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AN INSPIRATIONAL FORCE ~2006

Bruce Berne 
˟Columbiaˠ

Me: I’m thinking about working on quantum 
Monte Carlo methods. 

Bruce: That’s nice, but you’ll never be able to 
do any chemistry. Just H and He, which isn’t 
chemistry. And QMC has no forces, so good 
luck with reactions.
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Density functional theory has become the computational workhorse for catalysis, 
informing mechanisms and microkinetic models, BUT… 



MOST OF MODERN-DAY CATALYSIS

A. Peterson and J. Norskov, Energy Environ. Sci. ˟2010ˠ.

Density functional theory has become the computational workhorse for catalysis, 
informing mechanisms and microkinetic models, BUT… 

CO2 → H2 CO2 → HCOOH CO2 → H2O + CO Evolution

Cu



CORRELATION IN CATALYSIS
But Correlation Is Widely Prevalent…and Important

Variance Among DFT 
Functionals

Variance Among 
Multireference Theories

Diferrate, [H4Fe2O7]
2+

Y. Kurashige et al., PCCP ˟2014ˠ.
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Equilibrium 
Geometries

MOST OF MODERN-DAY CATALYSIS

A WISH LIST to even begin down the road toward catalysis: 

Minimum Energy 
Pathways

Thermodynamic 
Corrections

Transition 
States

But All of This Requires Energy 
Gradients…



ENERGY GRADIENTS REMAIN A CHALLENGE
But Are Essential if QMC Is To Shed Light on ‘Real’ Chemistry

S. Chiesa et al., PRL ˟2005ˠ.

● DMC forces have long been 
challenging
○ Infinite Variance Problems

● But, much progress has been made on 
Zero-Variance, Zero-Bias Estimators
○ Assaraf, Caffarel, Filippi, Moroni, 

Krogel, Nakano, Casula, others…

● Nonetheless, they often remain very 
expensive and lack easy access to 
DMC Hessians ˟exc. Filippi, Moroni, et al.ˠ
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SURROGATE HESSIAN LINE SEARCH
Surrogate Hessian Structure Optimization

→ Uses DFT to Accelerate DMC-Level Geometry Optimization
D. Staros, B. Rubenstein, et al., JCP ˟2022ˠ; J. Tiihonen et al., JCP ˟2021ˠ.
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SURROGATE HESSIAN LINE SEARCH

D. Staros, B. Rubenstein, et al., JCP ˟2022ˠ; J. Tiihonen et al., JCP ˟2021ˠ.

Surrogate Hessian Structure Optimization
The Hessian and Conjugate Directions

Parallel Search Along Directions



EXAMPLE: THE ML FERROMAGNET CrI3

M. McGuire et al., Chem Mat ˟2015ˠ.

CrI3: Member of class of chromium trihalides ˟CrX3ˠ
● First discovered 2D monolayer ferromagnet - but becomes an 

antiferromagnet when layered 
● Bulk semiconductor ˟Band Gap ~1.2 eVˠ
● Monoclinic structure >240 K; rhombohedral <240 K

B. Huang et al., Nature ˟2018ˠ.

AFM Order in Bilayers

CrI3
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● First discovered 2D monolayer ferromagnet - but becomes an 

antiferromagnet when layered 
● Bulk semiconductor ˟Band Gap ~1.2 eVˠ
● Monoclinic structure >240 K; rhombohedral <240 K

B. Huang et al., Nature ˟2018ˠ.

AFM Order in Bilayers

CrI3

BUT, TO GET THE MAGNETISM RIGHT, ONE 
MUST GET THE GEOMETRY RIGHT…



MATERIAL GEOMETRY OPTIMIZATION

D. Staros, B. Rubenstein, et al., JCP ˟2022ˠ; J. Tiihonen et al., JCP ˟2021ˠ.

Several Percent
Different
Lattice Parameters
And Bond Lengths

● a0=6.87 Å
● dCr-I=2.72 Å
● θ1= 90.4°
● θ2= 175.4°

<.5% Difference
With STM
Experiments



CrI3’s MAGNETISM: GEOMETRY MATTERS!

● Moments Expected 
to Be ~3 �B

● Moments Found to 
Be Substantially 
Larger

● Iodine Moments 
Are Also More 
Negative

● Note 
Beyond-Energy 
Predictions

D. Staros, B. Rubenstein, et al., JCP ˟2022ˠ.

DFT DMC

˟Note: Using DMC-optimized structure.ˠ
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GENERALIZING SURROGATE METHODS TO
TRANSITION STATES AND PATHWAYS
Can generalize to find:

Transition States
● Search for the 

minimum along all 
directions but one

Minimum Energy Pathways
● Search in a subspace 

tangent to each point 
along the path 



EXAMPLE 1: AMMONIA INVERSION
A Low-Parameter Test Case

Example of Finding 
the NH3 Inversion 
Transition State

Search 
Bond 

Length

Search 
Angle
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V
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EXAMPLE 2: SN2 REACTION
A Four-Parameter Test Case ˟with Bond Breakingˠ

F- + CH3F → FCH3 + F-
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CCSD-Quality Pathways

Reaction Coordinate Reaction Coordinate
E-

E 0
 ˟e

V
ˠ

p 0
 ˟C

-H
 b

on
d 

di
st

an
ce

ˠ

Bond Distance Along Path Energy Differences



MACHINE LEARNING 
FORCES  



Behler-Parinello Neural Networks 
˟BPNNsˠ

LEARNING FORCE FIELDS

A. Peterson et al., Phys. Chem. Chem. Phys. ˟2017ˠ; J. Behler, Int. J. Quantum Chem. ˟2015ˠ.

Vacancy Formation in fcc˟111ˠ Pt 
via BPNNs



MOLECULAR CASE STUDIES
Carbon Dimer, C2 Water, H2O CH3Cl

Coordinates and Training
● 1 DoF: C-C Bond 

Distance ˟Rˠ
● R=[0.4, 4.0]R0, 

R0=1.242 Å

Applications
● NVE, NVT Molecular 

Dynamics Simulations
● Geometry Relaxation

Coordinates and Training
● 3 DoFs: 2 O-H Bond 

Distances ˟Rˠ, H-O-H 
Bond Angle ˟Θˠ

● R=[0.5, 2.0]R0, 
R0=0.969 Å

● Θ=[0.4, 1.0ˠ�
Applications
● NVE, NVT Molecular 

Dynamics Simulations

Coordinates and Training
● 9 DoFs: Bond 

Lengths and Angles
● Adapted from 

CCSD˟Tˠ data set for 
vibrational spectra1

Applications
● NVE, NVT Molecular 

Dynamics Simulations
● Geometry Relaxation

1 A. Owens et al., JCP ˟2015ˠ.



energies

 forces

MACHINE LEARNING WORKFLOW

Quantum 
ESPRESSO

QMCPACK AMPtorch MD

Molecular 
Geometries

wavefunctions
energies

If MD fails, add 
new 
geometries
˟no active 
learning in 
following resultsˠ

A. Khorshidi and A. Peterson, Comp. Phys. Comm. ˟2016ˠ, AMPTorch: Ulissi Group at CMU.

● Can be done in an ̀inactivé or active way, 
depending upon how new geometries are selected



LEARNING FORCES FROM ENERGIES
C2 As a Simple Example with DFT

Energies

C. Huang and B. Rubenstein, JPCA ˟2023ˠ. 

Forces



LEARNING FORCES FROM ENERGIES
Limits on Errors for C2

C. Huang and B. Rubenstein, JPCA ˟2023ˠ. 

Number of Training Points Number of Training Labels



GEOMETRY OPTIMIZATION
Relatively Rapid Convergence

C. Huang and B. Rubenstein, JPCA ˟2023ˠ. 

C2 ˟1 dofˠ CH3Cl ˟9 dofsˠ



MOLECULAR DYNAMICS
Reasonable Dynamics for CH3Cl 

C. Huang and B. Rubenstein, JPCA ˟2023ˠ. 

● Relatively close, but not perfect 
agreement between simulations with 
and without forces



MOLECULAR DYNAMICS
Reasonable Dynamics for CH3Cl 

C. Huang and B. Rubenstein, JPCA ˟2023ˠ. 

● Relatively close, but not perfect 
agreement between simulations with 
and without forces

BUT, CAN WE DO BETTER - FOR 
CHEAPER? 
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TRANSFER LEARNING
Learn DFT Baseline, Correct with More Accurate Approaches

A. Khan et al., To appear ˟2024ˠ; M. Chen et al., JCTC ˟2023ˠ. 
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NN1

NN2

…

NN8

Large dataset
˟ just 

geometryˠ

Sample 50 
points

Training 
data

˟N=50ˠ

train

ACTIVE LEARNING
Learn DFT Baseline, Correct with Accurate Approaches

Train energies on initial 
set of geometries

A. Khan et al., To appear ˟2024ˠ; M. Chen et al., JCTC ˟2023ˠ. 



NN1

NN2

…

NN8

Large dataset
˟ just 

geometryˠ

Training 
data

˟N=50ˠ

Evaluate 
each point xi

ACTIVE LEARNING
Learn DFT Baseline, Correct with Accurate Approaches

Mean[E˟xiˠ], Var[E˟xiˠ]

Determine Mean and 
Variance of Points via 
Query by Committee

A. Khan et al., To appear ˟2024ˠ; M. Chen et al., JCTC ˟2023ˠ. 



NN1

NN2

…

NN8

Large dataset
˟ just 

geometryˠ

Training 
data

˟N=60ˠ

Add the 10 highest 
variance points to 

training data

ACTIVE LEARNING
Learn DFT Baseline, Correct with Accurate Approaches

Mean[E˟xiˠ], Var[E˟xiˠ]

Add High Variance 
Points

A. Khan et al., To appear ˟2024ˠ; M. Chen et al., JCTC ˟2023ˠ. 



NN1

NN2

…

NN8

Large dataset
˟ just 

geometryˠ

Training 
data

˟N=60ˠ

NN2

…

NN8

train

ACTIVE LEARNING
Learn DFT Baseline, Correct with Accurate Approaches

Retrain…
And Iterate

A. Khan et al., To appear ˟2024ˠ; M. Chen et al., JCTC ˟2023ˠ. 



TEST CASE: THE WATER MONOMER

● One of the simplest molecular 
systems with multidimensional 
potential energy surface ˟PESˠ 

● ~16,000 configurations sampled 
using molecular dynamics

● Train on PBE0/STO-6G level of 
theory; transfer to VQE and FCI ˟for 
nowˠ

En
er

gy
 ˟e

V
ˠ

index

A. Khan et al., To appear ˟2024ˠ. 



TEST CASE: THE WATER MONOMER

Bond Lengths Bond Angles

Comparison of Electronic Structure Results

En
er

gy
 ˟H

ar
tr

ee
ˠ

En
er

gy
 ˟H

ar
tr

ee
ˠ

Bond Angle ˟degreesˠO-H Bond Length ˟Angstromˠ

A. Khan et al., To appear ˟2024ˠ. 
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TEST CASE: THE WATER MONOMER

En
er

gy
 ˟H

ar
tr

ee
ˠ

O-H Bond Length ˟Angstromˠ

Potential Energy Curve 
for H2O ˟�=104.5°ˠ

En
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gy
 E
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 ˟m
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iH
ar
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ˠ Test Loss

Training Points
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