
 Recent Developments with Transcorrelated 

Methodologies: 

combining real-space concepts with orbital-based 

quantum chemistry

Pablo Lopez Rios, Hongjun Luo, Aron Cohen, Ke Liao, Philip Haupt,, 
Werner Dobrautz,Thomas Schraivogel, E Christlmaier, Daniel Kats,  

Ali Alavi 

Max Planck Institute for Solid State Research, Stuttgart 

1

TREX Symposium: Bridging QMC with HPC 
Luxembourg  

February 2024



2

Quantum Chemistry Quantum Monte Carlo

Transcorrelation  
HF 

MP2 
CCSD 

CCSD(T) 
… 

CASSCF 
SCI 

DMRG 
FCIQMC

VMC 
DMC 

BF-DMC 
MD+BF-DMC 

TC-MP2 
TC-CCSD 

TC-CCSD(T) 
… 

TC-SCI 
TC-DMRG 

TC-FCIQMC
Good energy differences 
Total energies not great: 
Good error cancellation 

Basis set convergence slow 
(F12 methods)

Total energies much closer to 
exact limit  
Energy differences not great: 
Error cancellation not so good



H = −
1

2

NX

i=1

r
2

i +
X

i<j

1

rij
+
X

i

v(ri)

3

Many-Electron Schrödinger Hamiltonian

Coulomb interaction is problematic both at short-range and at long-range

Short-range singularity leads to cusp conditions, and slow convergence of correlation 
energy with basis set. This has brought about explicitly correlated methods where  
r12 terms enter the wavefunction ansatz.

Long-range behaviour leads to slow convergence of the energy to the thermodynamic  
limit, and in metals is the cause of term-by-term divergence of the (per electron) correlation 
energy in perturbation theory. Random-phase-approximation is required to save the day. 



Transcorrelation: a brief history

• Method to analytically transform known physics of the wave 
function into the Hamiltonian 

• Introduced in the 1960s by Boys and Handy (following earlier 
work by Hirschfelder)  

• Leads to an non-Hermitian effective Hamiltonian 

• Abandoned in the mid-1970s due to serious non-variational 
difficulties, especially in Slater-Jastrow forms 

• Resurrected in the 1990’s by Nooijen and Bartlett, and Ten-no, in 
the context of quantum chemistry 

• Development of R12/F12 methods once again lead to declining 
interest 

• Non-hermiticity has been repeatedly cited as the main problem of 
the TC method, and many “hermitianized” forms of the the TC 
method have been proposed instead.  

• Tsuneyuki and group has pursued TC within a single SD form for 
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Since 2018

• The Stuttgart group showed that non-hermiticity is not a 
problem as long an appropriate solver for the TC Hamiltonian is 
used (initially FCIQMC) [Luo, Alavi, JCTC, 14, 1403, (2018)] 

• Transcorrelation was also found to be highly effective in the 2D 
Hubbard model, rendering a tough strongly-correlated problem 
into an eigenvalue problem dominated by one SD [Dobrautz, 
Luo, Alavi, PRB 99, 075119 (2019)]  

• Implementation of TCHint library for efficient evaluation of TC 
integrals with very flexible Jastrow factors  

• TC-FCIQMC implemented in NECI  

• TC-CC implemented in elemco.jl (Daniel Kats) 

• TC-DMRG in BLOCK2  (Ke Liao, Huanchen Zhai)
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Outline

• Transcorrelation: theory, and problems with it. 

• FCIQMC and near-exact TC calculations on small 
molecules 

• Optimisation of Jastrow factors 

• xTC: eliminating explicit three-body interactions via a mean-
field approximation 

• TC-Coupled Cluster theory: molecules and UEG 

• TC-Perturbation Theory on UEG at high density
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Transcorrelation: Non-unitary similarity 
transformations 
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Ψ = e ̂τΦ

ĤΨ = EΨ

⇒ (e− ̂τĤe ̂τ)Φ = EΦ

e− ̂τĤe ̂τ ≡ H̃ = Ĥ + [Ĥ, ̂τ] +
1

2!
[[Ĥ, ̂τ], ̂τ] + . . .

Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian:

̂τ = ̂τ†

Only if  is the  

transformation unitary

̂τ† = − ̂τ



Two forms of the correlators lead to analytically 
exact Hamiltonians 
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τ(R) = ∑
i<j

u(ri, rj), R = {r1, . . . , rN}

(1) Jastrow correlator, useful for ab initio Hamiltonians, starts in 1st quantisation, 

̂τ = J∑
i

̂ni↑ ̂ni↓

(2) Gutzwiller correlator, useful in the Hubbard model, starts in 2nd quantisation

u(ri, rj) = u(rj, ri)

u is symmetric, but not necessarily merely a function of rij = |ri − rj |

Hubbard model is a good `toy’ model to study strong correlation

Dobrautz, Luo, Alavi, PRB 99, 075119 (2019)



Correlation factor (Ne) with and without e-e-n term  
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Jastrow Factorised Similarity Transformation of the S.E. 
(Hirschfelder 1963, Boys and Handy 1969)
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τ(R) = ∑
i<j

u(ri, rj), R = {r1, . . . , rN}

H̃ = Ĥ − ∑
i

(
1

2
▿2

i τ + (▿iτ) ▿i +
1

2
(▿iτ)2)

BCH expansion terminates at second order (kinetic energy is 2nd order one-body  
differential operator):



What do these terms do: a simple exercise
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Consider a simple correlation factor of Coulomb-Yukawa form and apply to the UEG

u(rij) = −
1

ωprij

(1 − e
− ωprij), ωp = 4πρ

−
1

2 ∑
i

∇2
i τ =

1

2 ∑
i≠j

∇2
i u(rij) = −

1

2 ∑
i≠j

e
− ωprij

rij

At small   this cancels the  

Coulomb singularity

rij

The first term of the TC hamiltonian:

The second term contains gradient terms and is non-hermitian. It leads to a modified  
correlated electron drift term which we return to shortly.

−
1

2 ∑
i

(∇iτ)2 = −
1

2 ∑
i≠j

(∇iu(rij))
2 −

1

2 ∑
i≠j≠k

∇iu(rij) . ∇iu(rik)

The third term:



A simple exercise continued
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−
1

2 ∑
i≠j≠k

∇iu(rij) . ∇iu(rik) = −
1

2 ∑
j≠k

1

rjk

−
( ωprjk + 2)e

− ωprjk

2rjk

∼ −
1

2 ∑
j≠k

1

rjk

for large rjk

The three-body terms account for long-range screening of the Coulomb  
interaction between pairs of distant electrons



And finally
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Therefore the effective interaction in the TC hamiltonian has a much faster decay than 
Coulomb (but is still algebraic)

(∇iu(rij))
2 = (−

1

ωpr2
ij

+ (
1

ωpr2
ij

+
1

ωprij

)e
− ωprij)

2

∼
1

ω2
pr4

ij

 for large rij

1

2
 for rij → 0
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H̃ = − t ∑
<ij>,σ

a†
iσ

ajσeJ(nj,σ̄−ni,σ̄) + U∑
l

nl↑nl↓

t is reduced if two electrons are coming together (for J<0)

t is enhanced if two electrons are going to be separated

For the Hubbard model, BCH expansion does not terminate  
but can be resummed



The non-hermiticity of the TC hamiltonian plays a 
critically important role 

• It modifies the KE operator, turning it from a one-body 
operator which propagates electrons irrespective of the 
location of the other electrons, into a two-body operator 
which reduces the probability amplitude that two distant 
electrons move towards each other, whilst enhancing the 
probability amplitude that two near-by electrons move apart 
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• The non-Hermitian nature of  has been considered a 

great source of difficulty in the past, which has prevented 
the wide-spread adoption of the TC method 

• As a non-unitary similarity transformation,  

                   is iso-spectral with  

• The eigenvalues of  are real 

• However  has distinct left and right-eigenvectors

H̃

H̃ Ĥ

H̃

H̃
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H̃ |Φ(R)⟩ = E |Φ(R)⟩

⟨Φ(L) | H̃ = ⟨Φ(L) |E

 is a “pseudo-Hermitian” operatorH̃



• Note that in ,  acts in the wrong way 

  

• The left-eigenvector is less compact.  

• Therefore approaches which must compute are not 

ideal (eg bi-variational) 

• Need methods which need only compute the right-

eigenvector of 

H̃† τ

⟨Φ(L) |

H̃
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H̃† = eτĤe−τ, i.e. τ → − τ

H̃† |Φ(L)⟩ = E |Φ(L)⟩

Dobrautz, Luo, Alavi, PRB 99, 075119 (2019)

18-site 2D Hubbard model, U/t=4 



Strategies and approximations to compute Φ(R)

• Transcorrelated FCIQMC         

                    

• Transcorrelated DMRG 

  [Baiardi and Reiher, JCP 153, 164115 (2020)

 Time-independent form Liao et al, JCTC 2023]

  

 Main use of these methods is in multi-reference problems

• Transcorrelated CC     

     Main use is for weak/medium correlation 

 Schraivogel et al, JCP 155, 191101 (2021); 158, 214106 (2023)

Φ(R) = e
̂T |D0⟩, ̂T ≈ ̂T1 + ̂T2

18



Jastrow Factorised Similarity Transformation of the S.E.
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H̃ = Ĥ − ∑
i<j

K̂(ri, rj) − ∑
i<j<k

L(ri, rj, rk)

K̂(ri, rj) =
1

2 ( ▿2
i u + ▿2

j u + (▿iu)2 + (▿ju)2)
+( ▿i u ⋅ ▿i + ▿ju ⋅ ▿j )

L(ri, rj, rk) = ▿i uij ⋅ ▿iuik + ▿juji ⋅ ▿jujk + ▿kuki ⋅ ▿kukj



The Hamiltonian in 2nd quantised form  
(eg in an MO basis)
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H̃ = ∑
pqσ

hp
qa†

pσaqσ +
1

2 ∑
pqrs

(Vpq
rs − Kpq

rs )∑
στ

a†
pσa†

qτasτarσ

−
1

6 ∑
pqrstu

Lpqr
stu ∑

στλ

a†
pσa†

qτa
†

rλ
auλatτasσ

Kpq
rs = ⟨ϕpϕq | K̂ |ϕrϕs⟩

Lpqr
stu = ⟨ϕpϕqϕr |L |ϕsϕtϕu⟩

K and L integrals are computed numerically using standard DFT grids over  
gaussian orbitals. Main problem is the storage of L. Current code can handle 
~150 orbitals with sparse storage

48-fold symmetry in L for real 
orbitals



Boys-Handy form for u
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u(ri, rj) = ∑
mno

cnml(r̄
m
i r̄n

j + r̄m
j r̄n

i )r̄
o
ij

r̄ =
r

1 + r

m + n + o ≤ 6

Includes e-e, e-n, and e-e-n terms

r̄ ≈ 1 − 1/r → 1 for large r

r̄ ≈ r − r2 for small r

For the first-row atoms, the 17 parameters have been obtained by a  
Variance minimisation VMC by Schmidt and Moskowitz, JCP, 93, 4172 (1990)



First application of TC-FCIQMC: First row atoms
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Cohen, Luo, Guther, Dobrautz, Tew, Alavi, JCP 151, 0161101 (2019) 
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Errors in the Total Energies of the first-row atoms 
(SM7 i.e. without any e-e-n terms, SM17, and F12)
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Comparison of TC-CC methods with CC-F12 methods  
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Ionization potentials of the first-row atoms (Li-Ne) in cc-pVTZ basis set

chemical accuracy

Schraivogel et al, JCP, 155, 191101 (2021) 



The role of the K and L terms
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Ne atom  cc-pVQZ with SM17 correlation factor 

⟨DHF | K̂ |DHF⟩ = − 382 mH

⟨DHF |L |DHF⟩ = + 108 mH

The effect of the three-body (L) terms is to raise the energy, countering the 
large negative (non-Hermitian) contributions coming from the two-body (K) 
terms. 

It is necessary to have an accurate treatment of the 3-body terms



Form of the Jastrow (CASINO) 
Drummond Towler Needs form
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τ =
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u(rij) +
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∑
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Nn

∑
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Energy vs variance-minimised Jastrow factors 
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Energy minimised Jastrow factors tend  
to lead to non-variational TC energies:  
convergence to the basis-set limit  
atomisation energies is from above  
(wrong!) 

Variance-minmized Jastrows 
show the correct convergence 
to the exact atomisation energies 
in the basis-set limit 



Optimising Jastrow via a TC Variance Minimisation VMC 
Haupt, Lopez-Rios, et al, JCP 158, 224105 (2023)
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Variance minimisation in VMC is a problematic procedure which we found does not lead 
to stable Jastrow factors useful for the TC method. 

Instead we found that minimising the variance of the TC reference energy produces 
good Jastrow factors

σ2
TC =

⟨ΨHF |e−τ(Ĥ − E)2eτ |ΨHF⟩

⟨ΨHF |ΨHF⟩



TC-FCIQMC atomisation energies:  
basis set convergence towards exact all-electron NR limit 

2E(A)-E(A2)
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Chemical accuracy is achieved with 

standard cc-pVTZ basis  

(30 basis functions per atom). 

Use of larger basis sets is unnecessary. 

With the standard (non-TC) approach 

cc-pV5Z (100 functions per atom) is 

necessary



3-body mean-field approximation: xTC  
normal-order wrt HF reference
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LN =
1

6 ∑
PRT,QSU

(PQ |RS |TU){a†
P
a†

R
a†

T
aUaSaQ}

VN =
1

2 ∑
PQ,RS

[(PQ |RS) + Δ(PQ |RS)]{a†
P
a†

R
aSaQ}

Δ(PQ |RS) = ∑
I∈HF

[(PQ |RS | II) − (PQ |RI | IS) − (RS |PI | IQ)]

Dressed 2-particle interactions.  

Subsequent CCSD calculation remains  O(N6)

In spin-orbital notation

Setting T=U=I (an HF occupied orbital) and summing over the occupied orbitals



Computation of :  

Christlmaier et al, JCP 159, 014113 (2023)

Δ(PQ |RS) O(M4Ng)
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Δ(PQ |RS) = − �(PQ)

(RS) (∑
g

ρQ
P

(g)AS
R(g) + ⃗V Q

P
(g) ⋅ ⃗B S

R(g))

ρQ
P

(g) = wgϕ*
P

(g)ϕQ(g)

AS
R(g) = ṼS

R(g) − Z̃S
R(g)

ṼS
R(g) = ⃗W(g) ⋅ ⃗V S

R(g)

⃗W(g) = ⃗V U
T (g)γT

U

Z̃S
R(g) = ⃗V U

R(g) ⋅ ⃗X S
U(g)

⃗X S
U(g) = ⃗V S

T(g)γT
U

⃗B S
R(g) =

1

2
W̃(g) ⃗V S

R(g) − ⃗Z S
R(g)

W̃(g) = ρU
T (g)γT

U

⃗Z S
R(g) = ρU

R (g) ⃗X S
U(g) + ⃗Y T

R(g)ρS
T(g)

⃗Y T
R(g) = ⃗V U

R(g)γT
U



Comparison of TC-CC methods with CC-F12 methods  
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Ionization potentials of the first-row atoms (Li-Ne) in cc-pVTZ basis set

chemical accuracy

Schraivogel et al, JCP, 155, 191101 (2021) 



TC-CC Atomisation energies  
(errors compared to HEAT benchmark of 26 molecules) 

Christlmaier et al, JCP 159, 014113 (2023)
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Statistical measures of the errors in atomisation energies for various 
methodologies compared to the HEAT dataset (cc-pVTZ basis)
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TC-DMRG 
Liao et al, JCTC 19, 1734 (2023) 

replace the original Davidson solver of effective Hamiltonian with a general 
Davidson solver

35



Transcorrelated Perturbation Theory 
Luo and Alavi, JCP, 157, 074105 (2022) 

• For metals, PT theory starting from the HF approximation is 
divergent at all orders, and requires RPA type approach to obtain 
convergent energies 

• The root cause of this divergence is the long-range tail of the 

Coulomb potential, which in reciprocal space is given by  

where k is the momentum transfer 

• The RPA result is found to be: 

           

• 2nd order PT theory on the uniform electron gas using the TC 
Hamiltonian 

• Obtain a Jastrow factor (optimised with a Hartree-Fock reference 
determinant) with the correct asymptotic properties 

• PT2 calculation can be analytically performed

4π/k2

Ec

N
=

1 − ln 2

π2
ln rs − 0.047 + ⋯ .

36

rs ∼ ρ−1/3



Asymptotic properties of the Jastrow factor for the 
UEG

37

ũ(k) ∼ −
w(k)

k2
when k ∼ ∞

w(k) =
4π

k2

ũ(k) ∼ −
w(k)

ρk
when k ∼ 0

u(r1, r2) = u( |r1 − r2 | )

For the uniform electron gas (uniform positively charged background)

At short and large distances the behaviour of the correlation function in reciprocal 
space mcc have the following asymptotic properties:



A Jastrow factor can be analytically obtained by minimizing the  
variational energy of the Slater-Jastrow wave function in the TDL

38

T2(k) = {
1, k > 2,

3

4
k −

1

16
k3, k ≤ 2.

ũ(k) =

k2 − k4 + 4ρw(k)k2T2
2(k)

2ρk2T2(k)
.

T Gaskell, Proc Phys Soc, 77, 1182 (1961)



TC Perturbation theory in the TDL
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ĤTC = Ĥ0 + Ŵ1, Ŵ1 = Ŵ + K̂ + L̂

Ĥ0 = ∑
pσ

1

2
p2 ̂np,σ

Ŵ =
1

2Ω ∑
σσ′ 

∑
kpq

w(k) a†

p−k,σ
a†

q+k,σ′ 

aq,σ′ 
ap,σ .

E0 = ⟨Φ0 | Ĥ0 |Φ0⟩

E1 = ⟨Φ0 |Ŵ1 |Φ0⟩

E2 = − ⟨Φ0 | (Ŵ1 − E1)
1

Ĥ0 − E0

(Ŵ1 − E1) |Φ0⟩



Transcorrelated Perturbation Theory for UEG 

• The correlation energy per electron in high density limit can be obtained: 

        

• The logarithmic term is exact (same as in RPA) 

• Constant term is ~7% larger than RPA result 

• This result indicates TC method with 2nd-order PT may be useful for 
metallic systems

Ec

N
= [

1 − ln 2

π2
ln(rs) − 0.05075] + o(r2

s ) .
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Transcorrelated CC applied to the uniform electron gas 
Liao, Schraivogel, Luo, Kats and Alavi, PRR 3, 033072 (2021)

41

14 electrons 54 electrons

Errors in the total energies of the UEG across a wide range densities for 
canonical CC/DC methods and the corresponding transcorrelated methods



Conclusions

• Transcorrelation is a promising methodology. We have successfully 
overcome the difficulties associated with the non-Hermitian nature of 
the TC Hamiltonian. 

• It allows explicit correlation in the form of sophisticated Jastrow factors 
obtained from Variational Monte Carlo to be incorporated into the 
Hamiltonian. 

• Improved basis set convergence as well as convergence with respect 
to correlation method 

• In solids, it leads to much shorter range interactions, and trivially 
captures RPA physics in a one-shot PT2 calculation 

• The xTC-DCSD method is chemically accurate whilst remaining a 

 method 

• Methodology can be extended to higher orders of CC theory 

• The TC-CC methods may provide a viable method to treat solids with a 
wave function theory with fast convergence to the TDL

O(N6)
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