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a Alternative: use correlation factors J(r12)
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VMC: pros and cons

@ Pros: can handle any WF

» Variational optimization+probablistic approach: 8
Safe measure of the quality of any WF
No need for semi analytical integrals
Handles any forms of correlation factors
Allow to try many forms of compact WF

@ Cons: statistical noise

» Stochastic optimization of many parameters (> 105): 8
Need to compute many gradients/hessian
Small quantities — need to have small stat. error
Hard to handle lengthy CI/CC expansions

» Core electrons: 8
High-energy regions— large variance of Eic(r)
Complex parametrization of u(r1,r2) to adapt to the core
Core electrons are often just spectators of chemistry
Often use pseudo potentials (localization approximation)



TC: pros and cons

@ Pros: deterministic framework
» Non-hermitian — “Simple” Hamiltonian: 8

"No more” than 3-body integrals
Can rely on "pure” numerical integrals (R® x \P)

Can use any form of correlation factor
» Deterministic calculations: 8
"Standard” second-quantized approaches (CI/CC etc)
Orbital optimization
Can handle very lengthy parametrization (= 108)

a Cons: non variational8
» Hard to know the "true” quality of WF
» Hard to optimize the correlation factor
» Core electrons:
No clear core-valence splitting in real-space
High-density regions are very sensitive

Can cause “catastrophic” breakdown
Need for complex u(r4,r2) in the core regions



The aim of this talk: best of both world ?

@ Deterministic optimization of the Slater part
» TC Selected CI
multi-configurational wave function
coupling with dominant weak-correlation effects
» Bi-orthonormal orbital framework
Optimize both left- and right-eigenvectors
Improves the SCI+PT2 convergence
Enables frozen-core calculations

@ Variational Monte Carlo for Jastrow
» Safely optimize correlation factors
» Few parameters Jastrow
» Transferable from atoms to molecules
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e"He*’CD = Evmce‘/e‘/q) = /:/VMC(D = EVM(;SVMCCD

@ Hymc is hermitian but A-body (e’He’ does not truncate) 8

@ Svmc = €2/ 21 couples all Slater determinants 8

@ Eync is variational 8

@ TC: brute force orthogonalization of the basis !
(Sumc) " @ = Evnc® & e /He'®d = Erc®d

a @ is the right-eigenvector of e~/He’
@ No overlap matrix anymore !
a E1c is not necessarily variational ... 8
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Application to VMC: optimizing lengthy CI expansion

@ Considerthe W = e/® =&’y crp;

@ The correlation factor J is fixed

@ Goal: re-optimize lengthy CI expansions (~ 10°) for J
@ Use TC to optimise ©

(H+A,)®=ED

a We chosed a generic one- and two-body correlation factor
@ Technicalities: iterative hermitian dressing

» Dressing inspired from MRCC work (JCP, 2016)
» H® computed analytically (usual CI vector)

» Sampling of a single vector A ,® = in VMC

v A ,®: small fluctuations

» Zero variance with analytical integrals of simple U

» Strong reduction of variance

» Could be done purely deterministically and linearly



Application to VMC: optimizing lengthy CI expansion
TC can indeed lower the VMC Energy !
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Important features of TC: non hermitian

e H has Right and Left eigenvectors
Hioi) = Ejo)
@ |®)) is the "physical one”

@ (|®)), [x)} are not orthonormal but Bi-orthonormal

(@il (xilxj)#6

,(H) oy = Eilxi),

E;

(X |®i)=6;

@ Loss of variational principle: not the good functional

_ WIAY) o o £
(W) ) is not bounded by E|,
@ Need a bi-functional SE{x, 9] | =0 Ho) = £70)
¥ 6X o kept fixed ’
o (X|H|®> N ept Tixe
E [®] = ~ ~
YIS ey SE 9, -0 (A) o= £l

X kept fixed
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@ Select Slater determinants based on |$2) |



How to choose the Jastrow factor ?

Two kinds of u(r; r;) ?
@ Universal correlation factors: u(r; rj) = u(r12)

"cheap” integrals
same correlation hole everywhere
Easy parametrization (Univeral)

@ ”3-body” Jastrow: electron-nucleus dependency

u(ri rj) = u(rz, na na

usually non analytical integrals: R® x (Nao)? integrals
Flexible correlation hole
Lots of parameters, not easy optimization
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One parameter correlation factor (JCP-2021)

@ Reproduces RS-DFT interaction at leading order in 1/r12

_ 2 0ulrpu) 1 _ erf(urp)

rn2  0n2 rn2 r2
@ Depends on a single parameter u

@ Analytical integrals

a u: depth/range of u(ri2)
a Valenceu =0.87 7
» Etc « Ep
» Not adapted to core
@ System dependent u ?
» Based on RS-DFT
» Averaged over n(r)

u(r12,h)
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Convergence of regular SCI: extrapolation technique

-76.16 .
S EO)
-76.18

76.2 N

-76.22

-76.24 \

-76.26 *,

-76.28 \‘\K""bg

-76.3

Energy (a.u.)

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
EQ



Convergence of regular SCI: extrapolation technique

-76.275 .
\ EO) ——
76.276 i

-76.277
AN

-76.278

-76.279 K

-76.28

Energy (a.u.)

-76.281 \‘\
-76.282 \\

-76.283
-0.01 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001

E@

N




Convergence of regular SCI

76—
T EO
EO+EQ@) __y._.
76.1 TR ( ) -t
N Exact ------
- H20, cc-pCVDZ \'\
>
s 762 N
>
o) N J.\%\!\?“a'*‘f: +
£ -76.3 T S
| —
-76.4
765l il e
1 10 100 1000 10000 100000

Numberof determinants



Convergence of TC-SCI
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Convergence of TC-SCI: extrapolation breaks down
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Convergence of TC-SCI: extrapolation breaks down
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Deeper analysis: convergence of PT2
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Criticism of a system-dependent u (JCP, 2021, JCP, 2022)

@ Fast convergence cand be fortuite ... 8

@ Unable to extrapolate ... 8

@ Positive correlation energy !
» Positive contributions come from the core !
» Correlation hole too big for core electrons
» u must increase in core regions

@ Average u: Size-consistency ?
» Dissociation of A---B molecule
» U x (uA +puB)/2
v E#£ Ea+ Ep!

@ Potential solution:
» Fixed valence u = 0.87 (based on FROGG of Ten No)
» Remove core electrons from Jastrow !



A potential solution: cheap 3-body Jastrow (JCTC, 2023)
@ Valence u: u =0.87 ~ FROGG

@ Multiply u(y, rn2) by an atom-centered gaussian envelope

u(ry, 1) = Uk, r19) (1-x explaa(ri-Ra))?)(1- £ exp(aa(r2-Ra))?)
A A
a Kills the correlation factor whenr — R

o Integrals can be computed analytically

o Optimize the o parameter in VMC

o Obtain atomic parameters: is it transferables to molecules ?
« Use a single Slater determinant anzats eV®

» How to optimize the orbitals of ® ?
» TC in a bi orthonormal framework !
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e General case of H® = E® projected on BL and BA
o) = ES|®), with |0)=% cfle)) and Hj = (xilFle), Sj= (xile)

@ General case: no need for X; =@, !
a Only constraint: S-' must be defined
a If (xi|@)) = 6; then it is a bi-orthonormal basis

@ New creation/annihilation operators c“k/B/
C b} =64 (S,61=0, (b b} =0.
@ Change the integrals according to
O = (x wx 1010ie))
@ Left/right Slater determinants are different in real-space
Xi(r1,r2, -+, rn) # @p(re, rz, -+, ry)
@ But bi-orthogonality relation (as for orthonormal basis)
(X1|Dy) = 61
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Using VMC to optimize the Jastrow (JCTC, 2023)

e HF+J:e/@|HF) @ TC-SCF orbs. improves VMC energy !
s TC+):e/9|D[a]) a Change the optimal parameters for u(r4, r2)

Coppercc-pVTZ: VMC energies
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Transferable from atoms to molecules

Nitrogen, cc-pVTZ: VMC energies
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Nitrogen dimer,ccpVTZ: VMC energies
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Numerical example: CO, cc-pVTZ, frozen core
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Numerical example: CO, cc-pVTZ, frozen core
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Numerical example: CO, cc-pVTZ, frozen core
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Numerical example: Atomization energies, cc-pVTZ

4
" kol (cc-[:;VQZ)l —o—
T TC-FCI (cc-pVTZ) —{—
g 2
% 0 A & Py R B
) 12 -E:l/ \q Fl\ / \ / \‘E:l
g -2 A / / \
5 \ Yoo A/
e /7 '\ / \
S ] \
E -4 ll";K *‘\ e )\/\‘ II/ Eﬂ\ \\ I/}}\\\ /ﬂ t
e\ VAN AN
% \ / \/ f
6 \
\ 2]

C; N O F, CO CN FH NO LiF H,O CH; CO, HCO HCN

Improves the quality of AE



Frozen core TC ?

Difference between the all-electron and frozen core energy differences
(mH)

SCI TC-SCI
RHF orbs TC-SCF orbs
IPof F | -0.2 -2.2 -0.1
IP of Ne | -0.3 -3.2 -0.2
AE of F2 | -0.4 -2.3 -0.2

a Significative error on AE with RHF orbs
@ Better core-valence splitting with TC-SCF orbs
@ Make frozen core calculations possible

@ Open to CASSCF calculations



How to go towards larger systems ? 3-e terms

@ L tensor: N\° to store !

@ Makes (X|H|®;) much more complex
@ Approximation: normal-ordering
» Contract the 3-e op. on a reference |®)
» Yield effective 0, 1, 2, and 3-e operator
» Discard the 3-e operator
» General formulation by Kutzelnigg/Mukherjee
» Intense use in nuclear physics
» Used also in TC (Alavi et. al.)
» We extended it to a bi-orthonormal framework

CsHe frozen core atomization energy (Hartree):
| CCSD(T) CCSD(T)-F12 TC-SCI

VDZ | 2.0222 2.1526 2.1558
VTZ | 2.1229 2.1660 -




Conclusion

@ Determinisitc TC can be used to optimize ®
@ VMC can be used to optimize eV

@ Bi-orthonormal for TC has many advantages

» Optimize both left- and right-eigenvectors
» Allow for frozen core approximations
» Normal ordering of the 3-e terms

@ Simple 3-body Jastrow
» Parametrized only for atoms
» No need to reoptimize !
» Size-consistent
@ On going work
Compare TC with QMC orbital optimization
Implementation of TC-BiO-CASSCF

Improve the correlation factor (1-e term)
Investigate u(r)

»
»
»
»



Advertisement zone

@ TC has been implemented in

» Quantum Package (V3 coming soon !)
» QMCKL was used for Jastrow factors

@ QMC calculations
» QMC=Chem
» Thanks to TREXIO interface

@ post-doc/PhD position available in Paris ! 8
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» QMC: Expect. Value (®B|etri2) HetJ(ri2)| dB)
Hermitian
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» TC: Similarity transformation e~/(r2) Hg+J(r2)

Non Hermitian
Non Variational



Some technicalities about integrals

@ Integrals can be computed as
Ki' =1 driek(r)ei(r)(g;(r) +g7(r1))  numerical grid on R®
Lim =1 dr@e(r)ei(r)gi (r)gma(r1)  numerical grid on R
gi(r) =y draviu(ry, r2)ei(r2)e; (r2) numerical or analytical

gr(r) =y dr2]Viu(ry, r2)| % (r2)@;(r2) numerical or analytical

@ If simple enough u(ry, o) then gj}(n) and gﬁ(n) are analytical
@ Storage of intermediate o< N2 x Ny
@ Storage of Lfn o« N® — Normal ordering approximations for L

(Nuclear physics, CC community)
» Contract Lj#? with HF one-, two- and three-rdm
» End up with effective zero, one-, two- and three-operators
» discard the three-body



Numerical example: CO, cc-pVTZ, frozen core
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Graphical example
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What is the shape of scalar e-e potential with u
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Adapting SCI to TC: PT for non hermitian

@ Split the Hamiltonian in H= Ho +AV

Ho|®o) = EQ|0©@),  Hy ;0)



Main results

a For the wave function at first-order

C;/):(



Taylor expansion in terms of left-function

@ Here ® is kept fixed

=2 AV, wPy=zc !
=0 I



