EXTENDING THE REACH OF QMC VIA SURROGATE **METHODS**

D. Staros *et al.*, JCP (2022); G. Iyer *et al.*, JPCA (2022); G. Iyer *et al.*, JCTC (2024); C. Huang *et al.*, JPCA (2023).

PROF. BRENDA RUBENSTEIN Associate Professor of Chemistry and Physics *TREX, Spring 2024*

brenda_rubenstein@brown.edu rubenstein.group

BROWN

'QMC Forces'

THE RUBENSTEIN GROUP @ BROWN Theoretical/Computational Chemistry and Physics

DMC of Quantum Materials (w/ CPSFM)

Ab Initio Description of Magnetism and Topology in Quantum Materials

D. Staros, npj Spintronics (2024).

THE RUBENSTEIN GROUP @ BROWN

Theoretical/Computational Chemistry and Physics

Ab Initio Description of Magnetism and Topology in Quantum Materials D. Staros, npj Spintronics (2024).

Predicting Symmetry-Resolved Entanglement Efficiently T. Shen et al., arXiv:2312.11746 (2023).

Ab Initio Description of Magnetism and Topology in Quantum Materials D. Staros, npj Spintronics (2024). Predicting Symmetry-Resolved Entanglement Efficiently T. Shen et al., arXiv:2312.11746 (2023).

|U| = 8.0

16

24

Enabling DMC-Based Chemical Reaction Dynamics G. lyer, To appear (2024).

AFQMC of Entanglement

 $\log_{10} P_{(N_{A\uparrow}, N_{A\downarrow}), 1}$

THE RUBENSTEIN GROUP @ BROWN

Theoretical/Computational Chemistry and Physics

Surrogate Methods for Energy Gradients

EXTENDING THE REACH OF QMC VIA SURROGATE **METHODS**

D. Staros *et al.*, JCP (2022); G. Iyer *et al.*, JPCA (2022); G. Iyer *et al.*, JCTC (2024); C. Huang *et al.*, JPCA (2023).

PROF. BRENDA RUBENSTEIN Associate Professor of Chemistry and Physics *TREX, Spring 2024*

-11.009

-11.100

11,116

11.118

41.00

41.72

brenda_rubenstein@brown.edu rubenstein.group

AN INSPIRATIONAL FORCE ~2006

Me: I'm thinking about working on quantum Monte Carlo methods.

Bruce Berne (Columbia)

Bruce: That's nice, but you'll never be able to do any chemistry. Just H and He, which *isn't* chemistry. And QMC has no forces, so good luck with reactions.

AN INSPIRATIONAL FORCE ~2006

Me: => I guess I'll do QMC then.

Bruce Berne (Columbia)

Bruce: That's nice, but you'll never be able to do any chemistry. Just H and He, which *isn't* chemistry. And QMC has no forces, so good luck with reactions.

MOST OF MODERN-DAY CATALYSISCHEM

Length, time

Density functional theory has become the computational workhorse for catalysis, informing mechanisms and microkinetic models, *BUT*...

B. Chen and M. Mavrikakis, Chem. Reviews (2021).

MOST OF MODERN-DAY CATALYSIS

Density functional theory has become the computational workhorse for catalysis, informing mechanisms and microkinetic models, *BUT*...

A. Peterson and J. Norskov, Energy Environ. Sci. (2010).

CORRELATION IN CATALYSIS

But Correlation Is Widely Prevalent...and Important

Diferrate, $[H_4Fe_2O_7]^{2+}$

MOST OF MODERN-DAY CATALYSIS

Ш,

BROWN

A WISH LIST to even begin down the road toward catalysis:

Equilibrium	Transition	Reaction	Chemical
Geometries	States	Pathways	Dynamics

A WISH LIST to even begin down the road toward catalysis:

Equilibrium Geometries Transition States

Minimum Energy Pathways

Thermodynamic Corrections

ENERGY GRADIENTS REMAIN A CHALLENGE

But Are Essential if QMC Is To Shed Light on 'Real' Chemistry

- DMC forces have long been challenging
 - Infinite Variance Problems
- But, much progress has been made on Zero-Variance, Zero-Bias Estimators
 - Assaraf, Caffarel, Filippi, Moroni,
 Krogel, Nakano, Casula, others...
- Nonetheless, they often remain very expensive and lack easy access to DMC Hessians (exc. Filippi, Moroni, et al.)

SURROGATE METHODS

Surrogate Hessian Line Search

SURROGATE METHODS

SURROGATE METHODS

ML METHODS

QMC Dynamics with BPNNS

SURROGATE METHODS

ML METHODS

ACKNOWLEDGEMENTS

Gopal lyer (Brown) 5th-YearChemistry PhD Student (Soon to be NREL)

Jaron Krogel (Oak Ridge) CPSFM

╇

SURROGATE METHODS FOR FORCES

SURROGATE HESSIAN LINE SEARCH

Surrogate Hessian Structure Optimization

Uses DFT to Accelerate DMC-Level Geometry Optimization

D. Staros, B. Rubenstein, et al., JCP (2022); J. Tiihonen et al., JCP (2021).

4.85 Parameter iteration Conjugate iteration 4.80

....

Energy minimum Conjugate directions

SURROGATE HESSIAN LINE SEARCH

Surrogate Hessian Structure Optimization

D. Staros, B. Rubenstein, et al., JCP (2022); J. Tiihonen et al., JCP (2021).

Starting point

4.75

4.70

Parameter directions

The Hessian and Conjugate Directions

$$E(p) = E_0 + \frac{1}{2}(p - p_0)^T H_p(p - p_0)$$

4.80

Starting point

The Hessian and Conjugate Directions

$$E(p) = E_0 + \frac{1}{2}(p - p_0)^T H_p(p - p_0)$$

$$E(p) = E_0 + \frac{1}{2}(p - p_0)^T U^T \Lambda U(p - p_0)$$

$$= E_0 + \frac{1}{2}x^T \Lambda x$$

$$= E_0 + \frac{1}{2}\sum_{n=1}^N \lambda_n x_n^2.$$

Surrogate Hessian Structure Optimization

Energy minimum

D. Staros, B. Rubenstein, et al., JCP (2022); J. Tiihonen et al., JCP (2021).

$E(p) = E_0 + \frac{1}{2}(p - p_0)^T H_p(p - p_0)$ 4.85 Parameter iteration Conjugate iteration

.....

Energy minimum

Conjugate directions

Starting point

Parameter directions

D. Staros, B. Rubenstein, et al., JCP (2022); J. Tiihonen et al., JCP (2021).

The Hessian and Conjugate Directions

 $E(p) = E_0 + \frac{1}{2}(p - p_0)^T U^T \Lambda U(p - p_0)$

SURROGATE HESSIAN LINE SEARCH

Surrogate Hessian Structure Optimization

EXAMPLE: THE ML FERROMAGNET Crl₃

AFM Order in Bilayers

Crl₃: Member of class of chromium trihalides (CrX₃)

- First discovered 2D monolayer ferromagnet but becomes an antiferromagnet when layered
- Bulk semiconductor (Band Gap ~1.2 eV)
- Monoclinic structure >240 K; rhombohedral <240 K

M. McGuire et al., Chem Mat (2015).

B. Huang et al., Nature (2018).

Crl₃: Member of class of chromium trihalides (CrX₃)

- First discovered 2D monolayer ferromagnet but becomes an antiferromagnet when layered
- Bulk semiconductor (Band Gap ~1.2 eV)
- Monoclinic structure >240 K; rhombohedral <240 K

M. McGuire et al., Chem Mat (2015).

B. Huang et al., Nature (2018).

MATERIAL GEOMETRY OPTIMIZATION

Several Percent Different Lattice Parameters And Bond Lengths

• $\theta_2 = 175.4^{\circ}$

Ref.	Method	a_0 (Å)	$m_{Cr} (\mu_B)$	$m_I \; (\mu_B)$
This work	LS-DMC	6.87(3)	3.61(9)	-0.14(5)
This work	LDA+U	6.695	3.497	-0.099
Li^{32}	GGA+U	6.84^{*}	3.28	
Yang	GGA+U		3.32	
Wu^{72}	GGA+U	6.978	3.106	-
$Lado^{47}$	DFT+U	6.686	3	
$Zhang^{52}$	PBE(HSE06)	7.008	3.103	520

<.5% Difference With STM Experiments

D. Staros, B. Rubenstein, et al., JCP (2022); J. Tiihonen et al., JCP (2021).

Crl₃'s MAGNETISM: GEOMETRY MATTERS!

- Moments Expected to Be ~3 µ_B
- Moments Found to Be Substantially Larger
- Iodine Moments Are Also More Negative
- Note Beyond-Energy Predictions

D. Staros, B. Rubenstein, et al., JCP (2022).

(Note: Using DMC-optimized structure.)

SURROGATE METHODS FOR REACTION PATHWAYS

GENERALIZING SURROGATE METHODS TO TRANSITION STATES AND PATHWAYS

Can generalize to find:

Transition States

 Search for the minimum along all directions but one

Minimum Energy Pathways

 Search in a subspace tangent to each point along the path

→ DFT-NEB propagation direction

EXAMPLE 1: AMMONIA INVERSION A Low-Parameter Test Case

Search Bond Length

Example of Finding the NH₃ Inversion Transition State

Search Angle

EXAMPLE 1: AMMONIA INVERSION

DMC Minimum Energy Pathway

EXAMPLE 1: AMMONIA INVERSION

BROWN

EXAMPLE 2: S_N2 REACTION A Four-Parameter Test Case (with Bond Breaking)

EXAMPLE 2: S_N2 REACTION

CCSD-Quality Pathways

Bond Distance Along Path

EXAMPLE 2: S_N2 REACTION CCSD-Quality Pathways

Bond Distance Along Path

Energy Differences

MACHINE LEARNING FORCES

LEARNING FORCE FIELDS

Behler-Parinello Neural Networks (BPNNs)

A. Peterson et al., Phys. Chem. Chem. Phys. (2017); J. Behler, Int. J. Quantum Chem. (2015).

MOLECULAR CASE STUDIES

Carbon Dimer, C₂

Coordinates and Training

- 1 DoF: C-C Bond Distance (R)
- R=[0.4, 4.0]R₀, R₀=1.242 Å

Applications

- NVE, NVT Molecular Dynamics Simulations
- Geometry Relaxation

Water, H₂O

Coordinates and Training

- 3 DoFs: 2 O-H Bond Distances (R), H-O-H Bond Angle (Θ)
- R=[0.5, 2.0]R₀, R₀=0.969 Å
- $\Theta = [0.4, 1.0)\pi$

Applications

• NVE, NVT Molecular Dynamics Simulations BROWN

Coordinates and Training

- 9 DoFs: Bond Lengths and Angles
- Adapted from CCSD(T) data set for vibrational spectra¹

Applications

- NVE, NVT Molecular Dynamics Simulations
- Geometry Relaxation

MACHINE LEARNING WORKFLOW

 Can be done in an "inactive" or active way, depending upon how new geometries are selected

A. Khorshidi and A. Peterson, Comp. Phys. Comm. (2016), AMPTorch: Ulissi Group at CMU.

LEARNING FORCES FROM ENERGIES C_2 As a Simple Example with DFT

C. Huang and B. Rubenstein, JPCA (2023).

LEARNING FORCES FROM ENERGIES Limits on Errors for C_2

C. Huang and B. Rubenstein, JPCA (2023).

GEOMETRY OPTIMIZATION

Relatively Rapid Convergence

C. Huang and B. Rubenstein, JPCA (2023).

MOLECULAR DYNAMICS

Reasonable Dynamics for CH₃Cl

1.95

1.90

(V) 1.85 - C - C 1.80

1.75

1.70

MOLECULAR DYNAMICS

BROWN

Reasonable Dynamics for CH₃Cl

 Relatively close, but not perfect agreement between simulations with and without forces

TRANSFER LEARNING FORCES

TRANSFER LEARNING

Learn DFT Baseline, Correct with More Accurate Approaches

TRANSFER LEARNING

Learn DFT Baseline, Correct with More Accurate Approaches

ACTIVE LEARNING Learn DFT Baseline, Correct with Accurate Approaches

Train energies on initial set of geometries

Learn DFT Baseline, Correct with Accurate Approaches

ACTIVE LEARNING

A. Khan et al., To appear (2024); M. Chen et al., JCTC (2023).

ACTIVE LEARNING Learn DFT Baseline, Correct with Accurate Approaches

TEST CASE: THE WATER MONOMER

- One of the simplest molecular systems with multidimensional potential energy surface (PES)
- ~16,000 configurations sampled using molecular dynamics
- Train on PBE0/STO-6G level of theory; transfer to VQE and FCI (for now)

A. Khan et al., To appear (2024).

TEST CASE: THE WATER MONOMER Comparison of Electronic Structure Results

Bond Lengths

Bond Angles

A. Khan et al., To appear (2024).

TEST CASE: THE WATER MONOMER

TEST CASE: THE WATER MONOMER

SURROGATE METHODS

Surrogate Hessian Line Search

SURROGATE METHODS

SURROGATE METHODS

ML METHODS

QMC Dynamics with BPNNS

CONCLUSIONS

SURROGATE METHODS

ML METHODS

GROUP ACKNOWLEDGEMENTS The Rubenstein Group

Electronic Structure Team

- Mr. Cancan Huang
- Mr. Gopal Iyer
- Mr. Tilas Kabengele
- Dr. Edgar Landinez
- Ms. Annette Lopez
- Mr. Tong Shen
- Mr. Daniel Staros
- Mr. Prateek Vaish

Biophysics Team

- Mr. Gustavo Ramirez
- Mr. Gabriel M. da Silva

Molecular Computing Team

- Mr. Benjamin Foulon
- Ms. Yaoqi Pang

December 2022

FOSR

THE CAMILLE & HENRY DREYFUS FOUNDATION, INC.

ACKNOWLEDGEMENTS

- Panchapakesan Ganesh, ORNL
- Anouar Benali, ANL
- Jaron Krogel, ORNL
- Paul Kent, ORNL

Center for the Predictive Simulation of Functional Materials Team, 2023