1224

Targeting Real chemical accuracy at the EXascale

Recent Developments with Transcorrelated
Methodologies:
combining real-space concepts with orbital-based
quantum chemistry

Pablo Lopez Rios, Hongjun Luo, Aron Cohen, Ke Liao, Philip Haupt,,
Werner Dobrautz, Thomas Schraivogel, E Christimaier, Daniel Kats:
Ali Alavi

Max Planck Institute for Solid State Research, Stuttgart

TREX Symposium: Bridging QMC with HPC
Luxembourg
February 2024



Quantum Chemistry Quantum Monte Carlo

Transcorrelation

HF VMC
MP2 DMC
CCSD TC-MP2 BF-DMC
CCSD(T) TC-CCSD MD+BF-DMC
TC-CCSD(T)
CASSCF
SCI
DMRG TC-SCI
FCIQMC TC-DMRG
TC-FCIQMC
Good energy differences
Total energies not great: Total energies much closer to
Good error cancellation exact limit
Energy differences not great:
Basis set convergence slow Error cancellation not so good
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Many-Electron Schrodinger Hamiltonian

] 1
H:—gév%zr..

i<j

| Zv(ri)

Coulomb interaction is problematic both at short-range and at long-range

Short-range singularity leads to cusp conditions, and slow convergence of correlation
energy with basis set. This has brought about explicitly correlated methods where
r12 terms enter the wavefunction ansatz.

Long-range behaviour leads to slow convergence of the energy to the thermodynamic
limit, and in metals is the cause of term-by-term divergence of the (per electron) correlation
energy in perturbation theory. Random-phase-approximation is required to save the day.



Transcorrelation: a brief history

Method to analytically transform known physics of the wave
function into the Hamiltonian

Introduced in the 1960s by Boys and Handy (following earlier
work by Hirschfelder)

Leads to an non-Hermitian effective Hamiltonian

Abandoned in the mid-1970s due to serious non-variational
difficulties, especially in Slater-Jastrow forms

Resurrected in the 1990’s by Nooijen and Bartlett, and Ten-no, Iin
the context of quantum chemistry

Development of R12/F12 methods once again lead to declining
interest

Non-hermiticity has been repeatedly cited as the main problem of
the TC method, and many “hermitianized” forms of the the TC
method have been proposed instead.

Tsuneyuki and group has pursued TC within a single SD fg)rm for



Since 2018

The Stuttgart group showed that non-hermiticity is not a
problem as long an appropriate solver for the TC Hamiltonian is

used (initially FCIQMC) [Luo, Alavi, JCTC, 14, 1403, (2018)]

Transcorrelation was also found to be highly effective in the 2D
Hubbard model, rendering a tough strongly-correlated problem
into an eigenvalue problem dominated by one SD [Dobrautz,
Luo, Alavi, PRB 99, 075119 (2019)]

Implementation of TCHint library for efficient evaluation of TC
integrals with very flexible Jastrow factors

TC-FCIQMC implemented in NECI
TC-CC implemented in elemco.jl (Daniel Kats)
TC-DMRG in BLOCK2 (Ke Liao, Huanchen Zhai)



Outline

* Transcorrelation: theory, and problems with it.

e FCIQMC and near-exact TC calculations on small
molecules

» Optimisation of Jastrow factors

* XTC: eliminating explicit three-body interactions via a mean-
field approximation

* TC-Coupled Cluster theory: molecules and UEG
« TC-Perturbation Theory on UEG at high density



Transcorrelation: Non-unitary similarity
transformations

ﬁ‘P — E\P Only if 77 = — 7 is the

transformation unitary
277, —
= (¢ 'He")® = E®
Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian:

A 1
e "He'* = H = H+[HT]+5[[HT] T+ ..



Two forms of the correlators lead to analytically
exact Hamiltonians

(1) Jastrow correlator, useful for ab initio Hamiltonians, starts in 1st quantisation,

tR)= ) u(r,r), R={r,...ry
i<j
u is symmetric, but not necessarily merely a function of rij — ‘ l‘i — l’j ‘

u(r;, I'j) = u(rja r)

(2) Gutzwiller correlator, useful in the Hubbard model, starts in 2nd quantisation

l

Hubbard model is a good toy’ model to study strong correlation
Dobrautz, Luo, Alavi, PRB 99, 075119 (2019) 8



Correlation factor (Ne) with and without e-e-n term

u(z1,z2)
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Jastrow Factorised Similarity Transformation of the S.E.
(Hirschfelder 1963, Boys and Handy 1969)

fR)= ) u(r,r), R={r,...ry

i<j

BCH expansion terminates at second order (kinetic energy is 2nd order one-body
differential operator):

- A 1 1

l
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What do these terms do: a simple exercise

Consider a simple correlation factor of Coulomb-Yukawa form and apply to the UEG

1 a5,
u(ry) = (1—e V), w,=1/4zp

Wyl

The first term of the TC hamiltonian:

e Vi

__ Z Vi =— Z Vu(r )=—= Z At small r;; this cancels the
l;é] l# Vij Coulomb singularity

The second term contains gradient terms and is non-hermitian. It leads to a modified
correlated electron drift term which we return to shortly.

The third term:

__Z(V )2 = ——Z(V u(r, ))2—— Z Viu(ry) . Viu(ry)
I#] l#]#k
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A simple exercise continued

(/@ + 2)e VT

_% Z Viu(ry) . Vu(ry) = — % Z 1

ik j#k ik 2Tk
1 1 o)
~ — 5 r_ or large ’”jk
j#k K

The three-body terms account for long-range screening of the Coulomb
interaction between pairs of distant electrons

12



And finally

1 1 1 _
(Vu(r))? = ( (—— e VY’

2 2 3}
oW ONEENON

~ for large 7

24
Wyt

—forr. - 0
2 J

Therefore the effective interaction in the TC hamiltonian has a much faster decay than
Coulomb (but is still algebraic)
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For the Hubbard model, BCH expansion does not terminate
but can be resummed

— n; 1, 0)
! Z amajge + U Z nphy,

<ij>,0

tis reduced if two electrons are coming together (for J<0)

t is enhanced if two electrons are going to be separated

7\
¢
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The non-hermiticity of the TC hamiltonian plays a
critically important role

* |t modifies the KE operator, turning it from a one-body
operator which propagates electrons irrespective of the
location of the other electrons, into a two-body operator
which reduces the probability amplitude that two distant
electrons move towards each other, whilst enhancing the
probability amplitude that two near-by electrons move apart

15



~J

H is a “pseudo-Hermitian” operator

. The non-Hermitian nature of H has been considered a

great source of difficulty in the past, which has prevented
the wide-spread adoption of the TC method

* As a non-unitary similarity transformation,
His iIso-spectral with H
* The eigenvalues of H are real

. However H has distinct left and right-eigenvectors
H|d®)) = E| W)
(®P | H = (P |E

16



. Note thatin H', 7 acts in the wrong way
HY | q)(L)> = E| CI)(L))

H' = eTHe_Tie T—> —7

* The left-eigenvector is less compact.

« Therefore approaches which must compute (CD(L) | are not
ideal (eg bi-variational)

* Need methods which need only compute the right-
eigenvector of H

Dobrautz, Luo, Alavi, PRB 99, 075119 (2019) 0.7 —

18-site 2D Hubbard model, U/t=4 .2 06 1|
0.5 —
0.4 [~ |&y) P
0.3 |®r) ']opt . -
| | | | #: I/ |
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Strategies and approximations to compute ®®

* Transcorrelated FCIQMC

* Transcorrelated DMRG

[Baiardi and Reiher, JCP 153, 164115 (2020)
Time-independent form Liao et al, JCTC 2023]

Main use of these methods is in multi-reference problems

- Transcorrelated CC @YW = eT\ D), T~ Tl + Tz

Main use is for weak/medium correlation
Schraivogel et al, JCP 155, 191101 (2021); 158, 214106 (2023)



Jastrow Factorised Similarity Transformation of the S.E.

Z K(rl, r) — Z L(r,, , )

1<J 1<j<k

K(r.r) = 1 ViU + viu+ (Vi) + (V)
1° "] o) l J l ]

L - -
-~

L(r,r rk) = V; U;; kT Vil s Vil + Vil + Vil

19



The Hamiltonian in 2nd quantised form
(eg in an MO basis)

~ 1
= 2 Mg+ ) (VI = KIY) ) ajalaa,
Pqo pqrs oT

SO

1
< Z LP" % a'a'a'a,a,a

stu poqr ) ul
pqrstu oTA

K = (¢, | K| $,00,)
le“?tzc/]tr — <¢p¢q¢r | I ‘ ¢S¢t¢u> gfb:‘tc::js symmetry in L for real

K and L integrals are computed numerically using standard DFT grids over
gaussian orbitals. Main problem is the storage of L. Current code can handle
~150 orbitals with sparse storage

20



Boys-Handy form for u

UL ) = ) Cop(FIFE+ PIFF

mno
m+n+o<6

Includes e-e, e-n, and e-e-n terms
r

1 +r
7~ 1 — 12 for small 7

;=

r~1—1/r - 1 forlarge r

For the first-row atoms, the 17 parameters have been obtained by a
Variance minimisation VMC by Schmidt and Moskowitz, JCP, 93, 4172 (1990)
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First application of TC-FCIQMC: First row atoms
Cohen, Luo, Guther, Dobrautz, Tew, Alavi, JCP 151, 0161101 (2019)

TABLE . Total atomic energies (hartrees), for CCSD(T), CCSD(T)-F12, and the ST Hamiltonian, using the SM7 and SM17 correlation factors. MAE for each method across the
series is also shown.

Method Basis Li Be B C N O F Ne MAE

CCSD(T) cc-pVDZ 743264 —14.61741 2459026 —37.76156 —54.47994 74911155 —-99.52932 —128.68069 0.121
cc-pVTZ —7.44606 —14.62379 —24.60538 —37.78953 —54.52487 7498494 —99.63219 -—128.81513 0.069
cc-pVQZ 744983 —-14.64008 —24.62350 —37.81209 —-54.55309 —75.02319 —99.68158 —128.87676 0.039

F12 cc-pVDZ 747458 —14.65400 —24.63121 —37.80901 —-54.53707 7499208 —99.63623 —128.81125 0.053
cc-pVTZ 747267 —14.65653 —24.63626 —37.81883 —-54.55293 —75.01752 —99.66994 —128.85890 0.036
cc-pVQZ 747370 —14.65933 —24.64187 —37.82884 5456916 —75.04056 —99.70070 —128.89816 0.020

SM7 cc-pVDZ —7.46726 —14.65517 —24.63279 —37.81469 —54.53448 7497785 —99.60602 —128.78385 0.063
cc-pVTZ 747627 —14.65943 —24.64458 —37.83703 —-54.57236 —75.04055 —99.69421 -—128.89389 0.019
cc-pVQZ —7.47785 —14.66791 —24.65417 —37.84791 —54.58778 —75.06296 —99.72507 12892967 0.003

SM17 cc-pVDZ —7.47707 —14.66793 —24.64521 —37.82772 —54.55719 —75.01639 —-99.65834 —128.83682 0.036
cc-pVTZ 747804 —14.66789 —24.65003 —37.83928 —54.57989 —75.05303 —99.71377 12890944 0.010
cc-pVQZ 747845 —14.66749 —24.65287 —37.84461 —54.58844 —75.06609 —99.73283 12893542 0.001

Expt. ~7.47806 —14.66736 —24.65391 —-37.84500 —-54.58920 -—75.06730 —99.73390 —128.93760

J. Chem. Phys. 151, 061101 (2019); doi: 10.1063/1.5116024 151, 061101-3
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Error in total energy/H

Errors in the Total Energies of the first-row atoms
(SM7 i.e. without any e-e-n terms, SM17, and F12)
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Comparison of TC-CC methods with CC-F12 methods
Schraivogel et al, JCP, 155, 191101 (2021)

lonization potentials of the first-row atoms (Li-Ne) in cc-pVTZ basis set

CCSD-F12
DCSD-F12
CCSD(T)-F12

Full TC-CCSD
Approx. TC-CCSD
Full TC-DCSD
Approx. TC-DCSD
TC-FCIQMC

chemical accuracy
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The role of the K and L terms

Ne atom cc-pVQZ with SM17 correlation factor

(Dyr| K| Dyr) = — 382 mH
(Dyp|L|Dyr) =+ 108 mH

The effect of the three-body (L) terms is to raise the energy, countering the

large negative (non-Hermitian) contributions coming from the two-body (K)
terms.

It is necessary to have an accurate treatment of the 3-body terms

25



Form of the Jastrow (CASINO)

Drummond Towler Needs form

N, N, N, N. N,
T = Z u(r;;) + Z Z){(rﬂ) + Z Zf(rl-j, rip Tip) -
i1

1<J i<j 1
I I Y | v |
1 F .
3} .
i - Without A
& With A
- 1 i 1 i 1
. . r

—_— k ) -)uﬂ: : |
x(ry) = W1y, L) 2 by S e A LA~
k | |

¥ (x ) (arb. units)

u(ry) = t(rj L) Y aprk.
k

E 6Hl) \ | |‘ ”!’
- 80 - ' . | g ) |
f(r..,r,r;) = t(r;, L)t(r;, L) Cpp Tirh o "
ijo Ti0 ' il =7\ =f kim" ij" il" jI ° x (a.u)
k l m FIG. 1. Wavp function value andilocal energy as a function of the x coqrdinate of
2v? an electron in a carbon atom as it crosses the nucleus at x = 0, both without and

with a cusp-correcting A Jastrow factor term applied to a HF wave function using
the cc-pVDZ basis.
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Energy vs variance-minimised Jastrow factors
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FIG. 4. Total energy of the C, N, and O atoms as a function of the reciprocal
of the number of molecular orbitals in the cc-pVxZ basis set. The non-variational
behavior of up to about 5 mHa is evident for the energy-minimized Jastrow factors,
for which convergence to the exact energy as a function of basis-set size is rather
slow. The shaded areas represent +1 kcal/mol around the exact non-relativistic
total energy from Ref. 50. The points in the top panel are annotated with the basis
set cardinal number x.

Energy minimised Jastrow factors tend
to lead to non-variational TC energies:
convergence to the basis-set limit
atomisation energies is from above
(wrong!)

Variance-minmized Jastrows
show the correct convergence

to the exact atomisation energies
in the basis-set limit
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Optimising Jastrow via a TC Variance Minimisation VMC
Haupt, Lopez-Rios, et al, JCP 158, 224105 (2023)

Variance minimisation in VMC is a problematic procedure which we found does not lead
to stable Jastrow factors useful for the TC method.

Instead we found that minimising the variance of the TC reference energy produces

good Jastrow factors . ,
_ (Pyple "(H—E)e"|¥Yyp)
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C
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v

Atomization energy (Ha)

TC-FCIQMC atomisation energies:
basis set convergence towards exact all-electron NR limit
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Chemical accuracy is achieved with
standard cc-pVTZ basis

(30 basis functions per atom).

Use of larger basis sets is unnecessary.

With the standard (non-TC) approach

cc-pV5Z (100 functions per atom) is
necessary
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3-body mean-field approximation: xTC
normal-order wrt HF reference

In spin- orbital notation

— Z (PQ\RS\TU){aT ! Ta vasdo |
PRTQSU

Setting T=U=I (an HF occupied orbital) and summing over the occupied orbitals

A(PQ|RS) = ) [(PQ|RS|II)— (PQ|RI|IS) — (RS|PI|1Q)]

leHF

Z [(PQ|RS) + A(PQ|RS)I{ajajasap)

PQ RS

Dressed 2-particle interactions.

Subsequent CCSD calculation remains O(N°)
30



Computation of A(PQO|RS): O(M4Ng)
Christlmaier et al, JCP 159, 014113 (2023)

A(PQ|RS) = — PRI ( D" pR@)AR(@) + VE(g) - BY(2))
g

p2(g) = wpi(©p%g) By = %mgﬁg(g) _ 73
AS(9) = Vi(8) — Z3(g) W(g) = pr (@],

Va(g) = W(g) - Vi(g) Z39) = i@ X3 (9) + Y Hepi(e)
W(g) = Vo] Vi) = Vi

Z5(9) = V(g) - X3(8)

X2(8) = VUl
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Comparison of TC-CC methods with CC-F12 methods
Schraivogel et al, JCP, 155, 191101 (2021)

lonization potentials of the first-row atoms (Li-Ne) in cc-pVTZ basis set

CCSD-F12
DCSD-F12
CCSD(T)-F12

Full TC-CCSD
Approx. TC-CCSD
Full TC-DCSD
Approx. TC-DCSD
TC-FCIQMC

chemical accuracy
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TC-CC Atomisation energies

(errors compared to HEAT benchmark of 26 molecules)
Christimaier et al, JCP 159, 014113 (2023)

CCSD-F12a DCSD-F12a CCSD(T)-F12a

CHa CoHy o CoH, —
Co, — Co, - o, —
HCN - HCN HCN —
CHs o CH; CH;
NH3 NH3 — NH; —
HCO — HCO — HCO -
H,O0, - H,O0, = H,O0, -
CCH = CCH - CCH =
CO — CO = CO —
H,0 - H,0 - H,0 —
Ny — N, - N, —
HNO = HNO = HNO =
CH, — CH, — CH, -
NH, = NH, = NH, =
CN — CN — CN -
HO, - HO, — HO, —
NO = NO = NO =
HF — HF — HF —
CF - CF - CF -
02 02 0, =
Hy Ho Hy
Of OH OH
CH = CH = CH -
NH = @ NH - NH =
OF = OF - OF —
F — 2 ) 4 \ A J-\ J e ey |:2 — : : F —
I I I I I I ] ] ]

xTC-CCSD xTC-DCSD XTC-CCSDT

C H -1 C2H2 1 C H -
CO, CO; CO, -
HCN = HCN = HCN =
CHs = CHs; = CHs =
NH; - NH; - NH; -
HCO — HCO — HCO —
H,0, = H,O, = H,O, =
CCH = CCH -~ CCH =
CO - CO - CO —
H,O — H,O — H,O —
N, N, — N, -
HNO = HNO = HNO =
CH, — CH, — CH,
NHy - NHy - NHy —
CN = CN = CN =
HO, — HO, — HO, —
NO = NO = NO =
HF = o HF = HF =
CF - CF - CF =
0, — 0, - 0, —
H, — Hy — H, —
OH OH OH
CH - CH CH —
NH = NH - NH =
OF - OF OF -
Fr = Fr = Fr -

—-45 -30 =15 O -45 -30 -15 O —-45 -30 =15 O
AE (kJ/mol) AE (kJ/mol) AE (kJ/mol)
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Statistical measures of the errors in atomisation energies for various
methodologies compared to the HEAT dataset (cc-pVTZ basis)

Statistical measures in kJ/mol
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TC-DMRG
Liao et al, JCTC 19, 1734 (2023)

replace the original Davidson solver of effective Hamiltonian with a general
Davidson solver

DMRG fit: R2=0.994780, Error =0.000316

0.010 -
— DMRG
o ---- TC-DMRG fit: R? = 0.997358, Error = 0.000138
- -
£ 0.0087 o TCcDMRG
O
T
- 0.006 -
(@)
@
c 0.004 -
L
> o
o 0.002 A T
e
wn _,,D——”'D
0.000 +-"77~

Largest Discarded Weight 1e-4
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Transcorrelated Perturbation Theory
Luo and Alavi, JCP, 157, 074105 (2022)

For metals, PT theory starting from the HF approximation is
divergent at all orders, and requires RPA type approach to obtain
convergent energies

The root cause of this divergence is the long-range tail of the
Coulomb potential, which in reciprocal space is given by A/ k>
where k is the momentum transfer

The RPA result is found to be:

E, 1-In2 13
e = 0.047 . TP

N T2
2nd order PT theory on the uniform electron gas using the TC
Hamiltonian

Obtain a Jastrow factor (optimised with a Hartree-Fock reference
determinant) with the correct asymptotic properties

PT2 calculation can be analytically performed 36




Asymptotic properties of the Jastrow factor for the
UEG

For the uniform electron gas (uniform positively charged background)

u(r;,ry) =u(|r;—r,|)

At short and large distances the behaviour of the correlation function in reciprocal
space mcc have the following asymptotic properties:

1) ~ — 2 hen k
u(k) ~ B when k ~ oo
v/ wk)
(k) ~ when k ~ 0
G
dr
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A Jastrow factor can be analytically obtained by minimizing the
variational energy of the Slater-Jastrow wave function in the TDL

K2 — \/ k* + 4pw (k2 T2(k)

) —
1) 2 k2T (k)
1, k> 2,
Tz(k) — 3 1 ;3
4k 16k . k<2

T Gaskell, Proc Phys Soc, 77, 1182 (1961) a8



TC Perturbation theory in the TDL

ZZ w(k) a p k.o q+ka Uq.6%p.0 -

oo’ kpq
Ly = <(D0|Ho‘q)o>
Ly = <¢0‘W1‘(Do>

n 1 n
E,=—(Qy| (W, — E)— (W, —E)| D)
2 ol Wy 1H0—Eo 1~ E1) 1% 0




Transcorrelated Perturbation Theory for UEG

The correlation energy per electron in high density limit can be obtained:

E. [1-1In2

= — In(r,) — 0.05075| + o(r;).
T i

The logarithmic term is exact (same as in RPA)
Constant term is ~7% larger than RPA result

This result indicates TC method with 2nd-order PT may be useful for
metallic systems
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Transcorrelated CC applied to the uniform electron gas
Liao, Schraivogel, Luo, Kats and Alavi, PRR 3, 033072 (2021)

Errors in the total energies of the UEG across a wide range densities for
canonical CC/DC methods and the corresponding transcorrelated methods

14 electrons

(a)

54 electrons
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Conclusions

Transcorrelation is a promising methodology. We have successfully
overcome the difficulties associated with the non-Hermitian nature of
the TC Hamiltonian.

It allows explicit correlation in the form of sophisticated Jastrow factors
obtained from Variational Monte Carlo to be incorporated into the
Hamiltonian.

Improved basis set convergence as well as convergence with respect
to correlation method

In solids, it leads to much shorter range interactions, and trivially
captures RPA physics in a one-shot PT2 calculation

The xTC-DCSD method is chemically accurate whilst remaining a
O(N®) method
Methodology can be extended to higher orders of CC theory

The TC-CC methods may provide a viable method to treat solids with a

wave function theory with fast convergence to the TDL »
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