ }^{(0)}\right.$ is multi-configurational (MC) large $|a|$ in $\Psi^{(0)}$ need full diagonalization
(2) Weak correlation on top of MC

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi\left({ }^{(0)}\right.$ is multi-configurational (MC) large $|a|$ in $\Psi^{(0)}$ need full diagonalization
(2) Weak correlation on top of MC MRPT2 or MRCC is complex

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
, Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC MRPT2 or MRCC is complex Slow basis set convergence

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
, Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC MRPT2 or MRCC is complex Slow basis set convergence
(3) Coupling between weak and strong correlation

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
, Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC MRPT2 or MRCC is complex Slow basis set convergence
(3) Coupling between weak and strong correlation

Need an equal treatment of both weak and strong correlation

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
, Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC MRPT2 or MRCC is complex Slow basis set convergence
(3) Coupling between weak and strong correlation

Need an equal treatment of both weak and strong correlation Use of Selected CI (SCI), FCI-QMC, DMRG with large active space

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
, Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC MRPT2 or MRCC is complex Slow basis set convergence
(3) Coupling between weak and strong correlation

Need an equal treatment of both weak and strong correlation Use of Selected CI (SCI), FCI-QMC, DMRG with large active space Hard to converge in term of basis set

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC

MRPT2 or MRCC is complex
Slow basis set convergence
(3) Coupling between weak and strong correlation

Need an equal treatment of both weak and strong correlation Use of Selected CI (SCI), FCI-QMC, DMRG with large active space Hard to converge in term of basis set

- Alternative: use correlation factors $J\left(r_{12}\right)$

Big challenge: the strongly correlated systems

- Ubiquitous in chemistry
- Transition metals
- Covalent bond breaking
- Three layers of trouble
(1) Having a $\Psi^{(0)}$ is multi-configurational (MC)
large $|a|$ in $\Psi^{(0)}$
need full diagonalization
(2) Weak correlation on top of MC

MRPT2 or MRCC is complex
Slow basis set convergence
(3) Coupling between weak and strong correlation

Need an equal treatment of both weak and strong correlation Use of Selected CI (SCI), FCI-QMC, DMRG with large active space Hard to converge in term of basis set

- Alternative: use correlation factors $J\left(r_{12}\right)$
- TC or VMC ?

VMC: pros and cons

- Pros: can handle any WF
- Variational optimization+probablistic approach: 8

Safe measure of the quality of any WF
No need for semi analytical integrals Handles any forms of correlation factors Allow to try many forms of compact WF

- Cons: statistical noise
- Stochastic optimization of many parameters (>105): 8

Need to compute many gradients/hessian
Small quantities \rightarrow need to have small stat. error
Hard to handle lengthy CI/CC expansions

- Core electrons: 8

High-energy regions \rightarrow large variance of $E_{l o c}(r)$ Complex parametrization of $u\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$ to adapt to the core Core electrons are often just spectators of chemistry Often use pseudo potentials (localization approximation)

TC: pros and cons

- Pros: deterministic framework
- Non-hermitian \rightarrow "Simple" Hamiltonian: 8
"No more" than 3-body integrals
Can rely on "pure" numerical integrals $\left(R^{6} \times N^{2}\right)$
Can use any form of correlation factor
- Deterministic calculations: 8
"Standard" second-quantized approaches (CI/CC etc)
Orbital optimization
Can handle very lengthy parametrization $\left(\approx 10^{8}\right)$
- Cons: non variational8
- Hard to know the "true" quality of WF
- Hard to optimize the correlation factor
, Core electrons:
No clear core-valence splitting in real-space High-density regions are very sensitive
Can cause "catastrophic" breakdown
Need for complex $u\left(r_{1}, r_{2}\right)$ in the core regions

The aim of this talk: best of both world ?

- Deterministic optimization of the Slater part
- TC Selected CI
multi-configurational wave function coupling with dominant weak-correlation effects
- Bi-orthonormal orbital framework

Optimize both left- and right-eigenvectors
Improves the SCI+PT2 convergence
Enables frozen-core calculations

- Variational Monte Carlo for Jastrow
- Safely optimize correlation factors
- Few parameters Jastrow
- Transferable from atoms to molecules

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{V M C}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{V M C}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- $\tilde{H}_{V м с}$ is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{\mathrm{VMC}}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- \tilde{H}_{VMC} is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8
- $S_{V M C}=e^{2 J} \neq 1$ couples all Slater determinants 8

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{V M C}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- \tilde{H}_{VMC} is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8
- $S_{V M C}=e^{2 J} \neq 1$ couples all Slater determinants 8
- E_{VMC} is variational 8

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{\mathrm{VMC}}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- \tilde{H}_{VMC} is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8
- $S_{V M C}=e^{2 J} \neq 1$ couples all Slater determinants 8
- E_{VMC} is variational 8
- TC: brute force orthogonalization of the basis !

$$
\left(S_{\mathrm{VMC}}\right)^{-1} \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} \Phi \Leftrightarrow e^{-J} \mathrm{He}^{J} \Phi=E_{\mathrm{TC}} \Phi
$$

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{\mathrm{VMC}}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- $\tilde{H}_{V м с}$ is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8
- $S_{V M C}=e^{2 J} \neq 1$ couples all Slater determinants 8
- E_{VMC} is variational 8
- TC: brute force orthogonalization of the basis !

$$
\left(S_{\mathrm{VMC}}\right)^{-1} \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} \Phi \Leftrightarrow e^{-J} \mathrm{He}^{J} \Phi=E_{\mathrm{TC}} \Phi
$$

- Φ is the right-eigenvector of $e^{-J} \mathrm{He}^{J}$

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{\mathrm{VMC}}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- $\tilde{H}_{V м с}$ is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8
- $S_{V M C}=e^{2 J} \neq 1$ couples all Slater determinants 8
- E_{VMC} is variational 8
- TC: brute force orthogonalization of the basis !

$$
\left(S_{\mathrm{VMC}}\right)^{-1} \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} \Phi \Leftrightarrow e^{-J} \mathrm{He}^{J} \Phi=E_{\mathrm{TC}} \Phi
$$

- Φ is the right-eigenvector of $e^{-J} \mathrm{He}^{J}$
- No overlap matrix anymore !

Connection between QMC and TC: the right eigenvectors

- Φ is the left- and right-eigenvector of $\tilde{H}_{V M C}=e^{J} H e^{J}$ (hermitian)

$$
e^{J} H e^{J} \Phi=E_{\mathrm{VMC}} e^{J} e^{J} \Phi \Leftrightarrow \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} S_{\mathrm{VMC}} \Phi
$$

- \tilde{H}_{VMC} is hermitian but N -body ($e^{J} \mathrm{He}^{J}$ does not truncate) 8
- $S_{V M C}=e^{2 J} \neq 1$ couples all Slater determinants 8
- E_{VMC} is variational 8
- TC: brute force orthogonalization of the basis !

$$
\left(S_{\mathrm{VMC}}\right)^{-1} \tilde{H}_{\mathrm{VMC}} \Phi=E_{\mathrm{VMC}} \Phi \Leftrightarrow e^{-J} \mathrm{He}^{J} \Phi=E_{\mathrm{TC}} \Phi
$$

- Φ is the right-eigenvector of $e^{-J} \mathrm{He}^{J}$
- No overlap matrix anymore !
- ETC is not necessarily variational ... 8

Transcorrelation in a nutshell (Boys, Handy, 1969)

- For a N-electron system $J\left(r_{1}, r_{2} \cdots, r_{N}\right)=\sum_{i>j} u\left(r_{i} r_{j}\right)$

Transcorrelation in a nutshell (Boys, Handy, 1969)

- For a N-electron system $J\left(r_{1}, r_{2} \cdots, r_{N}\right)=\sum_{i>j} u\left(r_{i} r_{j}\right)$

TC Hamiltonian is a similarity transformation of H by u

$$
\tilde{H}[u]=e^{-J\left(r_{1}\right.}
$$

Transcorrelation in a nutshell (Boys, Handy, 1969)

- For a N-electron system $J\left(r_{1}, r_{2} \cdots, r_{N}\right)=\sum_{i>j} u\left(r_{i} r_{j}\right)$

TC Hamiltonian is a similarity transformation of H by u

$$
\tilde{H}[u]=e^{-J\left(r_{1}\right.}
$$

Transcorrelation in a nutshell (Boys, Handy, 1969)

- For a N-electron system $J\left(r_{1}, r_{2} \cdots, r_{N}\right)=\sum_{i>j} u\left(r_{i} r_{j}\right)$

TC Hamiltonian is a similarity transformation of H by u

$$
\tilde{H}[u]=e^{-J\left(r_{1}\right.}
$$

Application to VMC: optimizing lengthy CI expansion

- Consider the $\Psi=e^{J} \Phi=e^{J} \sum_{i} C \varphi_{i}$
- The correlation factor J is fixed
- Goal: re-optimize lengthy CI expansions $\left(\approx 10^{5}\right)$ for J
- Use TC to optimise Φ

$$
\left(H+\hat{\Delta}_{u}\right) \Phi=E \Phi
$$

- We chosed a generic one- and two-body correlation factor
- Technicalities: iterative hermitian dressing
- Dressing inspired from MRCC work (JCP, 2016)
- HФ computed analytically (usual CI vector)
- Sampling of a single vector $\hat{\Delta}_{u} \Phi=$ in VMC
- $\hat{\Delta}_{u} \Phi$: small fluctuations
- Zero variance with analytical integrals of simple U
- Strong reduction of variance
- Could be done purely deterministically and linearly

Application to VMC: optimizing lengthy CI expansion

 TC can indeed lower the VMC Energy !

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Transcorrelation on a basis

- Can be developed in second quantization as usual \sim

Important features of TC: non hermitian

- \tilde{H} has Right and Left eigenvectors

$$
\tilde{H}\left|\Phi_{i}\right\rangle=\tilde{E_{i}}\left|\Phi_{i}\right\rangle \quad,(\tilde{H})\left|\chi_{i}\right\rangle=\tilde{E_{i}}\left|\chi_{i}\right\rangle, \quad \tilde{E_{i}}
$$

Important features of TC: non hermitian

- \tilde{H} has Right and Left eigenvectors

$$
\tilde{H}\left|\Phi_{i}\right\rangle=\tilde{E_{i}}\left|\Phi_{i}\right\rangle \quad,(\tilde{H})\left|\chi_{i}\right\rangle=\tilde{E_{i}}\left|\chi_{i}\right\rangle, \quad \tilde{E_{i}}
$$

- $\left|\Phi_{i}\right\rangle$ is the "physical one"

Important features of TC: non hermitian

- H̃ has Right and Left eigenvectors

$$
\tilde{H}\left|\Phi_{i}\right\rangle=\tilde{E_{i}}\left|\Phi_{i}\right\rangle \quad,(\tilde{H})\left|x_{i}\right\rangle=\tilde{E_{i}}\left\langle\chi_{i}\right\rangle, \quad \tilde{E_{i}}
$$

- $\left|\Phi_{i}\right\rangle$ is the "physical one"
- $\left\{\left|\Phi_{i}\right\rangle,\left|\chi_{i}\right\rangle\right\}$ are not orthonormal but Bi-orthonormal

$$
\left(\Phi_{i} \mid \Phi_{j}\right) \neq \delta_{i j} \quad\left(x_{i} \mid \chi_{j}\right) \neq \delta_{i j} \quad\left(\chi_{j} \mid \Phi_{i}\right)=\delta_{i j}
$$

Important features of TC: non hermitian

- \tilde{H} has Right and Left eigenvectors

$$
\tilde{H}\left|\Phi_{i}\right\rangle=\tilde{E_{i}}\left|\Phi_{i}\right\rangle \quad,(\tilde{H})\left|x_{i}\right\rangle=\tilde{E_{i}}\left|\chi_{i}\right\rangle, \quad \tilde{E_{i}}
$$

- $\left|\Phi_{i}\right\rangle$ is the "physical one"
- $\left(\left|\Phi_{i}\right\rangle^{\prime},\left|\chi_{i}\right\rangle\right\}$ are not orthonormal but Bi-orthonormal

$$
\left.\left(\Phi_{i} \mid \Phi_{j}\right) \neq \delta_{i j} \quad\left(\chi_{i} \mid \chi_{j}\right) \neq \delta_{i j} \quad\left\langle\chi_{j}\right| \Phi_{i}\right)=\delta_{i j}
$$

- Loss of variational principle: not the good functional

$$
\epsilon(\Psi)=\frac{(\Psi|\tilde{H}| \Psi\rangle}{(\Psi|\Psi\rangle} \text { is not bounded by } E_{0}
$$

Important features of TC: non hermitian

- H̃has Right and Left eigenvectors

$$
\tilde{H}\left|\Phi_{i}\right\rangle=\tilde{E_{i}}\left|\Phi_{i}\right\rangle \quad,(\tilde{H})\left|x_{i}\right\rangle=\tilde{E_{i}}\left\langle\chi_{i}\right\rangle, \quad \tilde{E_{i}}
$$

- $\left|\Phi_{i}\right\rangle$ is the "physical one"
- $\left(\left|\Phi_{i}\right\rangle,\left|\chi_{i}\right\rangle\right\}$ are not orthonormal but Bi-orthonormal

$$
\left.\left(\Phi_{i} \mid \Phi_{j}\right) \neq \delta_{i j} \quad\left(\chi_{i} \mid \chi_{j}\right) \neq \delta_{i j} \quad\left\langle\chi_{j}\right| \Phi_{i}\right)=\delta_{i j}
$$

- Loss of variational principle: not the good functional

$$
\epsilon(\Psi)=\frac{(\Psi|\tilde{H}| \Psi\rangle}{(\Psi|\Psi\rangle} \text { is not bounded by } E_{0}
$$

- Need a bi-functional

$$
\tilde{E}\left[{ }^{\chi} \Phi\right]=\frac{(\chi|\tilde{H}| \Phi\rangle}{\langle\chi \mid \Phi\rangle}
$$

Important features of TC: non hermitian

- \tilde{H} has Right and Left eigenvectors

$$
\tilde{H}\left|\Phi_{i}\right\rangle=\tilde{E_{i}}\left|\Phi_{i}\right\rangle \quad,(\tilde{H})\left|\chi_{i}\right\rangle=\tilde{E_{i}}\left\langle\chi_{i}\right\rangle, \quad \tilde{E_{i}}
$$

- $\left|\Phi_{i}\right\rangle$ is the "physical one"
- $\left(\left|\Phi_{i}\right\rangle,\left|\chi_{i}\right\rangle\right\}$ are not orthonormal but Bi-orthonormal

$$
\left.\left(\Phi_{i} \mid \Phi_{j}\right) \neq \delta_{i j} \quad\left(\chi_{i} \mid \chi_{j}\right) \neq \delta_{i j} \quad\left\langle\chi_{j}\right| \Phi_{i}\right)=\delta_{i j}
$$

- Loss of variational principle: not the good functional

$$
\epsilon(\Psi)=\frac{(\Psi|\tilde{H}| \Psi\rangle}{\langle\Psi \mid \Psi\rangle} \text { is not bounded by } E_{0}
$$

- Need a bi-functional

$$
\begin{aligned}
& \left.\frac{\delta E[-[\chi, \Phi]}{\delta \chi}\right|_{\Phi \text { kept fixed }}=0 \Rightarrow \tilde{H}|\Phi\rangle=\tilde{E}|\Phi\rangle, \\
& \left.\frac{\delta \tilde{E}[\chi, \Phi]}{\delta \Phi}\right|_{\chi \text { kept fixed }}=0 \Rightarrow(\tilde{H})|\chi\rangle=\tilde{E}|\chi\rangle
\end{aligned}
$$

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $E^{\sim}[\chi \Phi]$ in λ

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $\tilde{E^{2}}[\chi \Phi]$ in λ
, Expand only Φ : which χ ?

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $\tilde{E^{2}}[\chi \Phi]$ in λ
, Expand only Φ : which χ ?
, Expand only χ : which Φ ?

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $\tilde{E^{2}}[\chi \Phi]$ in λ
, Expand only Φ : which χ ?
, Expand only χ : which Φ ?
- Best: Expand both χ and Φ !

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $E^{\sim}[\chi \Phi]$ in λ
, Expand only Φ : which χ ?
, Expand only χ : which Φ ?
- Best: Expand both χ and Φ !
- Obtain both left- and right-eigenvectors

$$
\begin{equation*}
H_{0}\left|\Phi^{(0)}\right\rangle=E^{(0)}\left|\Phi^{(0)}\right\rangle, \quad\left(H_{0}\right)\left|\chi^{(0)}\right\rangle=E^{(0)}\left|\chi^{(0)}\right\rangle, \quad\left(\chi^{(0)}\left|\Phi^{(0)}\right\rangle=1\right. \tag{1}
\end{equation*}
$$

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $E^{\sim}[\chi \Phi]$ in λ
, Expand only Φ : which χ ?
, Expand only χ : which Φ ?
- Best: Expand both χ and Φ !
- Obtain both left- and right-eigenvectors

$$
\begin{equation*}
H_{0}\left|\Phi^{(0)}\right\rangle=E^{(0)}\left|\Phi^{(0)}\right\rangle, \quad\left(H_{0}\right)\left|\chi^{(0)}\right\rangle=E^{(0)}\left|\chi^{(0)}\right\rangle, \quad\left(\chi^{(0)}\left|\Phi^{(0)}\right\rangle=1\right. \tag{1}
\end{equation*}
$$

- Stabilize the PT2 energy corrections

$$
\begin{aligned}
& E_{\alpha}^{(2)}=\frac{\left.\chi^{(0)}|V| D_{\alpha}\right\rangle\left(D_{\alpha}|V| \Phi^{(0)}\right\rangle}{E^{(0)}-\epsilon_{\alpha}}, \quad E^{(2)}=\sum_{\alpha} E_{\alpha}^{(2)}, \\
& E_{\mathrm{TC}-\mathrm{FCI}} \approx E^{(0)}+E^{(2)}, \quad E^{(0)} \approx E_{\mathrm{TC}-\mathrm{FCI}}-E^{(2)}
\end{aligned}
$$

CIPSI for TC: main results (JCP, 2022, 2023)

- Split the TC Hamiltonian in $\tilde{H}=H_{0}+\lambda V$ (Epstein-Nesbet)
- Taylor expansion of $E^{\sim}[\chi \Phi]$ in λ
, Expand only Φ : which χ ?
, Expand only χ : which Φ ?
- Best: Expand both χ and Φ !
- Obtain both left- and right-eigenvectors

$$
\begin{equation*}
H_{0}\left|\Phi^{(0)}\right\rangle=E^{(0)}\left|\Phi^{(0)}\right\rangle, \quad\left(H_{0}\right)\left|\chi^{(0)}\right\rangle=E^{(0)}\left|\chi^{(0)}\right\rangle, \quad\left(\chi^{(0)}\left|\Phi^{(0)}\right\rangle=1\right. \tag{1}
\end{equation*}
$$

- Stabilize the PT2 energy corrections

$$
\begin{aligned}
& E_{\alpha}^{(2)}=\frac{\left.\chi^{(0)}|V| D_{\alpha}\right\rangle\left(D_{\alpha}|V| \Phi^{(0)}\right\rangle}{E^{(0)}-\epsilon_{\alpha}}, \quad E^{(2)}=\sum_{\alpha} E_{\alpha}^{(2)}, \\
& E_{\mathrm{TC}-\mathrm{FCI}} \approx E^{(0)}+E^{(2)}, \quad E^{(0)} \approx E_{\mathrm{TC}-\mathrm{FCI}}-E^{(2)}
\end{aligned}
$$

- Select Slater determinants based on $\left|E_{\alpha}^{(2)}\right|$

How to choose the Jastrow factor ?

Two kinds of $u\left(r_{i}, r_{j}\right)$?

- Universal correlation factors: $u\left(r_{i} r_{j}\right)=u\left(r_{12}\right)$
"cheap" integrals
same correlation hole everywhere Easy parametrization (Univeral)
- "3-body" Jastrow: electron-nudeus dependency
$u\left(r_{i} r_{j}\right)=u\left(r_{12}, r_{1 A}, r_{2 A}\right)$
usually non analytical integrals: $\mathrm{R}^{6} \times\left(N_{A O}\right)^{2}$ integrals
Flexible correlation hole
Lots of parameters, not easy optimization

One parameter correlation factor (JCP-2021)

- Reproduces RS-DFT interaction at leading order in $1 / r_{12}$

$$
-\frac{2 \partial u\left(r_{12}, \mu\right)}{r_{12}} \frac{1}{\partial r_{12}}+\frac{1}{r_{12}}=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}}
$$

- Depends on a single parameter μ
- Analytical integrals

One parameter correlation factor (JCP-2021)

- Reproduces RS-DFT interaction at leading order in $1 / r_{12}$

$$
-\frac{2 \partial u\left(r_{12}\right.}{r_{12}} \frac{\mu)}{\partial r_{12}}+\frac{1}{r_{12}}=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}},
$$

- Depends on a single parameter μ
- Analytical integrals

One parameter correlation factor (JCP-2021)

- Reproduces RS-DFT interaction at leading order in $1 / r_{12}$

$$
-\frac{2 \partial u\left(r_{12}\right.}{r_{12}} \frac{\mu)}{\partial r_{12}}+\frac{1}{r_{12}}=\frac{\operatorname{erf}\left(\mu r_{12}\right)}{r_{12}},
$$

- Depends on a single parameter μ
- Analytical integrals

- μ : depth/range of $u\left(r_{12}\right)$
- Valence $\mu=0.87$?
- E_{TC} « E_{0}
- Not adapted to core
- System dependent μ ?
, Based on RS-DFT
- Averaged over $n(r)$

Convergence of regular SCI

Convergence of regular SCI: extrapolation technique

Convergence of regular SCI: extrapolation technique

Convergence of regular SCI

Convergence of TC-SCI

Convergence of TC-SCI: extrapolation breaks down

Convergence of TC-SCI: extrapolation breaks down

Deeper analysis: convergence of PT2

Deeper analysis: convergence of PT2

Deeper analysis: convergence of PT2

$E_{T C}^{(2)}$ is not a good measure!

Criticism of a system-dependent $\mu(J C P, 2021$, JCP, 2022)

- Fast convergence cand be fortuite ... 8
- Unable to extrapolate ... 8
- Positive correlation energy !
- Positive contributions come from the core !
- Correlation hole too big for core electrons
- μ must increase in core regions
- Average μ : Size-consistency ?
- Dissociation of $A \cdots B$ molecule
- $\mu \approx\left(\mu_{A}+\mu_{B}\right) / 2$
- $E \neq E_{A}+E_{B}$!
- Potential solution:
- Fixed valence $\mu=0.87$ (based on FROGG of Ten No)
, Remove core electrons from Jastrow !

A potential solution: cheap 3-body Jastrow (JCTC, 2023)

- Valence $\mu: \mu=0.87 \approx$ FROGG
- Multiply $u\left(\mu, r_{12}\right)$ by an atom-centered gaussian envelope

$$
u\left(r_{1}, r_{2}\right)=u\left(\mu, r_{12}\right)\left(1-\sum_{A} \exp \left(\alpha_{A}\left(r_{1}-R_{A}\right)\right)^{2}\right)\left(1-\sum_{A} \exp \left(\alpha_{A}\left(r_{2}-R_{A}\right)\right)^{2}\right)
$$

- Kills the correlation factor when $r \rightarrow R_{A}$
- Integrals can be computed analytically

Optimize the α parameter in VMC

- Obtain atomic parameters: is it transferables to molecules ?
- Use a single Slater determinant anzats $e^{U} \Phi$
- How to optimize the orbitals of Φ ?
, TC in a bi orthonormal framework !

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R}

$$
\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle, \text { with }|\Phi\rangle=\sum_{i} c_{i}^{r}\left|\varphi_{i}\right\rangle \quad \text { and } H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.
$$

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R} $\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle$, with $|\Phi\rangle=\Sigma c_{i}^{r}\left|\varphi_{i}\right\rangle \quad$ and $H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.$
- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R} $\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle$, with $|\Phi\rangle=\Sigma c_{i}^{r}\left|\varphi_{i}\right\rangle \quad$ and $H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.$
- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!
- Only constraint: \hat{S}^{-1} must be defined

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R} $\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle$, with $|\Phi\rangle=\Sigma c_{i}^{r}\left|\varphi_{i}\right\rangle \quad$ and $H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.$
- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!
- Only constraint: \hat{S}^{-1} must be defined
a If $\left(\chi_{i}\left|\varphi_{j}\right\rangle=\delta_{i j}\right.$ then it is a bi-orthonormal basis

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R}

$$
\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle \text {, with }|\Phi\rangle=\Sigma c_{i}^{r}\left|\varphi_{i}\right\rangle \quad \text { and } H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.
$$

- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!
- Only constraint: \hat{S}^{-1} must be defined
- If $\left(\chi_{i}\left|\varphi_{j}\right\rangle=\delta_{i j}\right.$ then it is a bi-orthonormal basis
- New creation/annihilation operators $\hat{c_{k}} / \hat{b}_{l}$

$$
\left\{\hat{c_{k^{\prime}}}, \hat{b}_{l}\right\}=\delta_{k l}, \quad\left\{\hat{c_{k}}, \hat{c_{l}}\right\}=0, \quad\left\{\hat{b}_{k}, \hat{b}_{l}\right\}=0
$$

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R}
$\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle$, with $|\Phi\rangle=\Sigma c_{i}^{r}\left|\varphi_{i}\right\rangle \quad$ and $H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.$
- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!
- Only constraint: \hat{s}^{-1} must be defined
- If $\left(\chi_{i}\left|\varphi_{j}\right\rangle=\delta_{i j}\right.$ then it is a bi-orthonormal basis
- New creation/annihilation operators $\hat{c_{k}} / \hat{b}_{l}$

$$
\left\{\hat{c_{k}}, \hat{b_{l}}\right\}=\delta_{k l} \quad\left\{\hat{c_{k}}, \hat{c_{l}}\right\}=0, \quad\left\{\hat{b}_{k}, \hat{b_{l}}\right\}=0
$$

- Change the integrals according to

$$
O_{i j}^{k l}=\left(\chi_{k} \chi,|\hat{O}| \varphi_{i} \varphi_{j}\right\rangle
$$

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R} $\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle$, with $|\Phi\rangle=\Sigma c_{i}^{r}\left|\varphi_{i}\right\rangle \quad$ and $H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.$
- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!
- Only constraint: \hat{S}^{-1} must be defined
- If $\left(\chi_{i}\left|\varphi_{j}\right\rangle=\delta_{i j}\right.$ then it is a bi-orthonormal basis
- New creation/annihilation operators $\hat{c_{k}} / \hat{b}_{l}$

$$
\left\{\hat{c_{k}}, \hat{b_{l}}\right\}=\delta_{k l} \quad\left\{\hat{c_{k}}, \hat{c_{l}}\right\}=0, \quad\left\{\hat{b}_{k}, \hat{b_{l}}\right\}=0
$$

- Change the integrals according to

$$
O_{i j}^{k l}=\left(\chi_{k} \chi_{,}|\hat{O}| \varphi_{i} \varphi_{j}\right\rangle
$$

- Left/right Slater determinants are different in real-space

$$
X_{I}\left(r_{1}, r_{2}, \cdots, r_{N}\right) \neq \Phi_{l}\left(r_{1}, r_{2}, \cdots, r_{N}\right)
$$

Bi-orthonormal framework

- General case of $\hat{H} \Phi=E \Phi$ projected on B^{L} and B^{R} $\hat{H}|\Phi\rangle=E \hat{S}|\Phi\rangle$, with $|\Phi\rangle=\Sigma \quad c_{i}^{r}\left|\varphi_{i}\right\rangle \quad$ and $H_{i j}=\left(\chi_{i}|\hat{H}| \varphi_{j}\right\rangle, \quad S_{i j}=\left(\chi_{i}\left|\varphi_{j}\right\rangle\right.$
- General case: no need for $\chi_{i}^{i}=\varphi_{i}$!
- Only constraint: \hat{S}^{-1} must be defined
- If $\left(\chi_{i}\left|\varphi_{j}\right\rangle=\delta_{i j}\right.$ then it is a bi-orthonormal basis
- New creation/annihilation operators $\hat{c_{k}} / \hat{b}_{l}$

$$
\left\{\hat{c_{k}}, \hat{b_{l}}\right\}=\delta_{k l} \quad\left\{\hat{c_{k}}, \hat{c_{l}}\right\}=0, \quad\left\{\hat{b}_{k}, \hat{b}_{l}\right\}=0
$$

- Change the integrals according to

$$
O_{i j}^{k l}=\left(\chi_{k} \chi_{,}|\hat{O}| \varphi_{i} \varphi_{j}\right\rangle
$$

- Left/right Slater determinants are different in real-space

$$
X_{l}\left(r_{1}, r_{2}, \cdots, r_{N}\right) \neq \Phi_{l}\left(r_{1}, r_{2}, \cdots, r_{N}\right)
$$

- But bi-orthogonality relation (as for orthonormal basis)

$$
\left(X_{I}\left|\Phi_{J}\right\rangle=\delta_{I J}\right.
$$

How to optimize orbitals in a bi-ortho framework ?

- Consider two bi-ortho Slater dets $\left(X_{0} \mid\right.$ and $\left|\Phi_{0}\right\rangle$

How to optimize orbitals in a bi-ortho framework ?

- Consider two bi-ortho Slater dets $\left(X_{0} \mid\right.$ and $\left|\Phi_{0}\right\rangle$
- Orbital rotations "as usual" with $\hat{\kappa}$

$$
\begin{array}{ll}
|\Phi[\hat{\kappa}]\rangle=e^{\hat{\kappa}}\left|\Phi_{0}\right\rangle, & \left(X[\hat{\kappa}] \mid=\left(X_{0} \mid e^{-\hat{\kappa}}\right.\right. \\
\hat{\kappa}=\sum_{p>q} \kappa_{p q} \hat{E}_{p q}, & \hat{p q} \\
\sigma \in\{\uparrow
\end{array}
$$

How to optimize orbitals in a bi-ortho framework ?

- Consider two bi-ortho Slater dets $\left(X_{0} \mid\right.$ and $\left|\Phi_{0}\right\rangle$
- Orbital rotations "as usual" with $\hat{\kappa}$

$$
\begin{array}{ll}
|\Phi[\hat{\kappa}]\rangle=e^{\hat{\kappa}}\left|\Phi_{0}\right\rangle, & \left(X[\hat{\kappa}] \mid=\left(X_{0} \mid e^{-\hat{\kappa}}\right.\right. \\
\hat{\kappa}=\sum_{p>q} \kappa_{p q} \hat{E}_{p q}, & \hat{p q} \quad \\
\sigma \in\{\uparrow
\end{array}
$$

How to optimize orbitals in a bi-ortho framework ?

- Consider two bi-ortho Slater dets $\left(X_{0} \mid\right.$ and $\left|\Phi_{0}\right\rangle$
- Orbital rotations "as usual" with $\hat{\kappa}$

$$
\begin{array}{ll}
|\Phi[\hat{\kappa}]\rangle=e^{\hat{\kappa}}\left|\Phi_{0}\right\rangle, & \left(X[\hat{\kappa}] \mid=\left(X_{0} \mid e^{-\hat{\kappa}}\right.\right. \\
\hat{\kappa}=\sum_{p>q} \kappa_{p q} \hat{E}_{p q}, & \hat{p q} \quad \\
\sigma \in\{\uparrow
\end{array}
$$

How to optimize orbitals in a bi-ortho framework ?

- Consider two bi-ortho Slater dets $\left(X_{0} \mid\right.$ and $\left|\Phi_{0}\right\rangle$
- Orbital rotations "as usual" with $\hat{\kappa}$

$$
\begin{array}{ll}
|\Phi[\hat{\kappa}]\rangle=e^{\hat{\kappa}}\left|\Phi_{0}\right\rangle, & \left(X[\hat{\kappa}] \mid=\left(X_{0} \mid e^{-\hat{\kappa}}\right.\right. \\
\hat{\kappa}=\sum_{p>q} \kappa_{p q} \hat{E}_{p q}, & \hat{p q} \quad \\
\sigma \in\{\uparrow
\end{array}
$$

Using VMC to optimize the Jastrow (JCTC, 2023)

- $\mathrm{HF}+\mathrm{J}: e^{J(\alpha)}|\mathrm{HF}\rangle$
- TC+J: $e^{J(\alpha)}|\Phi[\alpha]\rangle$

Using VMC to optimize the Jastrow (JCTC, 2023)

- $\mathrm{HF}+\mathrm{J}: e^{J(\alpha)}|\mathrm{HF}\rangle$
- $\mathrm{TC}+\mathrm{J}: e^{J(\alpha)}|\Phi[\alpha]\rangle$

Nitrogen, cc-pVTZ: VMC energies

Using VMC to optimize the Jastrow (JCTC, 2023)

- $\mathrm{HF}+\mathrm{J}: \mathrm{e}^{J(\alpha)}|\mathrm{HF}\rangle$
- TC $+\mathrm{J}: e^{J(\alpha)}|\Phi[\alpha]\rangle$
- TC-SCF orbs. improves VMC energy !
- Already observed with CI coefs (JCTC, 2022)

Nitrogen, cc-pVTZ: VMC energies

Using VMC to optimize the Jastrow (JCTC, 2023)

- $\mathrm{HF}+\mathrm{J}: \mathrm{e}^{J(\alpha)}|\mathrm{HF}\rangle$
- TC $+\mathrm{J}: e^{J(\alpha)}|\Phi[\alpha]\rangle$
- TC-SCF orbs. improves VMC energy !
- Already observed with CI coefs (JCTC, 2022)

Neon, cc-pVQZ, VMC energies

Using VMC to optimize the Jastrow (JCTC, 2023)

- $\mathrm{HF}+\mathrm{J}: \mathrm{e}^{J(\alpha)}|\mathrm{HF}\rangle$
- TC $+\mathrm{J}: e^{J(\alpha)}|\Phi[\alpha]\rangle$
- TC-SCF orbs. improves VMC energy !
- Change the optimal parameters for $u\left(r_{1}, r_{2}\right)$

Neon, cc-pVQZ, VMC energies

Using VMC to optimize the Jastrow (JCTC, 2023)

- $\mathrm{HF}+\mathrm{J}: \mathrm{e}^{J(\alpha)}|\mathrm{HF}\rangle$
- TC $+\mathrm{J}: e^{J(\alpha)}|\Phi[\alpha]\rangle$
- TC-SCF orbs. improves VMC energy !
- Change the optimal parameters for $u\left(r_{1}, r_{2}\right)$

Copper, cc-pVTZ: VMC energies

Transferable from atoms to molecules

Nitrogen, cc-pVTZ: VMC energies

Nitrogen dimer, cc-pVTZ: VMC energies

Numerical example: CO, cc-pVTZ, frozen core

Similar stability than the usual selected Cl

Numerical example: CO, cc-pVTZ, frozen core

Can be extrapolated as usual selected Cl

Numerical example: CO, cc-pVTZ, frozen core

Size-consistent correlation factors

Numerical example: Atomization energies, cc-pVTZ

Improves the quality of ΔE

Frozen core TC ?

Difference between the all-electron and frozen core energy differences (mH)

	SCI	TC-SCI	
		RHF orbs	TC-SCF orbs
IP of F	-0.2	-2.2	-0.1
IP of Ne	-0.3	-3.2	-0.2
AE of F_{2}	-0.4	-2.3	-0.2

- Significative error on ΔE with RHF orbs
- Better core-valence splitting with TC-SCF orbs
- Make frozen core calculations possible
- Open to CASSCF calculations

How to go towards larger systems ? 3-e terms

- $L_{j m}^{k / m}$ tensor: N^{6} to store!
- Makes $\left(X_{J}|\tilde{H}| \Phi_{\mid}\right\rangle$much more complex
- Approximation: normal-ordering
- Contract the 3-e op. on a reference $|\Phi\rangle$
- Yield effective 0, 1, 2, and 3-e operator
- Discard the 3-e operator
- General formulation by Kutzelnigg/Mukherjee
- Intense use in nudear physics
- Used also in TC (Alavi et. al.)
, We extended it to a bi-orthonormal framework
$\mathrm{C}_{6} \mathrm{H}_{6}$ frozen core atomization energy (Hartree):

	CCSD(T)	CCSD(T)-F12	TC-SCI
VDZ	2.0222	2.1526	2.1558
VTZ	2.1229	2.1660	-

Conclusion

- Determinisitc TC can be used to optimize Φ
- VMC can be used to optimize e^{U}
- Bi-orthonormal for TC has many advantages
- Optimize both left- and right-eigenvectors
- Allow for frozen core approximations
- Normal ordering of the 3-e terms
- Simple 3-body Jastrow
- Parametrized only for atoms
- No need to reoptimize!
- Size-consistent
- On going work
- Compare TC with QMC orbital optimization
- Implementation of TC-BiO-CASSCF
- Improve the correlation factor (1-e term)
- Investigate $\mu(\mathrm{r})$

Advertisement zone

- TC has been implemented in
- Quantum Package (V3 coming soon !)
- QMCKL was used for Jastrow factors
- QMC calculations
- QMC=Chem
- Thanks to TREXIO interface
- post-doc/PhD position available in Paris! 8

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B

Main differences between F_{12} and (QMC, TC)

- F $_{12}$: projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{\mathrm{J}\left(\mathrm{r}_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B
- QMC: Expect. Value $\left(\Phi^{\mathrm{B}}\left|e^{+J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}\right| \Phi^{\mathrm{B}}\right\rangle$

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B
- QMC: Expect. Value $\left(\Phi^{\mathrm{B}}\left|e^{+J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}\right| \Phi^{\mathrm{B}}\right\rangle$

Hermitian

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B
- QMC: Expect. Value $\left(\Phi^{\mathrm{B}}\left|e^{+J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}\right| \Phi^{\mathrm{B}}\right\rangle$

Hermitian
Variational

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B
- QMC: Expect. Value $\left(\Phi^{\mathrm{B}}\left|e^{+J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}\right| \Phi^{\mathrm{B}}\right\rangle$

Hermitian
Variational

- TC: Similarity transformation $e^{-J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}$

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B
- QMC: Expect. Value $\left(\Phi^{\mathrm{B}}\left|e^{+J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}\right| \Phi^{\mathrm{B}}\right\rangle$

Hermitian
Variational

- TC: Similarity transformation $e^{-J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}$

Non Hermitian

Main differences between F_{12} and (QMC, TC)

- F_{12} : projects out $e^{J\left(r_{12}\right)}$ from B
- $e^{J\left(r_{12}\right)}$ only takes "what is missing" from B
- F_{12} does not "compact" the wave function within B
- Hard to formalize in a general MC context
- QMC and TC: full effect of $e^{J\left(r_{12}\right)}$ then project on B
- Wave function can be compacted within B
- QMC: Expect. Value $\left(\Phi^{\mathrm{B}}\left|e^{+J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}\right| \Phi^{\mathrm{B}}\right\rangle$

Hermitian
Variational

- TC: Similarity transformation $e^{-J\left(r_{12}\right)} H e^{+J\left(r_{12}\right)}$

Non Hermitian
Non Variational

Some technicalities about integrals

- Integrals can be computed as

$$
\begin{array}{llc}
K_{i j}^{k l}=\mathrm{J} \quad \mathrm{dr}_{1} \varphi_{k}\left(\mathrm{r}_{1}\right) \varphi_{i}\left(\mathrm{r}_{1}\right)\left(g_{j l}^{1}\left(\mathrm{r}_{1}\right)+g_{j l}^{2}\left(\mathrm{r}_{1}\right)\right) & \text { numerical grid on } \mathrm{R}^{3} \\
L_{i j m}^{k / n}=\mathrm{J} \quad \mathrm{dr}_{1} \varphi_{k}\left(\mathrm{r}_{1}\right) \varphi_{i}\left(\mathrm{r}_{1}\right) g_{j l}^{1}\left(\mathrm{r}_{1}\right) g_{m n}^{1}\left(\mathrm{r}_{1}\right) & \text { numerical grid on } \mathrm{R}^{3} \\
g_{j l}^{1}\left(\mathrm{r}_{1}\right)=\mathrm{J} \quad \mathrm{dr}_{2} \nabla_{1} u\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \varphi_{l}\left(\mathrm{r}_{2}\right) \varphi_{j}\left(\mathrm{r}_{2}\right) & \text { numerical or analytical }
\end{array}
$$

$$
\begin{aligned}
& g_{j l}^{2}\left(r_{1}\right)=\mathrm{J} \quad \mathrm{dr}_{2}\left|\nabla_{1} u\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)\right|^{2} \varphi_{l}\left(\mathrm{r}_{2}\right) \varphi_{j}\left(\mathrm{r}_{2}\right) \quad \text { numerical or anal) } \\
& \text { If simple enough } u\left(\mathrm{r}_{1}, r_{2}\right) \text { then } g_{j l}^{1}\left(\mathrm{r}_{1}\right) \text { and } g_{j l}^{2}\left(\mathrm{r}_{1}\right) \text { are analytical }
\end{aligned}
$$

- Storage of intermediate $\propto N^{2} \times N_{g}$
- Storage of $L_{i j m}^{k / n} \propto N^{6} \rightarrow$ Normal ordering approximations for $L_{i j m}^{k / n}$ (Nuclear physics, CC community)
- Contract $L_{i j m}^{\mathrm{K} / m}$ with HF one-, two- and three-rdm
- End up with effective zero, one-, two- and three-operators
- discard the three-body

Numerical example: CO, cc-pVTZ, frozen core

Smaller PT2 than the usual selected CI

Graphical example

What is the shape of scalar e-e potential with μ

Adapting SCI to TC: PT for non hermitian

- Split the Hamiltonian in $\tilde{H}=H_{0}+\lambda V$

$$
\begin{equation*}
H_{0}\left|\Phi_{0}\right\rangle=E^{(0)}\left|\Phi^{(0)}\right\rangle, \quad H_{0} \mid \tag{0}
\end{equation*}
$$

Main results

- For the wave function at first-order

$$
c_{I}^{(\Lambda)}=
$$

Taylor expansion in terms of left-function

- Here Φ is kept fixed

$$
\left|\chi_{0}\right\rangle=\sum_{l=0}^{\infty} \lambda^{\prime}\left|\chi^{(\rho)}\right\rangle, \quad\left|\chi^{(1)}\right\rangle=\sum_{\mathrm{I}} \mathrm{C}_{\mathrm{I}}^{(1)} \mid
$$

