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Motivations

« Why computing enerqy gaps?
Energy gaps are important information about the electronic excitations which are often used in
experiments to probe the underlying electronic structure of systems.
Electronic spectra are routinely measured in various spectroscopies, and theoretical methods to
compute spectra are available mainly based on DFT and Many Body Perturbation Theory (MBPT).

- Why computing enerqy gaps with QMC?
QMC is not able to provide electronic spectra directly since this requires computing real time
dynamics (dynamical properties).
Instead QMC is a great method for ground state properties (mainly energy, but also structural
properties). Can we extend QMC to compute energy gaps and electronic excitations?

This will allow to include electronic correlation in the excitation energies in a non-perturbative
fashion and provide more accurate values.




Outline

Energy gaps for static external fields (ideal crystals)
Finite size effects
Extension to quantum and thermal crystals

applications:
Carbon and Silicon

High Pressure hydrogen



Energy gaps: basic definitions

Charged (single-particle) excitations: fundamental gap of insulators (quasiparticle)
qu = Eg(Ne+ 1)+ Ej(Ne— 1) = 2E((Ng)
Eo(N.) = ground state energy of a system with N, electrons

Neutral (particle-hole) excitation:
An = Ei(Ng) - Eo(Ne)
E;(N.) = lowest excited state of a system with N, electrons

in the first case only GS energies are involved, good for QMC
in the second case an excited state is involved, apparently bad for QMC



Fundamental (quasiparticle) gap
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Electronic band gaps from quantum Monte Carlo methods

Yubo Yang (h \ & )= ,! Vitaly Gorelov? Carlo Pierleoni: 22 David M. Ceperley: and Markus Holzmarft®

Ut = Eg(Ne+ 1) = Eo(Ng) chemical potential for adding one electron
U~ = Ey(Ng) = Eg(Ne— 1) chemical potential for removing one electron
Ap=HM"—pu #0 for gapped systems

In the GrandCanonical ensemble, V and are independent variables while the equilibrium Ne corresponds to
the minimum of the Grand Potential

1
QV,p) = WL H&Iin[Eo(Ne: 6) - UNg]
9 e

where indicate that we are using Twisted Boundary Conditions to minimise FSE :

Y+ LX) = €%¥Y(r,)

Indicating with Ny(6, /) the optimal number of electron at given (6, 1), the equilibrium electron and energy
densities are respectively

(k) = (MgV) s Ne(6, 1) &) = (MgV) ™'y Eo(N(6, 1), 6)
0

0
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Hydrogen Ideal crystal C2/c-24 P=248GPa, N, = 96, No = Ny + n

Total energy (hartrees) vs twist angle (sorted for n=0) forn € [-8; + §]
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Hydrogen Ideal crystal C2/c-24 P=248GPa, N, = 96, No = N+ n
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e 0
At equilibrium == Ey(Ng0) - Ex(Ne— 1,0) < u < Ej(No+ 1,0) - E5(N, 0)
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FIG. 1. GCTABC analysesf the C2c-24 structureof solid hydrogemat rs = 1.38 (234GPa). (a) The electron density, asa function
of the chemical potentigl obtained from HSE functionah comparisorto QMC; the inset illustrates the energy density,asa function of
u from HSE functional. (b) Energy density,,e@sa functionof ne using QMC; the inset shows the derivative discontinuity, wideds the
changeof the electronic density with respdctthe insulating state. Size correctioasgdiscussedn the text, are included.

Value of the gap can be extracted from the size of the incompressible region (plateau) or from the kink in the
energy density at Ng = np
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Finite size effects (FSE): total energy

« Extended systems are considered in Periodic Boundary Conditions.

» Energy and other properties for the finite systems are affected by FS error that need to be understood
and corrected in order to provide accurate results.

» Extrapolation to the infinite size system should be supported by a theoretically derived behaviour
because an empirical brute force characterisation is often uncertain: often one cannot explore a wide
range of sizes and it is not clear whether the asymptotic (power law) behaviour is already reached.
Moreover the results will be dominated by the smallest size systems with smaller error bars.

« Empirical observed behaviours:
E(N) ~1/N~ 1/L3 vs E(N) ~ 1/N/3 ~ 1/L

* In this paper we studied in details the various corrections to the total energy

PHYSICAL REVIEW B94, 035126(2016)

Theory of finitesize effectsfor electronic quantum Monte Carlo calculations of liquids and solids

Markus Holzmann;?3 RaymondC. Clay I, * Miguel A. Morales? Norm M. Tubman? David M. Ceperley}
and Carlo Pierleobi

Two types of contributions:
* single electron contributions are treated by twisted boundaries (averaging over) and by Grandcanonical

calculations
- two-electron contributions are encoded in the small-k behavior of the el-el structure factor S;{k = 0)
 corrected energies are closed to convergence already for 100 electrons in metallic hydrogen ( ~ 0.5 mH/el)



Size correction for gaps (#1)

» As for the total energy, single electron size effects are corrected by TABC.
» Two-particle size effects are encoded in the Sy +1(K — 0).

* We proved that

S = (Nt D] (K- N§ (K ~a. + OKY); ae o £ gl

0.0 05 10 15 20 25 3.0 “0.0 0.2 0.4 06 08 1.0 1.2

K5 fa K fan
(a) carbon (b) silicon

FIG. 2. Changen the static structure fact@sanelectron (upper curvesyr a hole (lower curvesis addedto the insulating system with N
atoms. The lines are fit® the data points. The horizontal lines show the expected R limit basedon the experimental dielectric constants.
We have used &= 0.41for C and c= 0.57for Si.

. . _ Wl 1 ~
Potential energy correction to the gap: A A, =T > ~ f' V\y = Madelung constant ~ f ~ N

|V |

Kinetic energy correction from correlations: Ay = d.C

Total correction: A, — Ay =



Size correction for gaps (#2)

Next to leading order corrections OAN comes from twists

corrections to two-particle correlations. This are unessential
for total energies, but important for the gaps since gaps values
are of the order of total energies corrections for the system
sizes under considerations.

TABLE I. Energy gaps obtained from GCTAB QMid eV. The
bare gapwn, was calculated fronkq. (1) for a finite supercell con-
taining N atoms. The leading-order finite-size corrections are given
by the screened Madelung constarlig, |/, the nextto-leading
order by the twist correctionof two-particle density correlations,
bws. We used the experimental valu# ¢ for C andSi (5.7 and
117, respectively) and the value.8 for H, extracted from S(k).

Finite-size corrections were also appliéd the band edgesy=.
The estimateof the gapin the thermodynamic limits w . = wn, +

lvu|/e + 6ws. Fromour LDA analysis,we estimate a systematic bias
of ~0.1 eV from the finite twist grid. This biass larger than the
statistical errorSJindicates Slater-Jastrow trial wave function, while
BF indicates backflow. The lattice constamtscarbon and silicon are

3567A and 543 A, respectively.

Is N wn  vmle  bws He He Weo

H, (BF) 1.38 96 3.3(1) 040 0.020 6.9(1) 10.7(1) 3.8(1)
1.34 96 2.4(1) 020 0.018 8.6(1) 11.2(1) 2.6(1)
C(BF) 1.318 8 3.9(1) 201 069 11.5(1) 18.1(1) 6.6(1)

C(SJ) 1.318 8 4.0(1) 2.01 069 11.5(1) 18.2(1) 6.7(1)
64 5.8(1) 1.00 0.02 11.9(1) 18.7(1) 6.8(1)

Si(BF) 2.005 8 0.6(1) 0.64 055 5.2(1) 6.9(1) 1.7(1)

Si(SJ) 2.005 8 0.6(1) 064 058 5.2(1) 7.0(1) 1.9(1)
64 1.4(1) 0.32 0.08 5.5(1) 7.3(1) 1.8(1)
216 1.6(1) 021 001 5.6(1) 7.4(1) 1.8(1)
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FIG. 4. Fundamental gap before and after finite-size corrections.
wn is the DMC gap from a simulation with N atoms the su
percell without any finite-size correctiowy /e is the leading-order
Madelung correction using the experimental vatfie—?, 6w\ is the

nextto-leading-order density correction, whighrelatedto the static
partof the structure factor. The ling a fit to wn + 6wY.



Comparison with experiments for Si and C

Our values are larger than experimental determinations:

TABLE Il. Extrapolated band gapf Si and C from backflow
DMC calculations Agr comparedo the experimental values (exp).
Wetabulated two main corrections: the difference between thefjap
an all-electron (AE) and the pseudopotential (PP) calculation within
GWecalculations, antheneglectof electron-phonon coupling@-ph).

ABE AE - PP eph exp

C 6.6(2) -0.26(GQW)[54 -0.6GW)[56 5.48 [67]
Si  1.7(1) -0.25(GWy)[54 —0.06 OFT)[57 1.17 7]

Pseudopotential effects and electron-phonons effects reduces the gap.
Comparison with experiment is not conclusive.



Hydrogen fundamental gap for ideal structures (N, = 96)

V. Gorelov, M. Holzmann, DM Ceperley and C. Pierleoni, PRL 124, 116401 (2020).

(structures optimized with vdW-DF)

4.0 —} C2/c RQMC this work
o C2/c GoWp McMinis Phase Il
3.5 A C2/c GgWp Yim |
1 C2/c GgWj Lebegue . . .
i C2uc D:,,C‘_’DFT Aiadi g QMC+scissor correction and size
3.0 & Cmca-12 RQMC this work extrapolation (2018)
Cmca-12 GoWq Dvorak
2.5 Cmca-12 GgWj Lebegue
- ] ® - Pc48 RQMC this work ##——— Phase |V
Yo
<]
\%
1.5
]
1.0
0.5
0.0 g | | | | | |
200 250 300 350 400 450 500 550

P, GPa

« Excellent agreement with GW gaps from McMinis (same structures)
» Good agreement with previous QMC estimates (Azadi et al, PRB 2017) but ...
» other GW calculations predict smaller gap (1-2 eV smaller) but use different structural optimization.



Neutral (particle-hole) gap

V. Gorelov, Y. Yang, M. Ruggeri, D.M. Ceperley, C. Pierleoni and M. Holzmann, Cond. Mat. Phys. 26, 33701 (2023).

In an ideal crystal Y (ry+tr,+t .., N, * t) = eik-ttpk(rl, [y e rNe) t crystal
symmetry

Assuming the ground state is at K = 0, any K # O in the Brillouin zone is an excited state and

Ap = min B (Ng) = Eo(Ne)
k#0

therefore, likewise the fundamental gap, even the neutral gap can be obtained from GS calculations

with different crystal momentum. In the TL, K becomes a continuum and, for a normal band insulator,
even the vertical gap could be obtained by extrapolation.

With TABC, the twist is a second quantum number and eigenstates can be labeled by K, 6. The GS
energy, using Mg twists, is

Eke(e, N) = GS energy of a system at Ky, corresponding to minimum of the GS energy at

Extending the above definition, the neutral gap is obtained as

An = min [Ek9+q(9, Ne) - Eke(e, Ne)]
6,920

where ( is a reciprocal space vector compatible with the twist grid (finite crystal momentum).



Example: Carbon diamond

“ Table 1. Neutral gap/An from DMC calculationf carbon diamonéh a supercell containing ¥ 8 and
» 64 atomdor [ — X andl — I transitions, comparetb the corresponding quasiparticle band gAps
" from [14].

3 15 = N k An(k) AQP (k)

B o T . = | L 8 | - X | 4565(6)| 4.59(2)

s / - - ‘_Q~ EM - T | 6.265(6)
o b o 1 b 64 | I - X | 6.04(2) | 5.98(4)
s } h Fr—T | 7.642)

Figure 1. (Colour online) Left-hand: DFT-LDA band structuoé carbon diamond. Right-hand: Brillouin 0.8 v or—x 0.8

zoneof diamond structure with the selected path for band siragtlot.

Finite size effects are similar to the

0.4

0.2

fundamental gap if excitation are

0.0

oS(k}

represented by extended DFT orbitals o ~0.2
o
lvm| 1 -
An(OO) - An(l_) e~ — -0.8'5 0.5 10 15 7.0 35 0§ os 18 TE 35 TE 3
€ I_ & {a.u) 2 (a.u)

Figure 2. (Colour online)Difference between the excited and ground state fluctuating structure fiactor
carbon,sS(k). Blue and orange: neutral excitatiofts [ — X and ™ — I". Black: difference of structure
factors from quasiparticle excitatiofigr addition,5S* (k), (upper branch) and removaiS- (k), (lower
branch) from [14]. Left-hand: 8 atoms, right-hargdt atoms. The lines are fit® the data pointef the
corresponding color. Symbols with crosses are includede fit. From our anaytical analysigie expect
0S(k) = oS8T (k) + 05~ (k) for k — 0. Valuesfor small k are likelyaffected by a larger uncertaintyn
particularfor the larger system. Dotted horizontal lines indicate zero.

Exciton localization can only be obtained
by more complex wave functions. If £y
represent the exciton localisation length,

we expect negligible size effect ( ~ 1/N)
forL = 2/y.

* asignof thiswillbein O§Kk— 0) =0



Thermal and quantum crystals

Gorelov, Holzmann, Ceperley and Pierleoni, PRL 124, 116401 (2020)
We need to include nucleasieifeetsreyciviasane eodménéand. ttremmaly sntd80p4117 (2020)

Zero-point effects (quantum nuclei) are essential for hydrogen.
Both effects are treated by representing nuclei (protons) by Feynman Path Integrals in imaginary time.
In the canonical ensemble we write

Z(Ne) = e_IBF(Ne) = J- DR(T)e_S[R(T)]

where the action is defined as

_ P drR@ T
SROI= &1 50 g+ BRO Ny

R(7) are the proton positions and Ey(R(7), Ng) the BO energy for the system with N, protons and N,
electrons.

When N # N, we have

Z(Ne) ;
= o BIFNJ-F(N)] = oI5 dioE (R(.N,), . _ B
Z(N,) © T yi OB(RNg = Eg(R,Ne) = Eg(R,Ny)

When

INe= Np| K Ny= [OEx(R,Ng)| < [Ep(R,Np)| = F(Ne) = F(Np) = (OE,(R(0), Ne)) -
with

0*(Ne)
2

B
0*(Ng) = [ d{OE,(R(7), NJOE(R(0), Ne))c



Adding or removing a single electron, we obtain the chemical potential from the free energy differences
u* == [F(Np +1)- F(Np)] = Agp= N* - U
hence the terms OZ(Np * 1) contributes with opposite sign to the gap and largely cancels providing

qu = (5E0(Np + 1)) B <5E0(Np B 1))

In practice we need to replace the ground state energy density for the ideal crystal with the average
internal energy density  for the thermal and quantum crystal

A = IJ+ - IJ_ ad m _ n 0.0925 “?- RQMC Ideal
P dn(u) dnl) | eene EBOK

0+ 0

0.0915

~<>0.0910

ut =996 eV

1l/a

Gap reduction by NQE (and temperature) in < 0.0905
high pressure hydrogen 0.0900

Ne

0.0895

0.0890

0.0885, 5 g 9 10 11 12 13

H (eV)

FIG. 4. Mean elecron density from QMC-CEIMC calculations (orange solid line)
and the integrated DOS computed with the HSE density functional (orange dashed
line) for the C2/c-24 hydrogen crystal at 248 GPa and 200 K plotted together with
the RQMIC electron density for a perfect hydrogen crystal (blue line).




Hydrogen phase diagram
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CPin L. Boeri et al, J. Phys. Cond. Mat. 34, 183002 (2022)



Experimental evidence of hydrogen metallization

Science355, 715-718 (2017) 17 February2017 R B c
Observation of the T '
Wigner-Huntington transition 4 G

to metallic hydrogen

Reflective H

-

495 GPa

ReﬂeCtiVity 205 GPa 415 GPa

Ranga P. Dias and Isaac F. Silvera*

Semimetallic molecular hydrogen at pressure
above 350GPa Nature Physics (2019)

electrical conductivity measurements
M. LEremets’ * A. P. Drozdov, P. P. Kong and H. Wang

c 100 -
1 - e Increasing pressure

Synchrotron infrared spectroscopic _w{ ™ ety ecreasing pressure
evidence ofthe probable transition s w0 s S ,,
to metal hydrogen . vl T

5 401 %#:‘ .
P. Loubeyre, F. Occelli and P Dumas s :

= 201 :
Nature | Vol 577 | 30January 2020 | 631 _ !
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320 340 360 380 400 420 440
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Inelastic X-ray spectroscopy T=300K;5GPa <P <90GPa

_—
LY
—

Intensity (arb.units)

Probing the Electronic Band Gap of Solid Hydrogen
by Inelastic X-Ray Scattering up to 90 GPa

PHYSICAL REVIEW LETTERS 126, 036402 (2021)

Bing Li,' Yang Ding,' Duck Young Kim,' Lin Wang,"* Tsu-Chien Weng,"*" Wenge Yang ' Zhenhai Yu,'
Cheng Ji5"* Junyue Wang,! Jinfu Shu,! Jiuhua Chen,” Ke Yang,® Yuming Xiao,* Paul Chow,* Guoyin Shen ,*

1

Wendy L. Mao,”® and Ho-Kwang Mao®'
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FIG. 3. (@) IXS spectra of solid hydrogen at high pressures from °° T W T UL e (e VL S S, e 3
6.6 to 90.2 GPa. The inset photomicrograph shows the 100 ym /
hydrogen sample at 90.2 GPa. (b) The band gap of solid hydrogen PP,

determined at the breaking points of the slopes of the [XS spectra
(illustrated in the insets); blue, experiments at APS; red, experi-
ments at SSRF; seven different solid symbols represent separate
DAC IXS experiments; open square, the zero pressure
(<1077 torr), low temperature (2 K) threshold energy from
Ref. [11]; open circles, theoretical calculations; solid line, linear
regression of the XS experimental data.

Open circles — theoretical calculations:
P6s/m structure optimized with DFT-BLYP
Band structure from DFT-HSEQ6

nuclear thermal and quantum effects neglected
but molecules in phase | rotates !!!

1)

A W N

)
)
)

FIG. 4. Threshold energy of solid hydrogen from IXS as a
function of density and pressure. The open square corresponds to
the zero pressure (<1077 torr), low temperature (2 K) threshold
energy from Ref. [11]. Open circles represent the data from
theoretical calculations in this work. Filled black circles are IXS
data from this work compared with experimental data from Van
Straaten [12] (upward triangles), Hemley [13] (downward tri-
angles), Garcia [14] (left triangles), Howie [15] (right triangles),
Goncharov [16] (hexagons), Loubeyre [17] (diamonds), Zha [18]
(stars), and Loubeyre [6] (open diamonds). The shade areas show
the scattering of the data set with the same color hues. The dotted
line shows the trend of band-gap closure as a guide for the eye.



Trial wave functions for hydrogen

In the fixed node approximation, the accuracy depends on the form of the many body trial
wave function. «  o» «  »

Slater-Jastrow form: Y7 (R|S) = exp[—-U(R|S)] Det X' Det X'
U(RIS) is a (one-body + two-body + three-body + ...) correlation factor (bosonic).
S is a Slater determinant of single electron orbitals B« (x3 0i|S)

The nodes are determined by the form of the orbitals only. They are the most important
part of the trial function since the nodes are not optimized by projection.

Hydrogen trial function
® Single electron orbitals from DFT (with various approxs) for each proton configuration.

® Analytical electron-electron and electron-proton backflow transformation (BF) to
improve the nodes [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

® Analytical form for the 1-body and 2-body Jastrow from RPA (Gaskell, 1967)
® Addition of numerical 1-body, 2-body, 3-body Jastrows and backflow terms

® few variational parameters to be optimized (on selected configurations only).

13 variational parameters only |  effect of optimization: ~1 mH/at on the energy
~40% on the variance



Hydrogen phase diagram

Celliers (D,) Knudson (D,)
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CPin L. Boeri et al, J. Phys. Cond. Mat. 34, 183002 (2022)



Melting of Phase | up to 200GPa
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Hongwei Niu et al, PRL 130, 076102 (2023): modified phase diagram with QMC trained Machine Learning effective potential



Fundamental gap (eV)

Nuclear quantum and thermal effects on the fundamental gap of H

thermal crystals |deal crystals
@ 200K C2/c-24 4.0 ~®- C2/c ROMC this work
® 200K Cmca-12 o C2fc GgWy McMinis
2.0 % ® 300K C2/c-24 3.5 A C2/c GgWy Yim
@ 430K Pc48 r C2/c GyW; Lebegue
4 200K vdW-DF2-PIMD C2c-24 A C2/c DMC-DFT Azadi
¥ 200K HSE-PIMD C2¢-24 3.0 & Cmca-12 RQMC this work
1.5 ~ Cmca-12 GyW, Dvorak
. 2.5 1 Cmca-12 GpWy Lebegue
~@- Pc48 RQMC this work
T
_ 2.0
I <
1.0 o
1.5
O
1.0
0.5
0.5

1 1 1 1 1 D-D’ =
0.0 240 260 280 300 320 340 360 380 400 200 250 300 350 400 450 500 550
P (GPa) P, GPa

The fundamental gap closes between 340GPa and 380GPa, depending on structure and
temperature (temperature dependence is small).

The gap reduction (~2-2.5eV) mainly comes from nuclear quantum effects.

Qualitative agreement with experiments finding semi-metal at 360GPa (Eremets 2019).
PIMD-vdW-DF2 is less “metallic” than QMC, while PIMD-HSE is more “metallic’(Morales 2013).



QMC gaps: comparison with experiments
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Experimental indirect-gaps from Tauc analysis are slightly larger than our predictions.
Experimental direct gap is associated with the complete infrared adsorption

Loubeyre’s latest experiment claims an abrupt collapse of the direct gap at 425GPa which is
reversible upon releasing pressure.

We cannot discuss this since our structures from CEIMC are dynamically stable.

Excellent agreement for the direct gap, for C2/c-24 structure
Recente work by Monacelli et al. based on the SSCHA (and QMC corrections) suggests that the

observed absorption is related to a structural transition to a metallic Cmcai2 structure.



Inelastic X-ray spectroscopy T=300K;5GPa <P <90GPa

Probing the Electronic Band Gap of Solid Hydrogen
by Inelastic X-Ray Scattering up to 90 GPa

PHYSICAL REVIEW LETTERS 126, 036402 (2021)
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FIG.3. (a) IXS spectra of solid hydrogen at high pressures from p/p“ 00 R WA T W 2; 2.8
6.6 to 90.2 GPa. The inset photomicrograph shows the 100 ym ' /
hydrogen sample at 90.2 GPa. (b) The band gap of solid hydrogen PP,

determined at the breaking points of the slopes of the [XS spectra
(illustrated in the insets); blue, experiments at APS; red, experi-
ments at SSRF; seven different solid symbols represent separate
DAC IXS experiments; open square, the zero pressure
(<1077 torr), low temperature (2 K) threshold energy from
Ref. [11]; open circles, theoretical calculations; solid line, linear
regression of the XS experimental data.

Open circles — theoretical calculations:

1) P6s/m structure optimized with DFT-BLYP

Band structure from DFT-HSEQ6

A W N

but molecules in phase | rotates !!!
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FIG. 4. Threshold energy of solid hydrogen from IXS as a
function of density and pressure. The open square corresponds to
the zero pressure (<1077 torr), low temperature (2 K) threshold
energy from Ref. [11]. Open circles represent the data from
theoretical calculations in this work. Filled black circles are IXS
data from this work compared with experimental data from Van
Straaten [12] (upward triangles), Hemley [13] (downward tri-
angles), Garcia [14] (left triangles), Howie [15] (right triangles),
Goncharov [16] (hexagons), Loubeyre [17] (diamonds), Zha [18]
(stars), and Loubeyre [6] (open diamonds). The shade areas show
the scattering of the data set with the same color hues. The dotted
line shows the trend of band-gap closure as a guide for the eye.



Cristalline hydrogen in Phase I: QMC and MBPT (GW-BSE)
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FIG. 1. Comparison between room temperature experi-
mental data of ref. [16] and theoretical predictions for the
electronic gap of solid hydrogen in phase I as a function of
compression. We report quasi-particle (circles) and neutral
gap from QMC (triangles) (red symbols) and from MBPT
(blue symbols, circles GW, triangle BSE) both corrected for
finite size elects. The dilerence between the quasi-particle
and neutral gap is the exciton binding energy. The solid black
line is a fit to experimental data; the red dashed line to QMC-

QP gaps.

Reference values for zero pressure are
from

Inoue et al., 1979 as cited by

Loubeyre et al, 2002

- triangle is a molecular excitation
- circle an interband transition

- At low compression neutral and QP gaps
differ, the former agreeing with
experiments, the latter extrapolating to the
interband transition at Q.

- At higher compression the two gaps are
much closer and agree well with
experiments (possible exp bias).

- In general good agreement between
QMC and BSE gaps.

- Size effects are different at low and high
compressions.



Inverse dielectric function from BSE calculations: comparison with experiments
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FIG. 2. Left - 5 GPa. Right - 90 GPa. Comparison of the measured and calculated with BSE IXS spectra for lowest and
highest pressures. Vertical black lines indicate the band gap extracted from the measured spectra by fitting the onset (see other
black lines). The vertical colored lines correspond to the calculated with the BSE neutral gap (we have verified that the poles
of X and X are identical) Only converged parts of the BSE spectra are shown.



Absorption profile: GW vs BSE
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FIG. 3. Absorption spectra from BSE (solid) and IPA-GW
(dashed) at -»/-p= 8.48 (green) and -»/-p= 3.15 (blue) and
experimental spectra at -/-p = 1(black) from [30]. We have
renormalized the spectra to match the experimental intensity.



Nuclear thermal and quantum effects on the QP gap

16 A P/%o

® A quantum — ideal (P63/m)
€@ Aclassical - ideal (P6y/m)

-0.5 ‘
14 )
i < 10]] +
: s {
[ Q-15
—~ 12 ® +
> -2.0
° Al
|
W 10 y = 1
q
8 .
ideal (P63/m) E ¢
¢ classical
6/ @ quantum ®
3 4 5 6 7 8

pP/pPo

FIG. 3. Quasiparticle (QP) gap of ideal structure with
P 63/m structure (open circles), QP gap with classical pro-
tons giving only temperature eJects and QP gap with quan-
tum protons giving quantum and temperature elects. Inset:
The reduction of the quasiparticle gap due to temperature
and quantum nuclear elects (filled circled) and only temper-
ature e-lects (half-filled circles)



Localization of the excitation for neutral gap calculations

For a single nuclear configuration we show the probability of the excited electron having fixed the position of
the hole at the center of a molecule and summing over molecular centers.

/po=8.4
(c) p/po B

(b) plpo=4.45

(a) p/po=3.15

R
FIG. 14. Spatial distribution of the lowest energy exciton wave function integrated over the hole position Fn:  drs/Wo(rs, re)/?,
see Eq. 10, obtained from BSE calculations for one configuration at different compressions: -»/--9 = 3.15 (left), -»/-0 = 4.45

(middle) and /-0 = 8.48 (right). The isosurface level is 10%.

= At the lowest compressions the excitation is almost localized on a single molecule.
- At 10 GPa excitation is delocalized over several molecules but still contained within our supercell.

- At 90 GPa excitation dimension is much larger than our supercell and looks delocalized. Here size
effects are of 1/L similar to the QP gap calculation



Conclusions on energy gaps

QMC and CEIMC allow to investigate hydrogen in various relevant conditions (in particular metallization
and molecular dissociation) avoiding the XC approximation of DFT.

We developed various strategies, all based on QMC, to compute quasi-particle gaps and neutral gaps of
insulators.

We understood finite size effects and related them to the spacial extension of the excitation.

We computed gaps of ideal structures of Carbon and Silicon finding partial agreement with experiments
(but good agreement with previous estimates), but el-phonons and pseudo-potentials effects should be
considered.

We computed the gaps in high-pressure hydrogen finding excellent agreement with experiments, both in
phase Ill and in phase I.

Our study allows to associate unequivocally the edge of IXS signal in Phase | of hydrogen with the neutral
gap, electronic excitation.

We made predictions for the fluid phase as well (not discussed).

Perspectives

Multi-determinant methods to investigate excitation localisation and exciton effects: in progress.
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