
QMCkl: A Unified

Approach to Accelerating

Quantum Monte Carlo

Codes

Anthony Scemama

5/02/2024

Lab. Chimie et Physique Quantiques, FERMI, UPS/CNRS, Toulouse

(France)

The TREX European Center of

Excellence

The TREX CoE

Codes

CHAMP

QMC=Chem

TurboRVB

NECI

Quantum

Package

GammCor

TREX QMC Codes

CHAMP (Claudia Filippi)

Wavefunction optimization:

Jastrow, CI, MOs

Ground/Excited states

Geometry optimization

TREX QMC Codes

CHAMP (Claudia Filippi)

Wavefunction optimization:

Jastrow, CI, MOs

Ground/Excited states

Geometry optimization

TurboRVB (Sandro Sorella +

Michele Casula)

Molecular andPeriodic

systems

JAGP, Pfaffian, . . .

LRDMC

TREX QMC Codes

CHAMP (Claudia Filippi)

Wavefunction optimization:

Jastrow, CI, MOs

Ground/Excited states

Geometry optimization

TurboRVB (Sandro Sorella +

Michele Casula)

Molecular andPeriodic

systems

JAGP, Pfaffian, . . .

LRDMC

QMC=Chem (Michel Caffarel + Me!)

DMC as “Post-Full-CI” energy calculations (CIPSI)

Very large CI expansions (millions of determinants)

Designed with HPC in mind

Highly optimized with W. Jalby’s group (UVSQ) in 2011-2013

The TREX CoE

TREX CoE:Targeting REal chemical accuracy at the eXascale

Started in Oct. 2020

Objective: Make codes ready for exascale systems

The TREX CoE

TREX CoE:Targeting REal chemical accuracy at the eXascale

Started in Oct. 2020

Objective: Make codes ready for exascale systems

How: Instead of re-writing codes, provide libraries

One library for high-performance (QMCkl)

One library for exchanging information between codes (TREXIO)

The QMC kernel library (QMCkl)

Programming for the exascale

Progress in quantum chemistry requires codes with new ideas/algorithms

New ideas/algorithms are implemented by physicists/chemists

Different scientists have different programming language knowledge/preference

Exascale machines are horribly complex to program

Programming for the exascale

Progress in quantum chemistry requires codes with new ideas/algorithms

New ideas/algorithms are implemented by physicists/chemists

Different scientists have different programming language knowledge/preference

Exascale machines are horribly complex to program

Question

Is it reasonable to ask physicists/chemists to write codes for exascale machines?

No: Proof

Zn+1 = Zn + aXn + Yn

1 do i=1,n
2 Z(i) = Z(i) + A * X(i) + Y(i)
3 end do

(from https://github.com/jeffhammond/dpcpp-tutorial)

https://github.com/jeffhammond/dpcpp-tutorial

No

The dream

A compiler1 that can read an average researcher’s code and transform it into highly

efficient code on an exascale machine.

1Wikipedia: A compiler is a computer program that translates computer code written in one

programming language (the source language) into another language (the target language)

Reality

Artificial Intelligence was not ready in 2021 when we started the project . . .

Reality

. . . so we decided to use Natural Intelligence, and add a human layer between the

machine and the researchers : a biological compiler

Strategy

Identify the common computational kernels of QMC

Implement thesekernels in ahuman-readablelibrary (QMC experts) Bio-

compile the human-readable library in a HPC-library (HPC experts)

Scientists can link either library with their codes

Benefits of this model

For scientists

The choice of the programming language is not imposed to the scientist

The code can stay easy to understand by the physicists/chemists

Performance-related aspects are delegated to the library

Codes will not die with a change in hardware

Scientific codedevelopment doesnot breakthe performance

Scientists don’t lose control on their codes

Benefits of this model

For scientists

The choice of the programming language is not imposed to the scientist

The code can stay easy to understand by the physicists/chemists

Performance-related aspects are delegated to the library

Codes will not die with a change in hardware

Scientific codedevelopment doesnot breakthe performance

Scientists don’t lose control on their codes

Separation of concerns

Scientists will never have to manipulate low-level HPC code

HPC experts will not be required to be experts in theoretical physics

Better re-use of the optimization effort among the community

The QMCkl Documentation

library

QMCkl documentation library

The API is C-compatible: QMCkl appears to scientists like a C library =⇒ can be

used in all other languages

System functions in programmed C (memory allocation, thread safety, etc)

Computational kernels programmed in simple Fortran for readability

A lot of documentation (remember: the HPC compiler is a human!)

Literate programming

Literate programming is a programming paradigm introduced by Donald Knuth

in which a computer program is given an explanation of its logic in a natural

language, such as English, interspersed with snippets of macros and traditional

source code, from which compilable source code can be generated. (Wikipedia)

Documentation library

Literate programming with org-mode:

Here, comments are more important than code

Canadd graphics, LATEXformulas,tables, etc

Documentation always synchronized with the code

Some functions can be generated by embedded scripts

Web site auto-generated when code is pushed

Instead of writing comments documenting code, wewrite codeillustrating

documentation.

Literate programming with org-mode

Generated code

Generated web site

Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN Ψ(r1,...,rN)
) = ĤΨ(r1,...,rN) :

Ψ(r1, . . . , rN)

∆ iΨ(r1, . . . , ri , . . . , rN): kinetic energy

∇→iΨ(r1, . . . , ri , . . . , rN): drift in the stochastic process

Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN Ψ(r1,...,rN)
) = ĤΨ(r1,...,rN) :

Ψ(r1, . . . , rN)

∆ iΨ(r1, . . . , ri , . . . , rN): kinetic energy

∇→iΨ(r1, . . . , ri , . . . , rN): drift in the stochastic process

Kernels implemented and well tested today

AOs: χ(r),∇→χ(r),∆ χ(r)

MOs: φ(r),∇→φ(r),∆φ(r)

Jastrow correlation factor (eN, ee, eeN)

Inverses of small matrices

Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN Ψ(r1,...,rN)
) = ĤΨ(r1,...,rN) :

Ψ(r1, . . . , rN)

∆ iΨ(r1, . . . , ri , . . . , rN): kinetic energy

∇→iΨ(r1, . . . , ri , . . . , rN): drift in the stochastic process

Kernels implemented and well tested today

AOs: χ(r),∇→χ(r),∆ χ(r)

MOs: φ(r),∇→φ(r),∆φ(r)

Jastrow correlation factor (eN, ee, eeN)

Inverses of small matrices

Work in progress

Everything else required to computeΨ, ∇Ψ and ∆Ψ.

Dependencies between kernels

Eloc(R)

Epot(R)

= Epot(R) + Ekin(R)

= Vee(R) + VeN(R) +

VNN(R) + VECP(R)

1 ∆Ψ(R)
−

2 Ψ(R)

= Φ(R)J(R)

Ekin(R) =

Ψ(R)

. . .

All the graph is invalidated updated when the electron coordinates are changed.

Algorithms

Set up

Before computing anything, QMCkl needs to be given a trial wave function.

Setting wave function parameters

Wavefunction exchangebetweencodesis amajor difficulty

Our solution:

Define a standard format for wavefunction parameters

TREXIO: TREX Input/Output library (see Evgeny Posenitskiy’s presentation)

Initialization of QMCkl

Two ways:

1 Control : Each array can be set by hand

2 Simplicity : Read all the wave function parameters from a TREXIO file

Atomic Orbitals (AOs)

Atomic Orbitals

Rs(r) = Ns|r − RA|ns

NprimΣ
ks ksa f exp(−γks A

p|r − R |) .

k=1

Flexible

Software like GAMESS use different normalization factors for d orbitals

Implementing Slater-type orbitals is a minor modification (in the very long to-do

list)

Contribution from the FHI-AIMS group for the evaluation of numerical AOs

Separation of the radial and angular components packed in shells

Efficient computation of powers of x, y, z to maximize data re-use

Atomic Orbitals: Linear scaling

Definition of anatomic radiusfor eachnucleus

beyond which all AOs are zero (VGLa).

Primitives are sorted in ascending order of the

exponents.

Only non-zero elements are computed

aVGL: value, gradients, Laplacian

Molecular Orbitals (MOs)

i j

Molecular Orbitals

Σ

k

φ (r) = Aik k jχ (r)

Σ

k

x i j ik x k j∇ φ (r) = A ∇ χ (r)

Σ

k

y i j ik y k j∇ φ (r) = A ∇ χ (r)

Σ

k

z i j ik z k j∇ φ (r) = A ∇ χ (r)

Σ

k

i j ik k j∆φ (r) = A ∆χ (r)

B1 = A ·C1

B2 = A ·C2

B3 = A ·C3

B4 = A ·C4

B5 = A ·C5

Sparse / dense matrix multiplication

QMC=Chem (2013): https://doi.org/10.1002/jcc.23216

Exploits the common sparse character of the AO matrices:

When χ(r) = 0becauser is too far, all the derivatives arealso zero

Quadratic scaling

Can be fully vectorized

>60% of peak performance on Sandy-Bridge CPUs

https://doi.org/10.1002/jcc.23216

Sparse / dense matrix multiplication

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

do j=1,point_num

mo_vgl(:,:,j) = 0.d0

do k=1,ao_num

if (ao_vgl(k,1,j) /= 0.d0) then
c1 = ao_vgl(k,1,j)
c2 = ao_vgl(k,2,j)

c3 = ao_vgl(k,3,j)

c4 = ao_vgl(k,4,j)
c5 = ao_vgl(k,5,j)

do i=1,mo_num

mo_vgl(i,1,j) = mo_vgl(i,1,j) + coefficient_t(i,k) * c1
mo_vgl(i,2,j) = mo_vgl(i,2,j) + coefficient_t(i,k) * c2

mo_vgl(i,3,j) = mo_vgl(i,3,j) + coefficient_t(i,k) * c3

mo_vgl(i,4,j) = mo_vgl(i,4,j) + coefficient_t(i,k) * c4
mo_vgl(i,5,j) = mo_vgl(i,5,j) + coefficient_t(i,k) * c5

end do
end if

end do

end do

Sparse / dense matrix multiplication

Electron-Nucleus Cusp fitting

cusp i Ai s i

3Σ

k=0

φ (r) = φ (r) −φ (r) + fk A
k|r − R | , where |r − RA| < rcusp,A

φsA i : contributions of the s AOs centered at A

to MO φi .

3 conditions:

Electron-nucleus cusp at |r − RA| = 0

Continuity of the MO: φcusp i = φi when
|r − RA| = rcusp,A
Continuity of the gradient:
∇φcusp i (r) = ∇φi (r) when |r − RA| = rcusp,A

3-body component of the Jastrow factor

Jastrow factor

Jeen(r, R) =

Nnucl elec nordN i− 1 N p− 1 p− k− 2δk,0Σ Σ Σ Σ Σ Σ
clkpα (rij)

k

h
(Riα)l + (Rjα)l

i
(Ri α Rjα)(p−k−l)/2

α=1 i=1 j=1 p=2 k=0 l=0

can be rewritten as

eenJ (r,R) =

Nnord p−1 p−k−2δk,0 NnuclΣ Σ Σ Σ

p=2 k=0 l=0 α=1

clkpα

NelecΣ

i=1

R̄ P̄i,α,(p−k−l)/2 i,k,α,(p−k+l)/2 (↓ complexity)

with

P̄i,k,α,l

NelecΣ

j=1

¯= r̄ Ri,k,j j ,α,l . (GEMM)

3-body component of the Jastrow factor

∇imJeen(r, R) =
Nnord p−1 p−k−2δk,0 NnuclΣ Σ Σ Σ

lkpα

NelecΣ

p=2 k=0 l=0 α=1 i=1

¯c G ¯
i,m,α,(p−k−l)/2 i,α,k,(p−k+l)/2P +

G ī,m,α,(p−k+l)/2 P¯i,α,k,(p−k−l)/2 + R¯i,α,(p−k−l)/2 Q¯i,m,α,k,(p−k+l)/2 +

R̄ Q̄ + δi,α,(p− k+l)/2 i,m,α,k,(p− k− l)/2 m,4

G¯i,1,α,(p−k+l)/2 Q¯i,1,α,k,(p−k−l)/2 + G¯i,2,α,(p−k+l)/2 Q¯i,2,α,k,(p−k−l)/2 +

G¯i,3,α,(p−k+l)/2 Q¯i,3,α,k,(p−k−l)/2 + G¯i,1,α,(p−k−l)/2 Q¯i,1,α,k,(p−k+l)/2 +

G¯i,2,α,(p−k−l)/2 Q ī,2,α,k,(p−k+l)/2 + G¯i,3,α,(p−k−l)/2 Q ī,3,α,k,(p−k+l)/2

with

Ḡi,m,α,l

l∂ (Riα)
= ,

∂ri
ḡi,m,j,k

k∂ (rij)
= ,

∂ri
and Q̄ i,m,α,k,l

NelecΣ

j=1

= ḡi,m,j,k R̄j ,α,l

Speedup

HPC implementations

CPU

MAQAO, developed by the UVSQ team, is used to help us optimize the CPU code

Loop-level diagnostics

Vectorization ratio

Hints to improve efficiency

Algorithms rewritten in C:

C compilers are usually more mature than Fortran on new hardware

Access to more low-level features than Fortran (pinned memory, alignment, inline

assembly, etc)

Precision can be changed on-the-fly: switch to single-precision if possible

Specialization:

Specialization for s, p and d AOs
Inverse of small matrices hard-coded for 2× 2 to 5 × 5

Small matrix multiplication

. . .

Cofactor 4 × 4

GPU

GPU library has the same functions, suffixed with _device

Two different flavours: OpenMP or OpenACC

Possibility to use CPU and GPU library together in the same code

In early development, not fully integrated to our codes yet (work in progress)

Although the kernelsare fast on Nvidia GPUs,GPUacceleration is not clear
because of data transfer

Maybe efficient on next generation of hardware

On GPU, brute-force CuBLAS DGEMM is faster than sparse AO-MO

transformation. Energy efficiency?

GPU: major difficulties with OpenMP

Tensor core instructions are not generated in OpenMP kernels =⇒≤ 50% peak DP

Conflict between OpenMP runtime of the code and of QMCkl-GPU =⇒

Need to compile the code with GPU compiler (Nvfortran)

May not compile, or with low CPU efficiency

Our solution: decouple QMCkl-CPU and QMCkl-GPU and recover CPU performance

with QMCkl-CPU

RocBLAS ∼ CuBLAS, but some OpenMP kernels have 10× lower performance on

AMD GPUs than Nvidia (under investigation. . .)

Unreliable software stack: =⇒ Comparedto CPU, very inefficient in human

resources

Open Question:

Should we have opted instead for vendor-specific implementations? (Cuda, HIP)

Technical aspects

1 $ tar -zxvf qmckl.tar.gz

2 $ cd qmckl
3 $./configure --enable-hpc
4 $ make -j 32
5 $ make check
6 $ make install

QMCkl has been
used in

C / C++

Fortran

Python

Julia

Rust

Very few dependencies:

BLAS/Lapack (CPU)

TREXIO (optional) with HDF5 (optional)

BSD license: very permissive. You can

distribute the tar.gz with your code

Hosted on GitHub:

https://github.com/trex-coe/qmckl

https://github.com/trex-coe/qmckl

Integration into TREX codes

QMC=Chem

Single-core benchmark: C60, Hartree-Fock/cc-pVQZ/ECP(BFD)

Time for a single MC step (all-electrons)

4140 AOs, 120 MOs, 240 electrons

CPU Compiler QMCkl milliseconds Speedup

Intel(R) Core(TM) i7 ifort/mkl - 24.58

(8-core Laptop, 2.8GHz) ifort/mkl gcc12 24.06 1.02x

ifort/mkl icx 23.85 1.03x

gfortran/openblas - 30.58

gfortran/openblas gcc12 26.04 1.17x

ARM Neoverse V1 gfortran/armpl - 41.24

(80 cores, 3GHz) gfortran/armpl gcc12 31.91 1.29x

CHAMP

Single-core benchmark: C60, Hartree-Fock/cc-pVXZ/ECP(BFD)

Short VMC run

4140 AOs, 120 MOs, 240 electrons

Basis # AOs Compiler QMCkl seconds Speedup

cc-pVDZ 840 ifort/mkl - 315.45

gcc12 218.29 1.45x

icx 212.35 1.49x

cc-pVTZ 2040 ifort/mkl - 565.67

gcc12 287.32 1.97x

icx 271.68 2.08x

cc-pVQZ 4140 ifort/mkl - 993.42

gcc12 462.74 2.15x

icx 441.32 2.25x

Other possible applications beyond accelerating QMC

Reproducibility of QMC calculations (Jastrow factors)

3D visualization software:

AO or MO visualization

Interpretative methods like AIM or ELF

Numerical integration

Computation of density grids for DFT with gradients

Jastrow factor in transcorrelated methods (Quantum Package)

Teaching QMC algorithms in Jupyter notebooks

Implementation of QMC methods in traditional quantum chemistry software

Example : Evaluate MOs on a grid

1 import qmckl
2 import numpy as np
3

4 def main(trexio_filename):
5 context = qmckl.context_create() # Create a QMCkl context
6 qmckl.trexio_read(context, trexio_filename) # Read the TREXIO f i l e in to the context

nucl_num = qmckl.get_nucleus_num(context) # Get the number o f nuc l e i
nucl_coord = qmckl.get_nucleus_coord(context, ' N ' , nucl_num*3) # Get the nuclear coordinates
nucl_coord = np.reshape(nucl_coord, (3, nucl_num))

mo_num = qmckl.get_mo_basis_mo_num(context) # Get the number o f MOs

point = setup_grid_points(nucl_coord)

point_num = len(point)

qmckl.set_point(context, ' N ' , point_num, np.reshape(point, (point_num*3))) # Give points to QMCkl

7

8

9

10

11

12

13

14

15

16

17

18

19

20

mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num) # Get the values o f the MOs

qmckl.context_destroy(context) # Free QMCkl resources

Contributors

CNRS

Vijay Gopal Chilkuri

EvgenyPosenitskiy

Anthony Scemama

U-Twente

Ravindra Shinde

Edgar Landinez Borda

Ramon Lorenzo Panades-Barrueta

Claudia Filippi

SISSA

Oto Kohulak

Sandro Sorella

CINECA

Tommaso Gorni

Gianfranco Abrusci

UVSQ

François Coppens

Kevin Camus

Aurelien Delval

Max Hoffer

Pablo Heitor DeOliveira Castro

Herrero

Cedric Valensi

William Jalby

