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QMC=Chem (Michel Caffarel + Me!)

DMC as “Post-Full-CI” energy calculations (CIPSI)

Very large CI expansions (millions of determinants)

Designed with HPC in mind

Highly optimized with W. Jalby’s group (UVSQ) in 2011-2013
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The TREX CoE

TREX CoE:Targeting REal chemical accuracy at the eXascale 

Started in Oct. 2020

Objective: Make codes ready for exascale systems 

How: Instead of re-writing codes, provide libraries 

One library for high-performance (QMCkl)

One library for exchanging information between codes (TREXIO)



The QMC kernel library (QMCkl)
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Progress in quantum chemistry requires codes with new ideas/algorithms 

New ideas/algorithms are implemented by physicists/chemists

Different scientists have different programming language knowledge/preference 

Exascale machines are horribly complex to program



Programming for the exascale

Progress in quantum chemistry requires codes with new ideas/algorithms 

New ideas/algorithms are implemented by physicists/chemists

Different scientists have different programming language knowledge/preference 

Exascale machines are horribly complex to program

Question

Is it reasonable to ask physicists/chemists to write codes for exascale machines?



No: Proof

Zn+1 = Zn + aXn + Yn

1 do i=1,n
2 Z(i) = Z(i) + A * X(i) + Y(i)
3 end do

(from https://github.com/jeffhammond/dpcpp-tutorial)

https://github.com/jeffhammond/dpcpp-tutorial


No



The dream

A compiler1 that can read an average researcher’s code and transform it into highly 

efficient code on an exascale machine.

1Wikipedia: A compiler is a computer program that translates computer code written in one 

programming language (the source language) into another language (the target language)



Reality

Artificial Intelligence was not ready in 2021 when we started the project . . .



Reality

. . . so we decided to use Natural Intelligence, and add a human layer between the 

machine and the researchers : a biological compiler



Strategy

Identify the common computational kernels of QMC

Implement thesekernels in ahuman-readablelibrary (QMC experts) Bio-

compile the human-readable library in a HPC-library (HPC experts) 

Scientists can link either library with their codes



Benefits of this model

For scientists

The choice of the programming language is not imposed to the scientist

The code can stay easy to understand by the physicists/chemists 

Performance-related aspects are delegated to the library

Codes will not die with a change in hardware

Scientific codedevelopment doesnot breakthe performance 

Scientists don’t lose control on their codes



Benefits of this model

For scientists

The choice of the programming language is not imposed to the scientist

The code can stay easy to understand by the physicists/chemists 

Performance-related aspects are delegated to the library

Codes will not die with a change in hardware

Scientific codedevelopment doesnot breakthe performance 

Scientists don’t lose control on their codes

Separation of concerns

Scientists will never have to manipulate low-level HPC code

HPC experts will not be required to be experts in theoretical physics 

Better re-use of the optimization effort among the community



The QMCkl Documentation 

library



QMCkl documentation library

The API is C-compatible: QMCkl appears to scientists like a C library =⇒ can be 

used in all other languages

System functions in programmed C (memory allocation, thread safety, etc) 

Computational kernels programmed in simple Fortran for readability

A lot of documentation (remember: the HPC compiler is a human!)



Literate programming

Literate programming is a programming paradigm introduced by Donald Knuth

in which a computer program is given an explanation of its logic in a natural

language, such as English, interspersed with snippets of macros and traditional

source code, from which compilable source code can be generated. (Wikipedia)



Documentation library

Literate programming with org-mode:

Here, comments are more important than code 

Canadd graphics, LATEXformulas,tables, etc 

Documentation always synchronized with the code

Some functions can be generated by embedded scripts 

Web site auto-generated when code is pushed

Instead of writing comments documenting code, wewrite codeillustrating 

documentation.



Literate programming with org-mode



Generated code



Generated web site



Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN Ψ(r1,...,rN )
) = ĤΨ(r1,...,rN ) :

Ψ(r1, . . . , rN)

∆ iΨ(r1, . . . , ri , . . . , rN ): kinetic energy

∇→iΨ(r1, . . . , ri , . . . , rN ): drift in the stochastic process
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Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN Ψ(r1,...,rN )
) = ĤΨ(r1,...,rN ) :

Ψ(r1, . . . , rN)

∆ iΨ(r1, . . . , ri , . . . , rN ): kinetic energy

∇→iΨ(r1, . . . , ri , . . . , rN ): drift in the stochastic process

Kernels implemented and well tested today

AOs: χ(r),∇→χ(r),∆ χ(r)

MOs: φ(r),∇→φ(r),∆φ(r)

Jastrow correlation factor (eN, ee, eeN) 

Inverses of small matrices

Work in progress

Everything else required to computeΨ, ∇Ψ and ∆Ψ.



Dependencies between kernels

Eloc(R)  

Epot(R)

=  Epot(R) + Ekin(R)

=  Vee(R) + VeN(R) +

VNN(R) + VECP(R)

1 ∆Ψ(R)
−

2 Ψ(R)

= Φ(R)J(R)

Ekin(R) =

Ψ(R)

. . .

All the graph is invalidated updated when the electron coordinates are changed.



Algorithms



Set up

Before computing anything, QMCkl needs to be given a trial wave function.

Setting wave function parameters

Wavefunction exchangebetweencodesis amajor difficulty 

Our solution:

Define a standard format for wavefunction parameters

TREXIO: TREX Input/Output library (see Evgeny Posenitskiy’s presentation)

Initialization of QMCkl

Two ways:

1 Control : Each array can be set by hand

2 Simplicity : Read all the wave function parameters from a TREXIO file



Atomic Orbitals (AOs)

Atomic Orbitals

Rs(r) = Ns|r − RA|ns

NprimΣ
ks ksa f exp(−γks A

p|r − R | ) .

k=1

Flexible

Software like GAMESS use different normalization factors for d orbitals

Implementing Slater-type orbitals is a minor modification (in the very long to-do 

list)

Contribution from the FHI-AIMS group for the evaluation of numerical AOs 

Separation of the radial and angular components packed in shells

Efficient computation of powers of x, y, z to maximize data re-use



Atomic Orbitals: Linear scaling

Definition of anatomic radiusfor eachnucleus 

beyond which all AOs are zero (VGLa).

Primitives are sorted in ascending order of the 

exponents.

Only non-zero elements are computed

aVGL: value, gradients, Laplacian



Molecular Orbitals (MOs)

i  j

Molecular Orbitals

Σ

k

φ (r ) = Aik  k  jχ (r )

Σ

k

x i  j ik x k  j∇ φ (r ) = A ∇ χ (r )

Σ

k

y i  j ik y k  j∇ φ (r ) = A ∇ χ (r )

Σ

k

z i  j ik z k  j∇ φ (r ) = A ∇ χ (r )

Σ

k

i  j ik k  j∆φ (r ) = A ∆χ (r )

B1 = A ·C1

B2 = A ·C2

B3 = A ·C3

B4 = A ·C4

B5 = A ·C5



Sparse / dense matrix multiplication

QMC=Chem (2013): https://doi.org/10.1002/jcc.23216

Exploits the common sparse character of the AO matrices:

When χ(r) = 0becauser is too far, all the derivatives arealso zero 

Quadratic scaling

Can be fully vectorized

>60% of peak performance on Sandy-Bridge CPUs

https://doi.org/10.1002/jcc.23216


Sparse / dense matrix multiplication

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

do j=1,point_num 

mo_vgl(:,:,j) = 0.d0 

do k=1,ao_num

if (ao_vgl(k,1,j) /= 0.d0) then
c1 = ao_vgl(k,1,j)
c2 = ao_vgl(k,2,j)

c3 = ao_vgl(k,3,j)

c4 = ao_vgl(k,4,j)
c5 = ao_vgl(k,5,j)

do i=1,mo_num

mo_vgl(i,1,j) = mo_vgl(i,1,j) + coefficient_t(i,k) * c1
mo_vgl(i,2,j) = mo_vgl(i,2,j) + coefficient_t(i,k) * c2

mo_vgl(i,3,j) = mo_vgl(i,3,j) + coefficient_t(i,k) * c3

mo_vgl(i,4,j) = mo_vgl(i,4,j) + coefficient_t(i,k) * c4
mo_vgl(i,5,j) = mo_vgl(i,5,j) + coefficient_t(i,k) * c5

end do
end if

end do

end do



Sparse / dense matrix multiplication



Electron-Nucleus Cusp fitting

cusp i Ai s i

3Σ

k=0

φ (r) = φ (r) −φ (r) + fk A
k|r − R | , where |r − RA| < rcusp,A

φsA i : contributions of the s AOs centered at A

to MO φi .

3 conditions:

Electron-nucleus cusp at |r − RA| = 0  

Continuity of the MO: φcusp i = φi when
|r − RA| = rcusp,A
Continuity of the gradient:
∇φcusp i (r) = ∇φi (r) when |r − RA| = rcusp,A



3-body component of the Jastrow factor

Jastrow factor

Jeen(r, R) =

Nnucl elec nordN i− 1 N p− 1 p− k− 2δk,0Σ Σ Σ Σ Σ Σ
clkpα (rij )

k

h
(Riα )l + (Rjα )l

i
(Ri α Rjα)(p−k−l)/2

α=1 i=1 j=1 p=2 k=0 l=0

can be rewritten as

eenJ (r,R) =

Nnord p−1 p−k−2δk,0 NnuclΣ Σ Σ Σ

p=2 k=0 l=0 α=1

clkpα

NelecΣ

i=1

R̄ P̄i,α,(p−k−l)/2   i,k,α,(p−k+l)/2 (↓ complexity)

with

P̄i,k,α,l

NelecΣ

j=1

¯= r̄ Ri,k,j j ,α,l . (GEMM)



3-body component of the Jastrow factor

∇imJeen(r, R)  =
Nnord p−1 p−k−2δk,0 NnuclΣ Σ Σ Σ

lkpα

NelecΣ

p=2 k=0 l=0 α=1 i=1

¯c G ¯
i,m,α,(p−k−l)/2  i,α,k,(p−k+l)/2P +

G ī,m,α,(p−k+l)/2 P¯i,α,k,(p−k−l)/2 + R¯i,α,(p−k−l)/2 Q¯i,m,α,k,(p−k+l)/2 +

R̄ Q̄ + δi,α,(p− k+l)/2 i,m,α,k,(p− k− l)/2 m,4

G¯i,1,α,(p−k+l)/2 Q¯i,1,α,k,(p−k−l)/2 + G¯i,2,α,(p−k+l)/2 Q¯i,2,α,k,(p−k−l)/2 +

G¯i,3,α,(p−k+l)/2 Q¯i,3,α,k,(p−k−l)/2 + G¯i,1,α,(p−k−l)/2 Q¯i,1,α,k,(p−k+l)/2 +

G¯i,2,α,(p−k−l)/2 Q ī,2,α,k,(p−k+l)/2 + G¯i,3,α,(p−k−l)/2 Q ī,3,α,k,(p−k+l)/2

with

Ḡi,m,α,l

l∂ (Riα )
= ,

∂ri
ḡi,m,j,k

k∂ (rij )
= ,

∂ri
and Q̄ i,m,α,k,l

NelecΣ

j=1

= ḡi,m,j,k R̄j ,α,l



Speedup



HPC implementations



CPU

MAQAO, developed by the UVSQ team, is used to help us optimize the CPU code

Loop-level diagnostics 

Vectorization ratio

Hints to improve efficiency

Algorithms rewritten in C:

C compilers are usually more mature than Fortran on new hardware

Access to more low-level features than Fortran (pinned memory, alignment, inline 

assembly, etc)

Precision can be changed on-the-fly: switch to single-precision if possible 

Specialization:

Specialization for s, p and d AOs
Inverse of small matrices hard-coded for 2× 2 to 5 × 5  

Small matrix multiplication

. . .



Cofactor 4 × 4



GPU

GPU library has the same functions, suffixed with _device

Two different flavours: OpenMP or OpenACC

Possibility to use CPU and GPU library together in the same code

In early development, not fully integrated to our codes yet (work in progress)

Although the kernelsare fast on Nvidia GPUs,GPUacceleration is not clear 
because of data transfer

Maybe efficient on next generation of hardware

On GPU, brute-force CuBLAS DGEMM is faster than sparse AO-MO 

transformation. Energy efficiency?



GPU: major difficulties with OpenMP

Tensor core instructions are not generated in OpenMP kernels =⇒≤ 50% peak DP 

Conflict between OpenMP runtime of the code and of QMCkl-GPU =⇒

Need to compile the code with GPU compiler (Nvfortran) 

May not compile, or with low CPU efficiency

Our solution: decouple QMCkl-CPU and QMCkl-GPU and recover CPU performance 

with QMCkl-CPU

RocBLAS ∼ CuBLAS, but some OpenMP kernels have 10× lower performance on 

AMD GPUs than Nvidia (under investigation. . . )

Unreliable software stack: =⇒ Comparedto CPU, very inefficient in human 

resources

Open Question:

Should we have opted instead for vendor-specific implementations? (Cuda, HIP)



Technical aspects

1 $ tar -zxvf qmckl.tar.gz

2 $ cd qmckl
3 $ ./configure --enable-hpc
4 $ make -j 32
5 $ make check
6 $ make install

QMCkl has been  
used in

C / C++

Fortran  

Python  

Julia 

Rust

Very few dependencies:

BLAS/Lapack (CPU)

TREXIO (optional) with HDF5 (optional)

BSD license: very permissive. You can 

distribute the tar.gz with your code

Hosted on GitHub:

https://github.com/trex-coe/qmckl

https://github.com/trex-coe/qmckl


Integration into TREX codes



QMC=Chem

Single-core benchmark: C60, Hartree-Fock/cc-pVQZ/ECP(BFD)

Time for a single MC step (all-electrons) 

4140 AOs, 120 MOs, 240 electrons

CPU Compiler QMCkl milliseconds Speedup

Intel(R) Core(TM) i7 ifort/mkl - 24.58

(8-core Laptop, 2.8GHz) ifort/mkl gcc12 24.06 1.02x

ifort/mkl icx 23.85 1.03x

gfortran/openblas - 30.58

gfortran/openblas gcc12 26.04 1.17x

ARM Neoverse V1 gfortran/armpl - 41.24

(80 cores, 3GHz) gfortran/armpl gcc12 31.91 1.29x



CHAMP

Single-core benchmark: C60, Hartree-Fock/cc-pVXZ/ECP(BFD)

Short VMC run

4140 AOs, 120 MOs, 240 electrons

Basis # AOs Compiler QMCkl seconds Speedup

cc-pVDZ 840 ifort/mkl - 315.45

gcc12 218.29 1.45x

icx 212.35 1.49x

cc-pVTZ 2040 ifort/mkl - 565.67

gcc12 287.32 1.97x

icx 271.68 2.08x

cc-pVQZ 4140 ifort/mkl - 993.42

gcc12 462.74 2.15x

icx 441.32 2.25x



Other possible applications beyond accelerating QMC

Reproducibility of QMC calculations (Jastrow factors) 

3D visualization software:

AO or MO visualization

Interpretative methods like AIM or ELF

Numerical integration

Computation of density grids for DFT with gradients

Jastrow factor in transcorrelated methods (Quantum Package)

Teaching QMC algorithms in Jupyter notebooks

Implementation of QMC methods in traditional quantum chemistry software



Example : Evaluate MOs on a grid

1 import qmckl
2 import numpy as np
3

4 def main(trexio_filename):
5 context = qmckl.context_create() # Create a QMCkl context
6 qmckl.trexio_read(context, trexio_filename) # Read the TREXIO f i l e in to the context

nucl_num = qmckl.get_nucleus_num(context) # Get the number o f nuc l e i
nucl_coord = qmckl.get_nucleus_coord(context, ' N ' , nucl_num*3) # Get the nuclear coordinates
nucl_coord = np.reshape(nucl_coord, (3, nucl_num))

mo_num = qmckl.get_mo_basis_mo_num(context) # Get the number o f MOs

point = setup_grid_points(nucl_coord) 

point_num = len(point)

qmckl.set_point(context, ' N ' , point_num, np.reshape(point, (point_num*3))) # Give points to QMCkl

7

8

9

10

11

12

13

14

15

16

17

18

19

20

mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num) # Get the values o f the MOs

qmckl.context_destroy(context) # Free QMCkl resources
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