

Recent developments in SAPT(MC)

Micha Hapka

February 8, 2024

University of Warsaw, Poland

0

Targeting Real Chemical Accuracy at the Exascale project has received hinding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

- Introduction
- SAPT
 - general
 - Many-body SAPT SAPT(DFT)

 - Multicon gurational SAPT
 - SAPT(MC-srDFT)
 - interactions in ground vs. excited states

Interaction energy for weakly interacting subsystems A and B

 $E_{int} = E_{AB} - E_A - E_B$

$$E_{int} = E_{AB} - E_A - E_B$$

Accuracy:

- covalent interactions:
 - 1 kcal/mol (chemical accuracy)
- noncovalent interactions:
 - 0.1 kcal/mol
 - 0.001 kcal/mol (spectroscopic accuracy)

Supermolecular CC: platinum, gold, ... standards M. Kodrycka, K. Patkowski, JCP, 151, 070901 (2019)

Molecular Interactions

■ Interpretation: E_{int} is a single number

-3.14 kcal/mol -2.56 kcal/mol -2.73 kcal/mol

Introduction

- SAPT
 - general
 - Many-body SAPT SAPT(DFT)

 - Multicon gurational SAPT
 - SAPT(MC-srDFT)
 - interactions in ground vs. excited states

Symmetry-adapted perturbation theory (SAPT)

- high-accuracy
- E_{int} decomposed into physically-meaningful terms

$$E_{\text{int}}^{\text{SAPT}} = E_{\text{elst}}^{(1)} + E_{\text{exch}}^{(1)} + E_{\text{ind}}^{(2)}$$
$$+ E_{\text{exch-ind}}^{(2)} + E_{\text{disp}}^{(2)} + E_{\text{exch-disp}}^{(2)} + \dots$$

■ MB-SAPT, SAPT(DFT), SAPT(MC), ...

B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 94, 1887 (1994) G. Jansen, WIREs Comput Mol Sci. 4:127 (2014) K. Patkowski, WIREs Comput Mol Sci. 10:e1452 (2020) T. Korona et al, Adv. Quant. Chem. 87, 37 (2023)

there .	Jam
71.0.1	Man to make commeter advected
100	perturbation theory more accurate?
liportue.	fature leaver' Nobel Index' Internet-Index', and Conself-Indexed'
(C. Comp

Symmetry-adapted Perturbation Theory

perturbation expansion in orders of V

B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 94, 1887 (1994)

incomplete antisymmetry of Ψ⁽⁰⁾_AΨ⁽⁰⁾_B
 A ↔ B exchange tunneling missing
 symmetry forcing required
 exact Ψ⁽⁰⁾_A and Ψ⁽⁰⁾_B not known

- Introduction
- SAPT
 - general
 - Many-body SAPT SAPT(DFT)

 - Multicon gurational SAPT
 - SAPT(MC-srDFT)
 - interactions in ground vs. excited states

- developed in 1990s
- double-perturbation theory

$$H = F_{A} + F_{B} + \zeta W + \lambda V$$

=H₀
$$W = \underbrace{W_{A} + W_{B}}_{uctuation potential}$$

= (H_A - F_A) + (H_B - F_B)

S. Rybak, B. Jeziorski, K. Szalewicz, JCP 95, 6576 (1991) E. G. Hohenstein, C. D. Sherrill, WIRES 2:304 (2012) gives rise to a whole family of methods (SAPT0, SAPT2, ...)

$$E_{int}^{SAPT0} = E_{elst}^{(10)} + E_{exch}^{(10)} + E_{ind}^{(20)} + E_{exch-ind}^{(20)} + E_{disp}^{(20)} + E_{exch-disp}^{(20)} + \delta_{HF}$$

- developed in 1990s
- double-perturbation theory

$$H = F_{A} + F_{B} + \zeta W + \lambda V$$

=H₀
$$W = \underbrace{W_{A} + W_{B}}_{uctuation potential} X$$

= (H_A - F_A) + (H_B - F_B)

S. Rybak, B. Jeziorski, K. Szalewicz, JCP 95, 6576 (1991) E. G. Hohenstein, C. D. Sherrill, WIRES 2:304 (2012) gives rise to a whole family of methods (SAPT0, SAPT2, ...)

$$E_{int}^{SAPT0} = E_{elst}^{(10)} + E_{exch}^{(10)} + E_{ind}^{(20)} + E_{exch-ind}^{(20)} + E_{disp}^{(20)} + E_{exch-disp}^{(20)} + \delta_{HF}$$

Many-body SAPT

double-perturbation theory

 $H = F_{A} + F_{B} + \zeta W + \lambda V$ =H₀ $W = \underbrace{W_{A}}_{uctuation} + \underbrace{W_{B}}_{potential} \times$ = (H_A - F_A) + (H_B - F_B)

S. Rybak, B. Jeziorski, K. Szalewicz, JCP 95, 6576 (1991) E. G. Hohenstein, C. D. Sherrill, WIRES 2:304 (2012) gives rise to a whole family of methods (SAPT0, SAPT2, ...)

Many-body SAPT

$$E_{int}^{SAPT0} = E_{int}^{HF} + E_{disp}^{(20)} + E_{exch-disp}^{(20)}$$

double-perturbation theory

 $H = F_{A} + F_{B} + \zeta W + \lambda V$ = H₀ $W = \underbrace{W_{A}}_{uctuation} + \underbrace{W_{B}}_{yotential}$ = (H_A - F_A) + (H_B - F_B)

S. Rybak, B. Jeziorski, K. Szalewicz, JCP 95, 6576 (1991) E. G. Hohenstein, C. D. Sherrill, WIRES 2:304 (2012) gives rise to a whole family of methods (SAPT0, SAPT2, ...)

$$\begin{split} \mathbf{E}_{\text{int}}^{\text{SAPT0}} &= \mathbf{E}_{\text{int}}^{\text{HF}} \\ &+ \mathbf{E}_{\text{disp}}^{(20)} + \mathbf{E}_{\text{exch-disp}}^{(20)} \\ \mathbf{E}_{\text{int}}^{\text{SAPT2}} &= \mathbf{E}_{\text{int}}^{\text{SAPT0}} + \mathbf{E}_{\text{elst}}^{(12)} + \mathbf{E}_{\text{exch}}^{(11)} + \mathbf{E}_{\text{exch}}^{(12)} \\ &+ {}^{\text{t}}\mathbf{E}_{\text{ind}}^{(22)} + {}^{\text{t}}\mathbf{E}_{\text{exch-ind}}^{(22)} \end{split}$$

double-perturbation theory

 $H = F_{A} + F_{B} + \zeta W + \lambda V$ = H₀ $W = W_{A} + W_{B}$ uctuation potential = (H_A - F_A) + (H_B - F_B)

S. Rybak, B. Jeziorski, K. Szalewicz, JCP 95, 6576 (1991) E. G. Hohenstein, C. D. Sherrill, WIRES 2:304 (2012) gives rise to a whole family of methods (SAPT0, SAPT2, ...)

Many-body SAPT

$$\begin{split} E_{int}^{SAPT0} &= E_{int}^{HF} \\ &+ E_{disp}^{(20)} + E_{exch-disp}^{(20)} \\ E_{int}^{SAPT2} &= E_{int}^{SAPT0} + E_{elst}^{(12)} + E_{exch}^{(11)} + E_{exch}^{(12)} \\ &+ {}^{t}E_{ind}^{(22)} + {}^{t}E_{exch-ind}^{(22)} \\ E_{int}^{SAPT2+} &= E_{int}^{SAPT2} + E_{disp}^{(21)} + E_{disp}^{(22)} \end{split}$$

double-perturbation theory

 $H = F_{A} + F_{B} + \zeta W + \lambda V$ =H₀ $W = \underbrace{W_{A}}_{uctuation potential} + \underbrace{W_{B}}_{uctuation potential}$ = (H_A - F_A) + (H_B - F_B)

S. Rybak, B. Jeziorski, K. Szalewicz, JCP 95, 6576 (1991) E. G. Hohenstein, C. D. Sherrill, WIRES 2:304 (2012) gives rise to a whole family of methods (SAPT0, SAPT2, ...)

Many-body SAPT

$$\begin{split} E_{int}^{SAPT0} &= E_{int}^{HF} \\ &+ E_{disp}^{(20)} + E_{exch-disp}^{(20)} \\ E_{int}^{SAPT2} &= E_{int}^{SAPT0} + E_{elst}^{(12)} + E_{exch}^{(11)} + E_{exch}^{(12)} \\ &+ {}^{t}E_{ind}^{(22)} + {}^{t}E_{exch-ind}^{(22)} \\ E_{int}^{SAPT2+} &= E_{int}^{SAPT2} + E_{disp}^{(21)} + E_{disp}^{(22)} \\ E_{int}^{SAPT2+(3)} &= E_{int}^{SAPT2+} + E_{elst}^{(13)} + E_{disp}^{(30)} \end{split}$$

- Introduction
- SAPT
 - general
 - Many-body SAPT SAPT(DFT)

 - Multicon gurational SAPT
 - SAPT(MC-srDFT)
 - interactions in ground vs. excited states

- developed in early 2000s
- single-perturbation theory

$$E_{int}^{SAPT(DFT)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

- response properties from TDKS with asymptotic correction for KS potentials
- A. Hesselmann, G. Jansen, M. Sch tz, JCP 122, 014103 (2005) A. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, JCP 123, 214103 (2005)

developed in early 2000ssingle-perturbation theory

- **terms** depending on ρ and $\delta \rho$: accurate
- exchange terms: approximate

response properties from TDKS

A. Hesselmann, G. Jansen, M. Sch tz, JCP 122, 014103 (2005) A. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, JCP 123, 214103 (2005)

- developed in early 2000s single-perturbation theory
 - $E_{elst}^{(1)} = \int_{A}^{fot} \rho_{A}^{tot}(r_{1}) \frac{1}{|r_{1} r_{2}|} \rho_{B}^{tot}(r_{2}) dr_{1} dr_{2}$ $E_{ind}^{(2)}(A \leftarrow B) = \frac{1}{2} \int_{A}^{f} \omega_{B}(r_{1}) \omega_{B}(r_{2}) \alpha_{A}(r_{1}, r_{2}|0) dr_{1} dr_{2}$ $E_{disp}^{(2)} = -\frac{1}{4\pi} \int_{A}^{f} \frac{\alpha_{A}(r_{1}, r_{2}|i\omega) \alpha_{B}(r_{1}^{'}, r_{2}^{'}|i\omega)}{|r_{1} r_{2}||r_{1}^{'} r_{2}^{'}|} dr d\omega$ $E_{int}^{SAPT(DFT)} = E_{elst}^{(1)} + E_{exch}^{(1)}$ $+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$ + $E_{disp}^{(2)}$ + $E_{exch-disp}^{(2)}$ $+ \delta_{\rm HF}$

terms depending on ρ and $\delta \rho$: accurate

exchange terms: approximate

 $\alpha_{\rm x}({\rm r,r}|\omega)$: density susceptibility

A. Hesselmann, G. Jansen, M. Sch tz, JCP 122, 014103 (2005) A. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, JCP 123, 214103 (2005)

1

developed in early 2000ssingle-perturbation theory

$$E_{int}^{SAPT(DFT)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

- **terms** depending on ρ and $\delta \rho$: accurate
- exchange terms: approximate

$$\begin{split} E_{\text{exch}}^{(1)}\left(S^{2}\right) &= E_{\text{exch}}^{\left(1\right)}\left[\gamma_{A},\gamma_{B},\Gamma_{A},\Gamma_{B}\right]\\ E_{\text{exch-ind}}^{(2)}\left(S^{2}\right) &= E_{\text{exch-ind}}^{(2)}\left[\gamma_{X},\gamma_{X}^{\nu},\Gamma_{X},\Gamma_{X}^{\nu}\right]\\ E_{\text{exch-disp}}^{(2)}\left(S^{2}\right) &= E_{\text{exch-disp}}^{(2)}\left[\gamma_{X},\gamma_{X}^{\nu},\Gamma_{X},\Gamma_{X}^{\nu}\right] \end{split}$$

rely on reduced density matrices

A. Hesselmann, G. Jansen, JPCA 105, 11156 (2001) A. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, JCP 123, 214103 (2005)

- near-CCSD(T) accuracy at N⁵ cost (up to 3000 basis set functions)
- full PESs for water, CO, benzene, acetylene, ... dimers

Figure 8: Second virial coefficient of bename: SAPT(DPT): the work: Experiment 1: ref T1. Experiment 2: usf 72: OPLS: calculated with the empirical potential of ref 62:

R. Podeszwa, R. Bukowski, K. Szalewicz, JPCA 110, 094106 (2006)

- automated generation of site-site potentials (AutoPES program)
 - PES sampling limited to short-range
 - long-range from asymptotic expansion
- SAPT(DFT)-based force elds → crystal structure prediction (CSP)

R. Metz, K. Piszczatowski, K. Szalewicz, JCTC 12, 5895 (2016) R. Nikhar, K. Szalewicz, Nat. Comm. 13 3095 (2022)

- automated generation of site-site potentials (AutoPES program)
- SAPT(DFT)-based force elds \rightarrow crystal structure prediction (CSP)

#DMIT & THE punity Delegation. + Resources

R. Metz, K. Piszczatowski, K. Szalewicz et al., JCTC 12, 5895 (2016) R. Nikhar, K. Szalewicz, Nat. Comm. 13 3095 (2022)

SAPT timeline

- Introduction
- SAPT
 - general
 - Many-body SAPT SAPT(DFT)

 - Multicon gurational SAPT
 - SAPT(MC-srDFT)
 - interactions in ground vs. excited states

- developed in 2019-2021
- single-perturbation theory

$$E_{int}^{SAPT(MC)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

■ response from extended RPA

K. Chatterjee, K. Pernal, JCP 12, 137, 204109 (2012)
M. Hapka, M. Przybytek, K. Pernal, JCTC 15, 1116/6712 (2019)
M. Hapka, M. Przybytek, K. Pernal, JCTC 17, 5538 (2021)

- relies on one- and two-particle reduced density matrices (γ, Γ) of monomers
- may be applied with any MC wave function (CAS, GVB-PP, DMRG, CIPSI, ...)

- developed in 2019-2021
- single-perturbation theory

$$E_{int}^{SAPT(MC)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

response from extended RPA

K. Chatterjee, K. Pernal, JCP 12, 137, 204109 (2012) M. Hapka, M. Przybytek, K. Pernal, JCTC 15, 1116/6712 (2019) M. Hapka, M. Przybytek, K. Pernal, JCTC 17, 5538 (2021)

- relies on one- and two-particle reduced density matrices (γ, Γ) of monomers
- may be applied with any MC wave function (CAS, GVB-PP, DMRG, CIPSI, ...)
- \diamond N^{6} scaling with the system size
- ♦ accuracy limited by
 - quality of γ, Γ
 - quality of γ^{ν} , Γ^{ν}
 - S² approximation

- developed in 2019-2021
- single-perturbation theory

$$E_{int}^{SAPT(MC)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

response from extended RPA

K. Chatterjee, K. Pernal, JCP 12, 137, 204109 (2012) M. Hapka, M. Przybytek, K. Pernal, JCTC 15, 1116/6712 (2019) M. Hapka, M. Przybytek, K. Pernal, JCTC 17, 5538 (2021)

- relies on one- and two-particle reduced density matrices (γ, Γ) of monomers
- may be applied with any MC wave function (CAS, GVB-PP, DMRG, CIPSI, ...)
- ♦ N⁶ scaling with the system size $\rightarrow E_{DISP}^{(2)}$
- \diamond accuracy limited by
 - quality of γ, Γ
 - \diamond quality of γ^{ν} , Γ^{ν}
 - S² approximation

Dispersion energy in SAPT(MC)

N⁶ scaling in SAPT(MC)

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations $(\mathbf{Y}_{v}, \omega_{v})$

$$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} g^{\mathrm{T}} C^{\mathrm{A}}(\omega) C^{\mathrm{B}}(\omega)^{\mathrm{T}} g^{\mathrm{T}} g^{\mathrm{T}} C^{\mathrm{A}}(\omega) C^{\mathrm{B}}(\omega)^{\mathrm{T}} g^{\mathrm{T}} g^{\mathrm{T}} g^{\mathrm{T}} (\omega) C^{\mathrm{B}}(\omega)^{\mathrm{T}} g^{\mathrm{T}} g^{\mathrm{T}} g^{\mathrm{T}} (\omega) C^{\mathrm{B}}(\omega)^{\mathrm{T}} g^{\mathrm{T}} g$$

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations (Υ_V, ω_V)

$$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} g^{\mathrm{T}} C^{\mathrm{A}}(\omega) C^{\mathrm{B}}(\omega)^{\mathrm{T}} g^{\mathrm{T}}$$

g_{pq}

N⁵ scaling achieved by

- Cholesky decomposition of integrals
- recursive formula for $\tilde{C}(\omega)$

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations (Υ_V, ω_V)

$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} D^{\mathsf{T}} C^{\mathsf{A}}(\omega) C^{\mathsf{B}}(\omega)^{\mathsf{T}} D^{\mathsf{T}}$

g_{pq}

N⁵ scaling achieved by

- Cholesky decomposition of integrals
- recursive formula for $\tilde{C}(\omega)$

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations $(\mathbf{Y}_{v}, \boldsymbol{\omega}_{v})$

$\rm N^5$ scaling achieved by

- Cholesky decomposition of integrals
- recursive formula for $\tilde{C}(\omega)$

$$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} D^{\mathsf{T}} \mathfrak{C}^{\mathsf{A}}(\omega) \mathfrak{C}^{\mathsf{B}}(\omega)^{\mathsf{T}} D^{\mathsf{T}}$$

g_{pq}

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations $(\mathbf{Y}_V, \boldsymbol{\omega}_V)$

N⁵ scaling achieved by

- Cholesky decomposition of integrals
- recursive formula for $\tilde{C}(\omega)$

$$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} D^{\mathrm{T}} \mathbb{C}^{\mathrm{A}}(\omega) \mathbb{C}^{\mathrm{B}}(\omega)^{\mathrm{T}} D^{\mathrm{T}}$$

 g_{pq}

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations $(\mathbf{Y}_{v}, \boldsymbol{\omega}_{v})$

$\rm N^5$ scaling achieved by

- Cholesky decomposition of integrals
- recursive formula for $\tilde{C}(\omega)$

$$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} D^{\mathsf{T}} \mathfrak{C}^{\mathsf{A}}(\omega) \mathfrak{C}^{\mathsf{B}}(\omega)^{\mathsf{T}} D^{\mathsf{T}}$$

g_{pq}

- evaluation of the $E_{disp}^{(2)}$ formula
- solution of ERPA equations $(\mathbf{Y}_{v}, \boldsymbol{\omega}_{v})$

$\rm N^5$ scaling achieved by

- Cholesky decomposition of integrals
- recursive formula for $\tilde{C}(\omega)$

$$E_{disp}^{(2)} = -\frac{8}{\pi} \int_{0}^{\infty} d\omega \operatorname{Tr} D^{\mathsf{T}} \mathfrak{C}^{\mathsf{A}}(\omega) \mathfrak{C}^{\mathsf{B}}(\omega)^{\mathsf{T}} D^{\mathsf{T}}$$

g_{pq}

Dispersion energy in SAPT(MC)

■ 1200 basis functions (2 hrs @4 CPUs for E⁽²⁾_{disp})

M. Hapka, A. Krzemi ska, M. Modrzejewski, M. Przybytek, K. Pernal, JPCL 14, 6895 (2023)

- developed in 2019-2021
- single-perturbation theory

$$E_{int}^{SAPT(MC)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

response from extended RPA

K. Chatterjee, K. Pernal, JCP 12, 137, 204109 (2012) M. Hapka, M. Przybytek, K. Pernal, JCTC 15, 1116/6712 (2019) M. Hapka, M. Przybytek, K. Pernal, JCTC 17, 5538 (2021)

- relies on one- and two-particle reduced density matrices (γ, Γ) of monomers
- may be applied with any MC wave function (CAS, GVB-PP, DMRG, CIPSI, ...)
- \diamond N^{6} scaling with the system size
- ♦ accuracy limited by
 - quality of γ, Γ
 - ♦ quality of γ^{ν} , Γ^{ν}
 - S² approximation

rel. % errors wrt SAPT(CCSD)/avtz

A24 dataset: J. e z , P. Hobza, JCTC (2013)

a ordable active space too small to recover intramonomer correlation

SAPT(MC) accuracy

rel. % errors wrt SAPT(CCSD)/avtz

A24 dataset: J. e z , P. Hobza, JCTC (2013)

a ordable active space too small to recover intramonomer correlation

SAPT(MC) accuracy

Introduction

■ SAPT

- general
- Many-body SAPT
- SAPT(DFT)
- Multicon gurational SAPT
- SAPT(MC-srDFT)
 - correlated electron densities of monomers
 - improved rst-order terms in SAPT
- interactions in ground vs. excited states

- MC analogue of SAPT(DFT)
- single-perturbation theory

$$E_{int}^{SAPT(MCsrDFT)} = E_{elst}^{(1)} + E_{exch}^{(1)}$$
$$+ E_{ind}^{(2)} + E_{exch-ind}^{(2)}$$
$$+ E_{disp}^{(2)} + E_{exch-disp}^{(2)}$$
$$+ \delta_{HF}$$

response properties from ERPA

- **terms** depending on ρ and $\delta \rho$: accurate
- exchange terms: approximate

◇ nominal N⁶ scaling
◇ SAPT(MC) accuracy limits
◇ quality of γ, Γ → improved by srDFT
◇ quality of γ^ν, Γ^ν → improved by xc kernel
◇ S² approximation

H. Stoll and A. Savin, in Density Functional Methods in Physics, 177-207 (1985)

Separation of the electron-electron interaction operator

H. Stoll and A. Savin, in Density Functional Methods in Physics, 177-207 (1985) A. Savin, in Recent Developments of Modern Density Functional Theory 327 (1996) MC-srDFT

$$\begin{split} \mathbf{E}_{o} &= \min_{\Psi} \overset{\mathsf{nD}}{\Psi} | \hat{\mathbf{T}} + \hat{\mathbf{V}}_{ne} + \hat{\mathbf{V}}_{ee}^{LR} | \Psi \overset{\mathsf{E}}{\Psi} + \mathbf{E}_{Hxc}^{SR} [\rho_{\Psi}] \\ \hat{\mathbf{H}}_{LR} \Psi^{LR} &= \mathbf{E}^{LR} \Psi^{LR} \\ \hat{\mathbf{H}}_{LR} &= \hat{\mathbf{T}} + \hat{\mathbf{V}}_{ne} + \hat{\mathbf{V}}_{ee}^{LR} + \hat{\mathbf{V}}_{Hxc}^{SR} [\rho_{\Psi}^{LR}] \end{split}$$

- static correlation described via WF
- $\begin{array}{c} \quad \text{removal of electron-electron cusp from} \\ \Psi^{\text{LR}} \end{array}$
 - faster convergence with basis-set sizemore compact wave function

A. Fert, E. Giner, J. Toulouse, JCP 150, 084103 (2019)

$$\begin{split} \hat{H}_{LR} &= \hat{T} + \hat{V}_{ne} + \hat{V}_{ee}^{LR,\mu} + \hat{V}_{Hxc}^{SR,\mu} [\rho_{\Psi}^{LR}] \\ & \hat{H}_{LR} \xrightarrow{\mu \to 0} \hat{H}_{KS-DFT} \\ & \hat{H}_{LR} \xrightarrow{\mu \to \infty} \hat{H}_{CASSCF} \end{split}$$

- static correlation described via WF
- removal of electron-electron cusp from ΨLR
 - faster convergence with basis-set sizemore compact wave function

MC-srDFT

A. Fert, E. Giner, J. Toulouse, JCP 150, 084103 (2019)

$$v_{xc}(r) \xrightarrow{r \to \infty} - \frac{1}{r}$$

SAPT(DFT)

- asymptotic corrections
- optimal tuning of μ (LRC-DFT)
 - IP-tuning ($\omega_{\rm IP}$)

 $IP(\omega_{IP}) = -\varepsilon_{HOMO}(\omega_{IP})$

global density-dependent (ω_{GDD} **)**

W. Cencek, K. Szalewicz, JCP 139, 024104 (2013) R. Baer, et al., Annu. Rev. Phys. Chem. 61, 85 (2010) M. Modrzejewski, et al., JPCA 117, 11580 (2013) SAPT(MC-srDFT)

- range-separation of electron-electron interaction applied in monomer Hamiltonians
- optimal μ value from extended Koopmans theorem $\int_{\rho(\mathbf{r})} \exp(-2^{2} 2 \operatorname{IP}_{\text{EKT}} \mathbf{r})$

D. W. Smith, O. W. Day, JCP 62, 113 (1975)

- polarization components close to SAPT(PBE0)
- improvement over SAPT(CAS)/SAPT(GVB)

SAPT(CAS-srDFT):

Polarization: rel. % errors wrt SAPT(CCSD)/avtz; A24 dataset

SAPT(MC-srDFT) accuracy

Exchange: rel. % errors wrt SAPT(CCSD)/avtz; A24 dataset

SAPT(CAS-srDFT):

- improvement over SAPT(CAS)/SAPT(GVB)
- $E_{exch}^{(1)}$ most sensitive to μ value

Introduction

■ SAPT

- general
- Many-body SAPT
- SAPT(DFT)
- Multicon gurational SAPT
- SAPT(MC-srDFT)
 - correlated electron densities of monomers
 - improved rst-order terms in SAPT
- interactions in ground vs. excited states

Anisole $\cdot \cdot \cdot H_2O, NH_3$

Anisole $\cdot \cdot \cdot H_2O, NH_3$

	Anisole-H ₂ O / ground state				
SAPT	E ⁽¹⁾	$E_{exch}^{(1)}$	E_{IND}	$E_{DISP}^{(2)}$	Eint
HF					
CAS(6,6)					
CAS(12,12)					
CASsrPBE					
PBE0					
SAPT2+(3)					
- (-)					
supermolecular					
CAS+DISP					
CCSD(T)					
(-)					

	Anisole-H ₂ O / ground state					
SAPT	E ⁽¹⁾ elst	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint	
HF CAS(6,6) CAS(12,12) CASsrPBE PBE0 SAPT2+(3)						
supermolecular CAS+DISP CCSD(T)						
aug-cc-pVTZ; milliHa	artee	E _{IND} =	$= E_{ind}^{(2)} +$	$E_{exch-ind}^{(2)}$	+ $\delta_{\rm HF}$	

	A	nisole-H	2 0 / gro	ound state	e
SAPT	E ⁽¹⁾	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint
HF					
CAS(6,6)					
CAS(12,12)					
CASsrPBE					
PBE0					
SAPT2+(3)					
supermolecular					
CAS+DISP					
		– (2)		(2)	
aug-cc-pVTZ; milliH	artee	$E_{DI}^{(2)}$	$_{\rm SP} = E_{\rm di}^{\rm Q}$	$E_{isp}^{2} + E_{exc}^{2}$	h-disp

		Anisole-H	Anisole-H ₂ O / ground state					
SAPT	E ⁽¹⁾ elst	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint			
HF								
CAS(6,6)								
CAS(12,12)								
CASsrPBE								
PBE0								
SAPT2+(3)								
supermolecular								
CAS+DISP								
CCSD(T)								
aug-cc-pVTZ; milliH	artee	CAS+I	DISP= I	ECASSCF int	+ $E_{DISP}^{(2)}$			

	Anisole- H_2O / ground state					
SAPT	E ⁽¹⁾ elst	E ⁽¹⁾ exch	E_{IND}	E ⁽²⁾	Eint	
HF	-11.84	10.95				
CAS(6,6)	-12.38	11.73				
CAS(12,12)	-11.30	11.53				
CASsrPBE						
PBE0						
SAPT2+(3)						

Anisole \cdots H₂O

	Anisole-H ₂ O / ground state					
SAPT	E ⁽¹⁾ elst	E ⁽¹⁾ exch	E_{IND}	E ⁽²⁾	Eint	
HF	-11.84	10.95				
CAS(6,6)	-12.38	11.73				
CAS(12,12)	-11.30	11.53				
CASsrPBE	-11.64	13.22				
PBE0						
SAPT2+(3)						

Anisole \cdots H₂O

	Anisole-H ₂ O / ground state					
SAPT	E ⁽¹⁾	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint	
HF	-11.84	10.95				
CAS(6,6)	-12.38	11.73				
CAS(12,12)	-11.30	11.53				
CASsrPBE	-11.64	13.22				
PBE0	-11.18	12.78				
SAPT2+(3)	-11.57	12.98				

Anisole \cdots H₂O

• CASsrPBE > CAS(12,12) > CAS(6,6)

	Anisole-H $_2$ O / ground state				
SAPT	E ⁽¹⁾ elst	E ⁽¹⁾ exch	EIND	$E_{DISP}^{(2)}$	Eint
HF	-11.84	10.95	-3.62	-4.75	-9.26
CAS(6,6)	-12.38	11.73	-3.63	-4.94	-9.22
CAS(12,12)	-11.30	11.53	-3.50	-4.93	-8.19
CASsrPBE	-11.64	13.22	-3.57	-4.87	-6.86
PBE0	-11.18	12.78	-3.55	-5.17	-7.11
SAPT2+(3)	-11.57	12.98	-3.99	-5.51	-8.09

Anisole \cdots H₂O

- CAS(6,6) close to HF
- CASsrPBE close to PBE0

	Anisole-H ₂ O / ground state				
SAPT	E ⁽¹⁾ elst	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint
HF	-11.84	10.95	-3.62	-4.75	-9.26
CAS(6,6)	-12.38	11.73	-3.63	-4.94	-9.22
CAS(12,12)	-11.30	11.53	-3.50	-4.93	-8.19
CASsrPBE	-11.64	13.22	-3.57	-4.87	-6.86
PBE0	-11.18	12.78	-3.55	-5.17	-7.11
SAPT2+(3)	-11.57	12.98	-3.99	-5.51	-8.09
supermolecula	r				
CAS+DISP					-8.65
CCSD(T)					-7.70

<u>Anisole</u> $\cdot \cdot \cdot H_2O$

	Anisole-NH $_3$ / ground state					
SAPT	E ⁽¹⁾	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint	
HF	-5.69	5.79	-1.06	-5.35	-6.30	
CAS(6,6)	-5.53	5.92	-1.03	-5.39	-6.04	
CAS(12,12)	-5.63	5.96	-1.04	-5.41	-6.13	
CASsrPBE	-5.59	6.57	-1.04	-5.47	-5.53	
PBE0	-5.55	6.57	-1.04	-5.66	-5.68	
SAPT2+(3)	-5.52	6.34	-1.09	-6.04	-6.31	

Anisole \cdots NH₃

• CASsrPBE > CAS(12,12) \approx CAS(6,6)

	Anisole-NH ₃ / ground state					
SAPT	$E_{elst}^{(1)}$	E ⁽¹⁾ exch	E_{IND}	$E_{DISP}^{(2)}$	Eint	
HF	-5.69	5.79	-1.06	-5.35	-6.30	
CAS(6,6)	-5.53	5.92	-1.03	-5.39	-6.04	
CAS(12,12)	-5.63	5.96	-1.04	-5.41	-6.13	
CASsrPBE	-5.59	6.57	-1.04	-5.47	-5.53	
PBE0	-5.55	6.57	-1.04	-5.66	-5.68	
SAPT2+(3)	-5.52	6.34	-1.09	-6.04	-6.31	
supermolecula	r					
					-6 24	
C(SD(T))					-5.83	
					5.05	

Anisole \cdots NH₃

How does the interaction change upon vertical excitation?

aug-cc-pVTZ; milliHartee

- stabilization + destab.

Anisole $\cdot \cdot \cdot H_2O$, NH₃

vertical exc.	$\Delta E_i = E_i^{es} - E_i^{gs}$					
	a-	H ₂ O	a-	NH ₃		
	CASSCF	CASsrPBE	CASSCF	CASsrPBE		
$\Delta E_{elst}^{(1)}$	0.83	2.52	0.12	-0.21		
$\Delta E_{exch}^{(1)}$	-0.13	-0.06	-0.08	0.21		
ΔE_{IND}	0.10	0.16	0.01	-0.07		
$\Delta E_{DISP}^{(2)}$	-0.02	-0.32	0.03	-0.12		
ΔE_{int}^{SAPT}	0.78	2.29	0.08	-0.19		

- destabilization of ES due to $\Delta \mathrm{E}_{\mathrm{elst}}^{(1)}$

aug-cc-pVTZ; milliHartee

- stabilization + destab.

Anisole $\cdot \cdot \cdot$ H₂O,NH₃

vertical exc.	$\Delta E_i = E_i^{es} - E_i^{gs}$			
	a-H₂O		a-NH ₃	
	CASSCF	CASsrPBE	CASSCF	CASsrPBE
$\Delta E_{elst}^{(1)}$	0.83	2.52	0.12	-0.21
$\Delta E_{exch}^{(1)}$	-0.13	-0.06	-0.08	0.21
ΔE_{IND}	0.10	0.16	0.01	-0.07
$\Delta E_{DISP}^{(2)}$	-0.02	-0.32	0.03	-0.12
ΔE_{int}^{SAPT}	0.78	2.29	0.08	-0.19

- stabilization of ES due to $\Delta \mathrm{E}^{(n>1)}$

Anisole… H₂O,NH₃

aug-cc-pVTZ; milliHartee	- stabilization	+ destab.
--------------------------	-----------------	-----------

vertical exc.	$\Delta E_i = E_i^{es} - E_i^{gs}$			
	a-H ₂ O		a-NH ₃	
	CASSCF	CASsrPBE	CASSCF	CASsrPBE
$\Delta E_{elst}^{(1)}$	0.83	2.52	0.12	-0.21
$\Delta E_{exch}^{(1)}$	-0.13	-0.06	-0.08	0.21
ΔE_{IND}	0.10	0.16	0.01	-0.07
$\Delta E_{DISP}^{(2)}$	-0.02	-0.32	0.03	-0.12
ΔE_{int}^{SAPT}	0.78	2.29	0.08	-0.19
$\Delta E_{int}^{CAS+DISP}$	0.73		0.09	
ΔE_{int}^{CC2}		1.70		-0.46
$\Delta E_{int}^{CC2} = E_{int,gs}^{CCSD(T)} + \omega_{AB}^{CC2} - \omega_{A}^{CC2}$				

Anisole $\cdot \cdot \cdot H_2O$, NH₃

Adiabatic excitations

■ How does the interaction change upon adiabatic excitation?

adiabatic exc.	$\Delta E_i = E_i^{es} - E_i^{gs}$			
	a-H₂O		a-NH ₃	
	CASSCF	CASsrPBE	CASSCF	CASsrPBE
$\Delta E_{elst}^{(1)}$	2.12	3.00	-2.52	-4.12
$\Delta E_{exch}^{(1)}$	-3.37	-3.47	4.87	5.25
ΔE_{IND}	1.16	1.21	-1.05	-1.40
$\Delta E_{DISP}^{(2)}$	0.51	0.25	-1.16	-1.42
$\Delta E_{int}^{\bar{S}\bar{A}\bar{P}T}$	0.42	1.00	0.15	-1.69

Anisole $\cdot \cdot \cdot H_2O$, NH₃

• destabilization of ES due to $\Delta E^{(n>1)}$

aug-cc-pVTZ; milliHartee	- stabilization	+ destab.

adiabatic exc.	$\Delta E_i = E_i^{es} - E_i^{gs}$			
	a-H₂O		a-NH ₃	
	CASSCF	CASsrPBE	CASSCF	CASsrPBE
$\Delta E_{elst}^{(1)}$	2.12	3.00	-2.52	-4.12
$\Delta E_{exch}^{(1)}$	-3.37	-3.47	4.87	5.25
ΔE_{IND}	1.16	1.21	-1.05	-1.40
$\Delta E_{DISP}^{(2)}$	0.51	0.25	-1.16	-1.42
ΔE_{int}^{SAPT}	0.42	1.00	0.15	-1.69

- stabilization of ES due to $\Delta \mathrm{E}^{(n>1)}$

Anisole… H₂O,NH₃

milliHartee	- stabilization	+ destab.
-------------	-----------------	-----------

adiabatic exc.	$\Delta E_i = E_i^{es} - E_i^{gs}$			
	a-H₂O		a-NH ₃	
	CASSCF	CASsrPBE	CASSCF	CASsrPBE
$\Delta E_{elst}^{(1)}$	2.12	3.00	-2.52	-4.12
$\Delta E_{exch}^{(1)}$	-3.37	-3.47	4.87	5.25
ΔE_{IND}	1.16	1.21	-1.05	-1.40
$\Delta E_{DISP}^{(2)}$	0.51	0.25	-1.16	-1.42
ΔE_{int}^{SAPT}	0.42	1.00	0.15	-1.69
$\Delta E_{int}^{CAS+DISP}$	0.31		-0.25	
ΔE_{int}^{CC2}		0.78		-2.14

Anisole $\cdot \cdot \cdot H_2O$, NH₃

SAPT variant for multireference systems

E ciency

- nominal N⁶ scaling
 - C new algorithm for $E^{(2)}_{disp}$ (MC) \diamond tensor hypercontraction (THC)

M. Hapka, et al, JPCL 14, 6895 (2023)

Accuracy

- intramonomer correlation
 - C SAPT(MC-srDFT)
 - perturbative corrections to γ , Γ

Applicability

Acknowledgements

- Katarzyna Pernal
- Agnieszka Krzemi ska
- Ewa Pastorczak
- Mohammad Reza Jangrouei

- Dominik Cie li ski
- Micha Przybytek
- Marcin Modrzejewski

