Portable wave functions with TREXIO

Evgeny Posenitskiy*, Anthony Scemama**

- * Qubit Pharmaceuticals | Paris, France
- ** Laboratoire de Chimie et Physique Quantiques (LCPQ) @ CNRS/UPS | Toulouse, France

"Bridging Quantum Monte Carlo and High-Performance Simulations" Symposium February 7, 2024

TREXIO as I/O format

Back in 2020

TREXIO configuration file (trex.json)						
group:						
data	:	[data type	,	[list of dimensions]]
"nucleus": {						
"num"	:	["dim"	,	[]],
"charge"	:	["float"	,	["nucleus.num"]],
"coord"	:	["float"	,	["nucleus.num", "3"]],
"label"	:	["str"	,	["nucleus.num"]],
"point_group"	:	["str"	,	[]],
"repulsion"	:	["float"	,	[]]
}						

More details in the TREXIO documentation*

* https://trex-coe.github.io/trexio/trex.html

Enhancements compared to other wave function formats:

- Fully self-consistent, i.e. no external (code-specific) knowledge is required
- Exhaustive list of normalization parameters to cover existing ambiguities
- AOs support for Cartesian, spherical and numerical representations
- Compact storage of quantities like 2e integrals and CI determinants

https://trex-coe.github.io/trexio/trex.html

Enhancements compared to other wave function formats:

- Fully self-consistent, i.e. no external (code-specific) knowledge is required
- Exhaustive list of normalization parameters to cover existing ambiguities
- AOs support for Cartesian, spherical and numerical representations
- Compact storage of quantities like 2e integrals and CI determinants

• No custom text-based formatting - forget about the typos!

https://trex-coe.github.io/trexio/trex.html

Qubit Pharmaceuticals

TREXIO as I/O library

- Source code in pure C (C99) for the best performance and portability
- Interfaces in Fortran (ISO_C_BINDING), Python, OCaml, Rust, Julia

. .

• TREXIO passed all tests on **20 different hardware** architectures of the Debian build farm

TREXIO: A file format and library for quantum chemistry ≒

Special Collection: High Performance Computing in Chemical Physics

Evgeny Posenitskiy (); Vijay Gopal Chilkuri (); Abdallah Ammar (); Michał Hapka; Katarzyna Pernal (); Ravindra Shinde (); Edgar Josué Landinez Borda (); Claudia Filippi (); Kosuke Nakano (); Otto Kohulák (); Sandro Sorella (); Pablo de Oliveira Castro (); William Jalby; Pablo López Ríos (); Ali Alavi (); Anthony Scemama ()

J. Chem. Phys. 158, 174801 (2023)

https://doi.org/10.1063/5.0148161

Conclusion

TREXIO format

- Flexible and fully self-consistent representation
- Programmatic access, no need to learn new keywords or text formatting

TREXIO format

- Flexible and fully self-consistent representation
- Programmatic access, no need to learn new keywords or text formatting

TREXIO library

- Portable and easy to install (Autotools/CMake, conda, Spack, Guix, pip)
- High-performance I/O back end based on the HDF5 library
- TREXIO tools: out-of-the-box interface with community codes

Adoption of TREXIO enabled

- Elimination of the I/O bottleneck in all TREX-CoE flagship codes

- QP ▷ TREXIO ▷ iPie : Auxiliary Field QMC with CIPSI wave functions
- QP ▷ TREXIO ▷ Hyperion : Quantum Computing (VQE) with CIPSI wave functions
- FHI-aims
 TREXIO : Quantum Chemistry with numerical orbitals

Acknowledgements

- TREX-CoE
- Kosuke Nakano (PySCF converter)
- Vijay Gopal Chilkuri (ORCA converter)
- Johannes Jan Guenzl (FHI-aims integration)

- Qubit Pharmaceuticals
- Diata Traore (Hyperion interface)
- César Feniou (VQE integration)

- TREXIO repository : https://github.com/TREX-CoE/trexio
- TREXIO helper tools : https://github.com/TREX-CoE/trexio_tools
- Documentation : https://trex-coe.github.io/trexio

Thank you for your attention!

https://www.linkedin.com/in/posenitskiy

```
use trexio
integer(trexio_exit_code) :: rc
integer(trexio_t) :: fhandle
fhandle = trexio_open(file_name, 'w', TREXIO_HDF5, rc)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_num(fhandle, 12)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_close(fhandle)
call trexio_assert(rc, TREXIO_SUCCESS)
```

Fortran

import trexio

whathdreexio.File(file name, 'w', trexio.TREXIO HDF5) as

trexio.write_nucleus_num (fhandle, 12)

assert trexio.has_nucleus_num (fhandle)

Python

https://github.com/TREX-CoE/trexio

. . .