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Executive summary 

This report documents the creation of four datasets for modelling and benchmarking computational 
methods. They are dedicated to further investigations of systems, which have been used for 
demonstrations in work package (WP) 5, i.e. hydrogen under pressure, protonated water hexamer 
and molecular interactions in excited-state organic dimers. The datasets have been developed in the 
groups of Michele Casula (CNRS), Matthias Rupp (LIST), Kasia Pernal (TUL), and Michal Hapka 
(University of Warsaw). The description of each dataset presented in the report includes: a 
motivation for its creation, description of computational protocols used to generate data in the set, 
description of data included in the set, and presentation of the data structure.  
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1 Introduction 

Molecular dynamics simulation methods are one of the main tools for computational chemistry and 
physics. Their scope of applications is still limited by the computational costs and accuracy. The 
former bottleneck is largely mitigated if machine learning potentials (MLP), which are orders of 
magnitudes faster to evaluate than the ab initio potentials, are employed. To assure sufficient 
accuracy in simulations ML models must be trained on benchmarking datasets. Data for the latter 
are obtained from techniques that are more accurate, yet of higher computational complexity than 
ML methods: Quantum Monte Carlo (QMC) or Density Functional Theory (DFT). There is thus a need 
for creating datasets for systems of interest for ML modelling. 

In WP5 of the TREX project we focus on applications of QMC and ab initio methods for systems of 
importance for technological progress and relevance to energy storage and conversion: hydrogen 
under pressure, clusters of water molecules, and molecular interactions in electronically excited 
complexes. Applicability of machine learning methods or empirically parameterized low-
computational-cost density functionals to such systems would allow longer simulations to be 
performed for larger systems and obtaining results for more realistic systems. To make this possible, 
datasets for MLPs and benchmarking must be available. 

The purpose of this document is to report on creation of datasets for ML training and MLP 
benchmarking for molecular potentials of hydrogen under pressure (section 2), protonated water 
hexamer (section 3), and for molecular interaction energies for organic dimers in excited states 
(section 4). The accurate data has been obtained from QMC, DFT, and Symmetry-Adapted 
perturbation theory (SAPT) methods. In section 5 all datasets are listed, and their content and 
purposes are briefly summarized.  



  D5.4 – Datasets made available for benchmarking and ML modelling 

 

 

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding from the European 
Union Horizon 2020 research and innovation programme under Grant Agreement No. 952165. 

 

Page 2 of 11 

 

2 Hydrogen under pressure 

Despite its simplicity, hydrogen in condensed phases shows rich phase diagrams as a function of 
pressure and temperature, which has challenged our physical understanding. While the atomic unit 
is exactly solvable, many-body systems made by an infinite arrangement of hydrogen atoms are 
particularly hard to study, given the complexity of interatomic interactions, electronic correlation 
effects present in the macroscopic systems, and nuclear quantum effects due to the light mass of the 
hydrogen nuclei. Collective excitations are supposed to lead to exotic phenomena, such as high-
temperature superconductivity, superfluidity, liquid-liquid phase transitions. Therefore, it is highly 
desirable to derive an accurate interatomic potential, possibly by machine learning methods, based 
on accurate QMC data, to accelerate the understanding of the proposed phases and the discovery of 
new ones, at extreme conditions. 

2.1 Geometries, energies, forces, and stresses at DFT level of theory 

Molecular dynamics simulations of atomistic systems are a cornerstone of computational physics, 
chemistry, and materials science, but are limited by either accuracy or computational cost. This trade-
off is dominated by the method used to compute the potential energy surface whose gradient 
determines the forces that propagate atoms in the simulation. Typical choices include classical force 
fields, characterized by fixed functional forms, and quantum-mechanical (ab initio) approaches such 
as density functional theory (DFT) and quantum Monte Carlo (QMC) methods. 

Force fields are efficient but limited in accuracy, transferability, and by parametrization effort. Ab 
initio approaches are accurate and transferable but have high computational costs. Consequently, 
dynamics simulations are limited in either the system sizes and time scales or the phenomena (e.g., 
bond breaking and formation) that can be modelled. 

Machine-learning interatomic potentials (MLPs) [1] are data-driven approximations of ab initio 
potential energy surfaces that exploit correlations between atom positions and the resulting 
potential energy. Essentially, a flexible functional form such as a neural network is parametrized on 
a training dataset consisting of ab initio calculations. The resulting model is then used to calculate 
the forces during the simulation. MLPs are typically several orders of magnitude faster to evaluate 
than the ab initio reference method. This greatly accelerates dynamics simulations and thus enables 
studying larger systems, longer time scales, and otherwise inaccessible phenomena for DFT. For a 
QMC reference, an MLP would often enable running such simulations at all. 

In the TREX project’s WPs 4 and 5, we have worked towards enabling MLPs trained on QMC reference 
data [2]. Much of this work is based on delta-learning [3], that is, machine-learning the difference 
between two ab initio reference methods, here DFT and QMC. We then showed that it is harder to 
learn the DFT baseline than it is to learn the difference between DFT and QMC, most likely due to the 
latter being smoother than the former. We also found that many state-of-the-art MLPs failed to learn 
the DFT hydrogen under pressure accurately enough to correctly simulate a liquid-liquid phase 
transition between atomic and molecular liquid hydrogen.  

Consequently, we have created a dataset of hydrogen under (very high) pressure at the DFT level of 
theory to use as a benchmark for MLPs, the h-llpt-24 dataset. Motivation and details of this dataset 
are briefly described in the following. We start with the necessity for such a benchmarking dataset. 

The aim of successful MLP molecular simulations is to emulate ab initio molecular dynamics. More 
specifically, the discrepancies in derived macroscopic quantities, such as radial distribution functions 
and diffusion coefficients, should be as small as possible. The MLP molecular dynamics should also 
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reproduce monotony, limits, and asymptotic behaviour of such quantities. This is necessary to ensure 
a consistent description of physical phenomena such as proton exchange and phase transitions. 
Validation and performance assessment of MLPs should therefore base on molecular dynamics 
simulations.  

In practice, MLP performance is evaluated as the average error in force predictions on a test set (data 
not used during training but from the same distribution as the training data), without involving any 
simulations. However, force accuracy on a test set is necessary but insufficient for successful 
molecular dynamics simulations. Consequently, MLPs with reported state-of-the-art test-set 
accuracy often fail catastrophically in actual simulations. 

The inadequacy of test-set force errors as a performance indicator for molecular dynamics 
simulations is increasingly being recognized in the community. Uptake of superior assessment 
methods based on MLP molecular dynamics simulations, however, is slow, possibly because they 
require more human and computational effort as well as expert domain knowledge of the simulated 
system and the derived properties. 

Therefore, the h-llpt-24 dataset is a benchmark for assessment of MLPs that is straightforward to use 
and does not require expert domain knowledge. After plugging in a trained MLP, provided scripts run 
molecular dynamics simulations, compute derived properties (including pressure curves, radial 
distribution functions, diffusion coefficients, and stable molecular fractions), analyze observed 
physical phenomena (here, a first-order liquid-liquid phase transition), and provide publication-ready 
figures, tables, and summary statistics. 

For this challenging benchmark system, we provide geometries, lattice vectors, energies, forces, 
stresses, Wigner-Seitz radii, and temperatures for 8568 configurations of 128 hydrogen atoms each, 
using periodic boundary conditions. The configurations are decorrelated snapshots from 6 * 6 * 17 = 
612 molecular dynamics reference simulations in the NVT ensemble at the DFT/PBE level of theory 
that cover the temperature and pressure regime of the liquid-liquid phase transition, six different 
temperatures and 17 different mass densities (Figure 1), with six replicas per temperature/density 
combination.  

The data set is split into a training set of 7140 configurations and a test set of 1428 configurations. 
The test set configurations are always sampled from one of the six repetitions, that is, from different 
molecular dynamics simulations than the training data. Training and test data are thus sampled 
independently from the same distribution, supporting the assumption of machine-learning models 
that data are independent and identically distributed. To facilitate training of MLPs, we further 
provide a split of the training data into a proper training set and a validation set, following the same 
approach. The validation set can be used as a hold-out set for early stopping or hyper-parameter 
optimization, but its use is optional. The benchmark also provides Python scripts for automatically 
evaluating an MLP by running dynamics simulations with the MLP and extracting observables (see 
above). 

The h-llpt-24 benchmark is still a work in progress but will be submitted before the end of the TREX 
project. Journal article and benchmark, including data and code, will be made freely available via 
open access and as open source. Preliminary information about the planned publication: Thomas 
Bischoff, Bastian Jäckl, Matthias Rupp: Hydrogen under Pressure as a Benchmark for Machine-
Learning Potentials, 2024. 
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Figure 1: The h-llpt-24 data set overview. Each disk represents a combination of Wigner-Seitz radius and temperature for which six DFT 
molecular dynamics simulations were performed, five for training of the MLP and one for testing. 

2.2 Configurations and energies at QMC level of theory 

We provide here a database of crystalline hydrogen configurations, for which we determine the 
variational Monte Carlo (VMC) and the lattice regularized diffusion Monte Carlo (LRDMC) energies. 
The geometries are obtained by relaxing the internal coordinates at the given symmetry and at 
various volumes: 1.416 Å3, 1.259 Å3, 1.187 Å3, 1.116 Å3, 1.067 Å3, values expressed per hydrogen 
atom. These volumes correspond approximatively to pressures: 350 GPa, 450 GPa, 500 GPa, 550 GPa 
and 650 GPa. The pressure versus volume relation upon which this correspondence is made is 
obtained for the C2/c-24 symmetry by using the BLYP functional. The correspondence is only 
approximate in the other cases (other functional or other symmetry). All calculations are performed 
at fixed volume, however it is useful to express these volumes using indicative pressures, to locate 
more easily the configurations in the p-T phase diagram. 

Beside the C2/c-24 symmetry (molecular phase III), we took also into account the Cmca-12 (molecular 
phase VI), the Cmca-4 (molecular), the P62/c-24 (molecular), and the Cs-IV (atomic) symmetries. To 
each symmetry and volume (pressure), we can associate up to 3 different geometries, corresponding 
to the “classical harmonic” geometry obtained by relaxing the internal coordinates at the BLYP 
functional level keeping the nuclei classical, the “SSCHA” geometry obtained by relaxing the internal 
coordinates using the stochastic self-consistent harmonic approximation (SSCHA) treating the 
hydrogen nuclei as quantum particles, and finally the “deuterium” geometry obtained by the 
relaxation done with SSCHA for hydrogen nuclei replaced by deuterium (isotope substitution). On top 
of that, we provide the QMC energies for different supercell sizes, being the QMC calculations 
affected by finite-size effects. Thus, the full body of data contains several different hydrogen 
arrangements, possibly useful as training set to construct new hydrogen ML potentials or as 
benchmarking reference. 

The variational Monte Carlo wave function used in our calculations has been extensively described 
in [2]. The energies reported in the database are yielded by twist averaging (analogous to k-point 
sampling in DFT), in order to reduce finite-size effects. The k-mesh used for the different structures 
giving converged DFT energies is reported in Table 1for the unit cell. 
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Table 1: k-mesh used for different crystalline hydrogen configurations  

Symmetry k-mesh 
C2/c-24 12x12x6 

P62/c-24 12x12x6 

Cmca-12 12x12x12 

Cs-IV-2 48x48x48 
Cmca-4 36x24x24 

 

For the supercells, the k-mesh is reduced for each lattice vector direction by a factor corresponding 
to the number of replicas taken in the supercell along the corresponding direction. 

The lattice regularized diffusion Monte Carlo calculations are performed with a lattice space of 0.25 
a0. The energies are extrapolated with respect to the population size, but not with respect to the 
lattice space. Therefore, in the database, the LRDMC energies do not correspond to the converged 
fixed-node energies, but they are slightly underestimated, the lattice space extrapolation converging 
from below. However, the energy differences between our LRDMC values are unbiased, as verified 
in [2]. 

The files in the database are written in the extended xyz format. Their filename reveals their content. 
The convention used for the filename is as follows: 

hydrogen_c2c24_harm_P350GPa_N96_lrdmc.xyz 

The first entry can be hydrogen or deuterium and indicates the mass used in the SSCHA quantum 
treatment to relax the geometry. The second entry is the symmetry of the crystalline configuration. 

For Cmca24 we adopted the shortcut cmca, while the P62/c-24 symmetry has been indicated by 

hyphite. The third entry can be harm or sscha, the former if the relaxation is for classical nuclei 
(infinite mass), the latter is SSCHA has been used with hydrogen mass. For deuterium, this entry is 
not specified, because in this case SSCHA is meant to be used with deuterium mass. The fourth entry 
is the pressure value (equivalent to the corresponding volume reported above). The fifth entry is the 
number of hydrogen atoms in the supercell. The sixth and final entry indicates whether the energy 

provided inside the file refers to vmc or lrdmc calculations. Beside the energy, we report also the 
statistical error bar in a new field defined in the extended xyz format and starting by “error=”. 

The units are Angstrom for lengths and Hartree for energies. 
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3 Protonated water hexamer 

The protonated water hexamer is the smallest cluster comprising both Zundel and Eigen limiting 
structures of the hydrated proton in water. For this reason, it is one of the most widely studied and 
highly paradigmatic protonated water clusters, belonging to the series where more and more water 
molecules are gathered around the proton charge defect. Due to its rather compact size, the 
protonated hexamer is the ideal system where highly correlated methods are still affordable, while 
allowing for a non-trivial behavior of the solvated proton dynamics. The interplay between water 
supramolecular interactions, nuclear quantum effects and thermal excitations makes the solvated 
proton dynamics, and more generally, proton transfer, challenging problems that still need to be fully 
addressed with the necessary accuracy. One of the possible long-term perspectives is to predict the 
proton transfer behavior in complex biochemical processes relevant in living systems, with 
calculations accelerated by machine learning potentials derived from accurate QMC simulations. 

Configurations, forces, and energies 

We provide a database of trajectories produced by classical molecular dynamics (MD) simulations of 
the protonated water cluster, with nuclear forces computed at the VMC level of theory. These 
trajectories belong to the body of data published in [4]. In that work, we carried out both classical 
and path integral molecular dynamics (PIMD), in order to consider the quantum nature of the nuclei, 
described as ring polymers, according to the quantum-to-classical isomorphism. Here, we present 
the trajectories of classical simulations, which bear enough information for future ML analysis. 
Indeed, both classical and path integral simulations sample the same potential energy surface (PES), 
which is the main target of ML potentials derivations. Classical simulations have a more direct access 
to the PES, because our PIMD code stores forces and energies averaged over the particles’ rings, thus 
blurred around the centroid position of the quantum particles. 

The classical molecular dynamics is carried out by a Langevin dynamics (LD), where the noise coming 
from the QMC stochastic sampling contributes to the thermal excitations in a controlled way, thanks 
to the algorithm developed in [5]. A time step of 1 fs is used for all temperatures. The nuclear forces 
are computed at the VMC level, by optimizing at each LD iteration a Jastrow correlated geminal wave 
function, described extensively in [4]. The explicitly correlated treatment of the electronic problem 
yields a PES of quality comparable to coupled cluster (CCSD-CCSD(T)) theories, with a full resolution 
of energy and forces at a milder computational cost. 

The database is made of files whose names are of the kind: 

prot_hex_100k.xyz 

where the temperature is explicitly reported. The extended xyz format described in Sec. 2.2 is 
adopted also here, with the same units. The number of configurations corresponds to the number of 
LD iterations, because all steps are listed. In addition to the information provided for the QMC 
hydrogen database, here we give also the nuclear forces acting on each nucleus, in Hartree/Angstrom 
units. The cluster geometry is written according to the following convention: [O, H, H, H, O, H, H, O, 
H, H, O, H, H, O, H, H, O, H, H], where O (H) represents the oxygen (hydrogen) position, and the two 
subsequent H positions belong to the H2O unit led by the preceding O. The only exception is the first 
set of coordinates, where the third H after the first O is the coordinates of the proton defect, bridging 
the first two H2O molecules, belonging to the cluster core. 

The typical stochastic error of the total energies reported in our dataset is about 3mH, while the one 
of forces is about 6mH/Å, irrespective of the force component. 



  D5.4 – Datasets made available for benchmarking and ML modelling 

 

 

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding from the European 
Union Horizon 2020 research and innovation programme under Grant Agreement No. 952165. 

 

Page 7 of 11 

 

4 Organic molecular dimers in electronically excited states 

Molecular interactions in electronically excited molecular complexes play a crucial role in 
fundamental processes of charge and energy transfer. Accounting for molecular interactions is 
therefore of importance in designing nanostructures with high phosphorescence quantum yields, or 
optoelectronic devices such as organic light emitting diodes. Accurate description of noncovalent 
interactions in excited-state molecular complexes is more demanding than that of ground states. A 
reliable computational method must account not only for weak intermolecular forces, including long-
range correlation (dispersion interaction energy), but also for relatively strong correlation effects in 
excited states. DFT methods, nowadays widely used in ground state molecular interaction modelling, 
are no longer adequate for interactions in excited states. One of the reasons is that semiempirical 
corrections for the dispersion energy, developed for ground states, may be not reliable. Coupled 
cluster (CC) response theories are, in principle, a viable alternative, but due to their high 
computational cost, their applicability is limited to small systems. 

In [6] and [7] we formulated a framework to describe the dispersion energy in electronically excited 
van der Waals complexes. We computed both benchmark dispersion energies and benchmark total 
interaction energies for a number of organic molecular dimers with n-π* or π-π* excitons localized 
on one of the monomers. The dimers are presented in Figure 2, where n-π* complexes include: 
peptide-water, peptide-methylamine, acetic acid-pentane, acetamide-pentane, peptide-pentane, 
while π-π* complexes are: benzene-water, benzene-methanol, benzene-methylamine, pyridine-
water, pyridine-methanol, pyridine-methylamine, benzene-cyclopentane, benzene-neopentane. 

 
Figure 2 : Structures of n-π* and π-π* complexes included in the data set. 
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4.1 Dispersion interaction energies 

Dispersion interaction energy is the main binding component of molecular interaction in van der 
Waals species. Molecular simulations, including molecular dynamics, must account for dispersion to 
yield reliable predictions Most density functional theory approximations, based on semilocal 
functionals, are generically flawed when it comes to accurate prediction of dispersion interactions. 
To cure this deficiency various strategies have been proposed, in most of them dispersion energy is 
added in a form of empirically developed corrections. The latter have been parameterized based on 
accurate benchmarks for ground states. Until now, benchmark ab initio dispersion energies data for 
excited states have not been available.  

In [6] and [7] we have developed theoretical and computational methods dedicated to dispersion 
energy calculations in excited state molecular dimers. We have shown that dispersion energy 
interaction in excited states includes special terms related to negative transitions in density response 
function. Interestingly, these terms may be of the positive sign. Since they do not appear in the usual 
Casimir-Polder formula for dispersion interaction, we have called them non-Casimir-Polder (nCP) 
terms. Approximate computational methodology has been developed and actual values of the nCP 
terms have been presented in [6]. 

In [7] we have developed a novel method for direct computation of the dispersion energy, based on 
Cholesky decomposition of Coulomb integrals and expansion of density-density linear functions of 
monomers in orders of the correlation-coupling-constant. The resulting computational algorithm 
enables computation of the second-order dispersion interaction with a relatively modest 
computational cost, scaling with the fifth power of the system size. These developments have 
allowed us to compute dispersion energy values for all complexes depicted in Figure 2 which are 
presented in Table 2. 

Let us emphasize that these are first dispersion energy values for excited states obtained from an ab 
initio method, i.e. a method free of empirical parameters. They can be used for benchmarking other 
methods capable of capturing dispersion forces in excited states. More importantly, they can be used 
to train empirical dispersion corrections for DFT. For the latter, it is known that dispersion energy 
correction should also include a repulsive component, which in the Symmetry-Adapted perturbation 
theory corresponds to a second-order exchange-dispersion energy. It dumps dispersion energy at 
short-range of the inter-monomer interaction. An expression for the exchange-dispersion energy in 
terms of one- and two-electron reduced density matrices has been developed in [8]. Its efficient 
implementation, exploiting Cholesky decomposition of integrals, which would lower the 
computational scaling of exchange-dispersion term by one order of magnitude (similarly to what has 
been achieved for dispersion energy in [7]), is still not available. Thus, in [7] we have proposed a 
computational procedure for the exchange-dispersion term in a large basis set. It consists in scaling 
the corresponding term obtained in a small basis set. The scaling factor is obtained as a ratio of the 
dispersion energy computed in large and small basis sets.  

The benchmarks values of dispersion Edisp, exchange-dispersion Eexch-disp, their sum EDISP, and total 
interaction energies (computed from multiconfigurational SAPT method [9]) are presented in Table 
2. It is evident that the dispersion energy constitutes a dominating part of the total interaction and it 
is a substantial binding factor of complexes in excited states. Respective benchmark data is compiled 
in intexcit dataset with entries in the following order: system/Edisp/Eexch-disp/EDISP/nCP. 
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Table 2: Dispersion energy Edisp, exchange-dispersion Eexch-disp, their sum EDISP, and the total interaction energy Eint (computed from 
multiconfigurational SAPT method) for molecular complexes shown in Figure 2. Data from [6] and [7]. All values in kcal/mol. aug-cc-
pVTZ basis set has been used. 

Dimer Edisp Eexch-disp EDISP Eint 

benzene-water -2.88 0.33 -2.55 -2.51 

benzene-MeOH -4.63 0.52 -4.11 -3.25 

benzene-MeNH2 -4.62 0.54 -4.08 -2.62 

pyridine-water -4.05 0.84 -3.21 -6.91 

pyridine-MeOH -4.95 0.99 -3.96 -7.44 

pyridine-MeNH2 -5.01 0.66 -4.35 -3.82 

peptide-water -2.93 0.46 -2.47 -4.36 

peptide-MeNH2 -5.78 1.10 -4.68 -6.40 

benzene-cyclopentane -6.89 0.82 -6.07 -3.63 

benzene-neopentane -5.38 0.61 -4.77 -2.95 

AcOH-pentane -5.61 0.56 -5.05 -2.82 

AcNH2-pentane -6.66 0.81 -5.85 -3.61 

peptide-pentane -8.10 0.88 -7.22 -4.26 

 

4.2 Molecular interaction energies 

As already mentioned, existing electronic structure methods struggle with description of molecular 
complexes in excited states as many electron correlation effects must be considered simultaneously. 
Coupled cluster (CC) methods with only singles and doubles may not be sufficiently accurate, while 
CC with triples is limited to small and medium-sized systems. For dimers in Figure 2, reliable CC 
interaction energies, obtained by combining the CCSD(T)/CBS (CBS - complete basis set) description 
of the ground state with excitation energies calculated at the EOM-CCSD level of theory have been 
available. We have used these results to validate the accuracy of the recently proposed, novel 
multireference methods. They are based on the multiconfigurational wavefunction description of the 
interacting molecules and are less demanding computationally than the CCSD(T) method, which 
allows for applications to larger systems. In [6] we have evaluated the performance of a number of 
methods (Figure 3). Three approaches were identified as the most reliable, providing new benchmark 
values for interaction energies for several model systems (Figure 2) including n-π* complexes: 
peptide-water, peptide-methylamine, and π-π* complexes: benzene-water, benzene-methanol, 
benzene-methylamine, pyridine-water, pyridine-methanol, pyridine-methylamine. The methods 
recommended for computing interaction energies in excited state dimers are: 

▪ SAPT(CAS): a reduced-density matrix-based second-order symmetry-adapted perturbation 
method developed for multiconfiguration wavefunction description of monomers [9]; total 
interaction energy is given as a sum of electrostatic (Eelst), exchange Eexch, induction Eind, 
exchange-induction (Eexch-ind), dispersion (Edisp), exchange-dispersion (Eexch-disp), and higher-
order induction (δHF/CAS) terms 

▪ CAS+DISP: a sum of supermolecular complete active space (CAS) self-consistent field 
interaction energies and a dispersion energy computed within the second-order symmetry-
adapted perturbation method  

▪ lrAC0-CAS: a sum of supermolecular complete active space (CAS) self-consistent field 
interaction energies with electronic interaction restricted to long-range with short-range 
exchange-correlation density functional and a long-range correlation energy  

The SAPT(CAS) method provided not only benchmark values for the total interaction energies but 
also their components in the second-order perturbation theories. They can be used to train ML 
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models for electrostatic, dispersion and induction energies or to benchmark future energy 
decomposition analysis methods.  
For three water complexes we also include benchmark values of SAPT(CAS) energy components 
extrapolated to the complete basis set (CBS) limit, both for ground and excited electronic states. The 
electrostatic (Eelst), exchange (Eexch), induction (Eind  and Eexch-ind), and dispersion (Edisp and Eexch-disp) 
terms together with relevant corrections (δHF/CAS terms which approximate higher-order induction 
effects) are presented in Table 3. 

Table 3: Benchmark SAPT(CAS) results for ground (GS)- and excited (ES)-state dimers: peptide-water, pyridine-water and benzene-
water. Eelst, Eexch, Eind, Eexch-ind energies are computed in the aug-cc-pVQZ basis set. The Edisp and Eexch-disp terms are extrapolated from 
aug-cc-pVTZ and aug-cc-pVQZ results according to the two-point scheme of Halkier et al [10]. First-order effects beyond the S2 
approximation (S2

corr) are estimated as the difference between E10
exch and E10

exch(S2) components at the SAPT0 level of theory. The δCAS 
correction for higher-order induction effects in excited states is obtained by scaling of the the δHF term: δCAS = δHF* Eind(ES)/Eind(GS). All 
values in kcal/mol. 

Ground State Eelst Eexch Eind Eexch-ind Edisp Eexch-disp δHF S2
corr Eint 

peptide-water -6.64 5.77 -2.23 1.19 -3.25 0.54 -0.68 0.03 -5.28 

pyridine-water -11.27 11.11 -5.34 3.14 -4.43 0.92 -1.56 0.13 -7.32 

benzene-water -2.63 3.00 -1.25 0.68 -3.11 0.39 -0.34 0.01 -3.26 

Excited State Eelst Eexch Eind Eexch-ind Edisp Eexch-disp δCAS S2
corr Eint 

peptide-water -5.97 5.72 -2.10 1.15 -3.26 0.54 -0.64 0.03 -4.51 

pyridine-water -11.31 11.13 -5.33 3.14 -4.40 0.91 -1.55 0.13 -7.28 

benzene-water -1.81 2.66 -1.15 0.64 -2.94 0.34 -0.32 0.01 -2.57 

 

Benchmark data described in this section is collected in the intexcit dataset with the following entries: 
• interaction energies in ES: system/CAS/CAS+DISP/lrAC0-CAS/SAPT(CAS) 

• SAPT interaction energy components: system/Eelst/Eexch/Eind/Eexch-ind/Edisp/Eexch-disp/δCAS 

• SAPT energies extrapolated to CBS:  system/Eelst/Eexch/Eind/Eexch-ind/Edisp/Eexch-disp/δCAS/S2/Eint 

 

 
Figure 3: Correlation plots for interaction energies. "Reference interaction energy" values are estimations of EOM-CCSD(T) energies. 

Data from [6].  
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5 Summary and outcomes 

Four datasets have been made available for benchmarking and ML modelling of: hydrogen under 
pressure, protonated water hexamer, and molecular and dispersion interactions of organic molecules 
in excited states. The basis sets have been created by using open-source, high-performance, inter-
operable flagship QMC codes and libraries developed by the TREX consortium. The basis sets will be 
used to train ML models and critically assess performance of MLPs. They may be also used to 
parameterize density functionals or DFT-dispersion interaction corrections to extend their scope of 
applicability to excited states.  

The following datasets have been presented in this report: 

(1) h-IIpt-24 data set for hydrogen under high pressure: geometries, lattice vectors, energies, forces, 
stresses, Wigner-Seitz radii, configurations of 128 hydrogen atoms at the DFT level of theory; 
purpose: benchmark for MLPs; developed in the group of Matthias Rupp (LIST) 

(2) hydrogen-harm data set of crystalline hydrogen configurations: energies at VMC and LRDMS level; 
purpose: benchmark for MLP; developed in the group of Michele Casula (CNRS)  

(3) prot-hex data set for protonated water hexamer: trajectories from classical molecular dynamics 
with nuclear forces at VMC level of theory; purpose: ML modelling; developed in the group of 
Michele Casula (CNRS) 

(4) intexcit data sets for a set of organic molecular complexes in lowest excited states: dispersion 
interaction energies, interaction energies, components of SAPT interaction energies at the CAS 
wavefunction level; purpose: benchmarking ab initio methods and density functional dispersion 
correction modelling; developed by Kasia Pernal (TUL) and Michal Hapka (University of Warsaw)  

Datasets (2)-(4) are publicly available at: https://zenodo.org/records/10547300 

In addition to potential applications of the datasets listed above, in the broad-term perspective their 
availability will contribute to developing faster computational methods allowing study of exotic 
phenomena in different phases of hydrogen, solvated proton dynamic in water clusters including 
proton transfer in complex biochemical processes, studying light emitting excimers paving the way 
to developing novel light emitting organic materials.   

The following papers are related to this report and acknowledge TREX funding: 

• M.R. Jangrouei, A. Krzeminska, M. Hapka, E. Pastorczak, K. Pernal, Dispersion Interactions in 
Exciton-Localized States. Theory and Applications to π − π* and n − π* Excited States, Journal 
of Chemical Theory and Computation 18, 3497 (2022). 

• M. Hapka, A. Krzeminska, M. Modrzejewski, M. Przybytek, and K. Pernal, Efficient Calculation 
of the Dispersion Energy for Multireference Systems with Cholesky Decomposition: 
Application to Excited-State Interactions, Journal of Physical Chemistry Letters 14, 6895 
(2023). 

• L. Monacelli, M. Casula, K. Nakano, S. Sorella, F. Mauri, Quantum phase diagram of high-
pressure hydrogen, Nature Physics 19, 845 (2023). 

• F. Mouhat, M. Peria, T. Morresi, R. Vuilleumier, A.M. Saitta, M Casula, Thermal dependence 
of the hydrated proton and optimal proton transfer in the protonated water hexamer, Nature 
Communications 14, 6930 (2023). 
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