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Executive summary

The TREX EU Centre of Excellence investigates implementations of Quantum Monte Carlo (QMC)
calculations optimized for exascale high-performance computing. These calculations are high-accuracy
quantum-chemical and materials simulations that are inherently parallelizable and computationally
demanding. Thus, they are uniquely positioned to utilize and explore the upcoming exascale su-
percomputer architectures. TREX focuses on the development and promotion of an open-source,
high-performance software platform of inter-operable flagship codes and exascale-ready libraries.

This scope includes, in work package 5, applications of these QMC methods to atomistic systems
that are highly and directly relevant for technological progress and society. One of these systems is
water, the “liquid of life.” In addition, TREX investigates Machine Learning Potentials (MLPs) to
greatly accelerate QMC dynamics simulations in work package 4, enabling running more and longer
simulations with larger unit cells, a task that will remain computationally unfeasible using only QMC
calculations for the foreseeable future.

This Periodic Activity Report D5.2 centers on results obtained via MLPs for water. Because the
study of water H2O is strongly linked to the physics and chemistry of hydrogen H, results for hydrogen
under pressure are included as well. This report is related to deliverables D4.4, D5.3, and D5.4.

Michele Casula’s group (CNRS) investigated hydrogen’s role in hydrogen bonds of water by
exploring electronic properties affecting bond dynamics. Their study on protonated water hexamers
using QMC methods revealed temperature-dependent proton behavior. To extend findings, they
developed an MLP for water clusters. Ongoing work focuses on improving agreement and studying
QMC noise effects on MLP quality and long-range interactions’ impact on charged systems.

They also studied the phase diagrams of hydrogen (H) and hydrogen-rich materials due to H’s
relationship with water and high-temperature superconductivity found in H-rich materials. These
phase diagrams are very rich, with many competing phases. Resolving them is highly challenging
and requires coupling QMC calculations for electrons with path-integral molecular dynamics or path-
integral Monte Carlo for quantum nuclei. Lower levels of theory cannot predict these phase diagrams.
One of H’s most accurate phase diagrams was calculated with the TREX code TurboRVB within
work package 5.

The usual strategy of training an MLP directly on QMC reference data fails as it is computationally
too expensive to generate enough QMC training data. Instead, QMC corrections to a computationally
cheaper physical baseline method, such as Density Functional Theory (DFT), were employed. This
“∆-learning” approach requires less QMC training data. The group of Sandro Sorella (SISSA) devel-
oped a ∆-learning MLP, enabling them to train an accurate model using only 684 QMC calculations.
They used this model to study the liquid-liquid phase transition of high-pressure hydrogen.

To enable further studies, the groups of Matthias Rupp (UKON, LIST) and Michele Casula
(CNRS) collaborate to determine whether so-called “ultra-fast potentials” trained on DFT reference
data can be used as baseline potential for the∆-learning approach. This would enable a computational
speed-up by several orders of magnitude, paving the way to a more extended and comprehensive
study of the phase diagrams of H and H-rich materials. Further efforts were made towards improved
workflows for training set generation.

Overall, nine scientific studies were published that acknowledge TREX funding, in journals includ-
ing Nature Physics and Nature Communications.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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1 Introduction

Targeting REal chemical accuracy at the eXascale (TREX) is a European Union (EU) Centre of
Excellence (CoE) in the field of high-accuracy quantum chemical and materials simulations with
a special focus on QMC approaches to the solution of the quantum many-body problem at the
heart of atomistic physics, chemistry and materials science. Due to their inherent parallelizability
and high computational cost, QMC approaches, and thus TREX, are uniquely positioned to fully
exploit the massive parallelism of the upcoming exascale supercomputer architectures. Work in TREX
focuses on the development and promotion of an open-source, high-performance software platform
of interoperable flagship codes and exascale-ready libraries in its area of applications.

These applications include the computational investigation of atomistic systems that are highly
and directly relevant for technological progress and society. Work Package (WP) 5 tests and demon-
strates the effectiveness of the QMC software developed in TREX on a selection of such systems
relevant for energy storage, conversion, and transport. Specifically, these are two-dimensional ma-
terials for energy conversion in future opto-electronic systems, water as the basis of all organic life
on our planet, quantum magnetism and high-temperature superconductors, as well as strained and
excited functional van-der-Waals materials beyond graphene.

In addition, TREX investigates the applicability of Machine Learning (ML) methods to acceler-
ate QMC calculations in WP 4. This was done primarily by constructing MLPs, which are data-driven
surrogate models of QMC potential energy surfaces. Trained on a set of reference QMC calculations
for a specific atomistic system, MLPs accurately approximate these systems’ potential energy surfaces
at a fraction of the computational cost. The resulting acceleration by multiple orders of magnitude
greatly extends the reach of QMC approaches. TREX focuses on MLP-accelerated Molecular Dy-
namics (MD) simulations. For these, MLPs enable running more and longer simulations with larger
unit cells, a task that will remain computationally unfeasible using QMC calculations alone for the
foreseeable future.

Scope

This Periodic Activity Report D5.2 centers on results obtained via MLPs for water and hydrogen under
pressure. The reported work is linked to Task T4.3 “Workflows to machine learn QMC accuracy”
(which was led by Anatole von Lilienfeld of UNIVIE, who left the consortium as of 2021-10-13, and
is now lead by Matthias Rupp of UKON, and then LIST, who joined the consortium as of 2021-10-01
and changed affiliation from UKON to LIST as of 2022-10-01). Report D5.2 is also affected by the
untimely death of Prof. Dr. Sandro Sorella and the subsequent termination of SISSA as consortium
member as of 2023-09-30.

This report D5.2 is also related to deliverables D4.4 “Report on release of transferable QMC-
quality ML models” in WP 4 via the developed MLPs, D5.3 “Final report on all demonstrations”
in WP 5 through task T5.2 on the “accurate and reliable description of water” and task T5.3 on
high-temperature superconductors, as well as D5.4 on “Datasets made available for benchmarking
and ML modelling“ in WP 5 via the datasets created in the work reported here.

As the study of water H2O is intrinsically strongly linked to the physics and chemistry of hydro-
gen (H), we also present application results for hydrogen in this report.

A list of TREX publications related to this report is available in Section 5.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

2 of 10



D5.2– Report on machine learning results delivered for water systems

2 Water

One of the activities of the group of Michele Casula (CNRS-Paris), in the realm of the WP5 TREX
work package, is to study water by using advanced QMC methods, optimized and ported to HPC
clusters, as demonstrator of QMC capabilities. Water has been hailed as the “liquid of life”, whose
unique characteristics stem from the chemical properties of the hydrogen bond (H-bond). In this
respect, there is a tight link between this application and our investigation of hydrogen presented in
Section 3. The role played by hydrogen in the H-bond is fundamentally affected by electronic prop-
erties, such as charge transfer, electron polarizability, dispersive interactions, together with nuclear
quantum effects (NQE), which profoundly modify the classical potential energy landscape.

Our recent study [1] of the protonated water hexamer focused on the temperature dependence
of the hydrated proton and its dynamics, including Proton Transfer (PT). The structure of the cluster
is shown in Fig. 1, where it is clear how the two limiting structures of the PT dynamics, i.e., the
Zundel (leftmost panels of Fig. 1) and the Eigen configurations (rightmost panel of Fig. 1), are fully
included in the possible cluster geometries. The protonated water hexamer is the smallest water
cluster including both limiting structures, being the central core solvated by a complete water shell.
Thus, the hydrated proton in the middle of the cluster is not far from the bulk water limit, and one
can still afford accurate but expensive QMC simulations to study the PT dynamics.

supported by the instanton statistics of shuttling protons, reveals that the near-room-
temperature range from 250 K to 300 K is a “sweet spot” for proton transfer, and thus 
for many phenomena depending on it, including life. 

 
Figure 3: Different regimes of the protonated water hexamer H13O6. Left panel: short-Zundel configuration with a Zundel 
center (H5O2+) in colors and its first solvation shell (4 H2O) in gray shades. Central panel: elongated Zundel with the quantum 
nature of hydrogen atoms highlighted by the full representation of its imaginary-time positions in a path integral 
configuration. Right panel: distorted-Eigen configuration with an Eigen cation (H9O4+) in colors accompanied by two solvating 
water molecules (2 H2O) in gray shades. 

 
4) Quantum symmetrization transition in superconducting sulfur-hydride from 

quantum Monte Carlo and path integral molecular dynamics 
 
We study the structural phase transition associated with the highest superconducting 
critical temperature measured in high-pressure sulfur hydride. A quantitative 
description of its pressure dependence has been elusive for any ab initio theory 
attempted so far, raising questions on the actual mechanism driving the transition. 
Here, we reproduce the critical pressure of the hydrogen bond symmetrization in the 
Im3m structure, in agreement with experimental data, by combining quantum Monte 
Carlo (QMC) simulations for electrons with path integral molecular dynamics (PIMD) 
for quantum nuclei. This pinpoints the importance of an exact treatment of nuclear 
quantum effects, which play a major role in a significant reduction (about 100 GPa) of 
the classical transition pressure and in a large isotope shift (about 25 GPa) upon 
hydrogen-to-deuterium substitution (Figure 4). 

 
Figure 4: Tc as a function of pressure in H3S and D3S from Drozdov et al., Einaga et al. and from Minkov et al. Vertical lines 
(black for H3S and red for D3S) indicate the experimental phase boundary between the R3m and Im3m structural phases. The 
shaded areas on each data set represent the pressure range when the transition occurs according to our PIMD results for the 
QMC PES, where the lower limit is based on the local quantum fluctuations analysis and the upper one on the density evolution. 

short Zundel elongated Zundel distorted Eigen

Figure 1: Different regimes of the protonated water hexamer H13O+
6 . Left panel: short-Zundel

configuration with a Zundel center (H5O+
2 ) in colors and its first solvation shell (4 H2O) in

gray shades. Central panel: elongated Zundel with the quantum nature of hydrogen atoms
highlighted by the full representation of its imaginary-time positions in a PI configuration. Right
panel: distorted-Eigen configuration with an Eigen cation (H9O+

4 ) in colors accompanied by
two solvating water molecules (2 H2O) in gray shades. The O1, O2 and H+ labels are used
throughout the paper to refer to the corresponding atoms, as indicated here.
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Fig. 8 (a) Equation of state P = P (V ) (see Sec. 4.3 and Eq. 7) for both DFT-BLYP (blue
color) and QMC (red color) calculations of H3S in the Im3̄m phase. The critical volumes Vc

and the corresponding pressures Pc identified at di↵erent levels of theory using the density
probe are displayed by dashed lines. (b) Tc as a function of pressure in H3S and D3S from
Drozdov et al. in [5], Einaga et al. in [12] and from Minkov et al. in [14]. Vertical lines (black
for H3S and red for D3S) indicate the experimental phase boundary between the R3m and
Im3̄m structural phases [12]. The shaded areas on each data set represent the pressure range
when the transition occurs according to our PIMD results for the QMC PES, where the
lower limit is based on the local quantum fluctuations analysis and the upper one on the
density evolution.

by a 3D double-well potential, the self-consistent harmonic approximation is
particularly fragile.

We conclude by noting that the the R3m ! Im3̄m structural phase
transition in sulfur hydride has strong analogies with the hydrogen bond
symmetrization in other compounds such as high-pressure ice, where, upon
compression, phase VII and VIII hosting displaced protons, stable at lower
pressure, are expected to transform into the symmetric phase X [45, 46]. How-
ever, it is still a matter of debate whether the transformation is direct or
whether another intermediate disordered structure appears, with protons only
partially symmetrized. In this respect, further work is needed to extend our
model beyond the collective path dynamics to treat non-local spatial correla-
tions and disordered patterns. Machine learning schemes could then be useful
to generate more extended PES from QMC data [47–49] with the aim at
including a larger variety of hydrogen configurations in PIMD calculations by
keeping the same QMC accuracy.

4 Methods

4.1 Electronic structure calculations for the PES model

For the DFT electronic structure calculations, we used the Quantum Espresso
(QE) suite of codes [50, 51], while for the QMC calculations, we employed
the TurboRVB package [52]. For sake of consistency, in both DFT and QMC

Figure 1: Different configurations of the protonated water hexamer during molecular dynamics
simulations. Short Zundel is the most likely configuration at low temperature (< 150K), elongated
Zundel is the one at intermediate temperatures until room temperature, and distorted Eigen is a
high-temperature configuration. Labels O1, O2, H

+ are also used in Fig. 2.

This led to the discovery of a remarkably small thermal expansion of the cluster core, and of an
optimal temperature range for the PT, located in the 250–300K temperature window, where the PT
rate shows a maximum. These results have been obtained by using a combination of variational QMC
to compute the electronic wave function and ionic forces on the fly, during a Path-Integral Molecular
Dynamics (PIMD) simulation driven by the Path-Integral Ornstein–Uhlenbeck Dynamics (PIOUD)
algorithm[2], able to cope with the QMC noise, and to exploit it for system thermalization, as
implemented in the TREX code TurboRVB. Such coupling of QMC with PIMD is a computational
challenge, achieved here thanks to the relatively small size of the system. Thus, to extend these
findings to larger clusters and to bulk water, we would like to train an efficient MLP on the trajectories
generated during this study.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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Therefore, we developed an MLP for water clusters that combines the accuracy of QMC
calculations with the computational efficiency of ML. We achieved this by using the FCHL19 [3,
4] representation and Kernel Ridge Regression (KRR). FCHL19 is a computationally efficient and
suitable representation for operator kernel regression used by us for force learning. Our aim is to use
an MLP trained directly on the QMC forces, which enables the MLP to enter into the MD schemes as
a force field, in place of heavy ab initio calculations. This approach bypasses any other intermediate
DFT steps, and it exploits “operator quantum machine learning” [4] capabilities.
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Figure 2: Radial distribution functions in classical simulations of the protonated water hexamer.
OH+ is the distance between the central proton and the neighboring oxygen atoms, while O1O2 is
the distance between the two inner water molecules bridged by the central proton. The vertical lines
in the bottom panels show the equilibrium dO1O2 distance at zero temperature.

Preliminary results, based on the trajectories generated during our protonated water hexamer
study, are satisfactory (Figure 2). The MD simulations run using the MLP are stable and produce
pair distribution functions in reasonable agreement with the original QMC-driven MD. Some work
is still needed to improve the agreement below a tolerance of 50 K. The latter is desirable in order
to properly describe proton transfer processes in aqueous environments and to extend this analysis
to larger water clusters. We presently study the effects of QMC noise on the MLP quality and the
impact of including long-range interactions on top of the MLP to correctly describe charged systems,
such as protonated clusters.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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Outputs

• Félix Mouhat, Matteo Peria, Tommaso Morresi, Rodolphe Vuilleumier, Antonino Marco Saitta,
Michele Casula: Thermal dependence of the hydrated proton and optimal proton transfer in
the protonated water hexamer, Nature Communications 14: 6930, 2023. [doi]

3 Hydrogen

Hydrogen and hydrogen-rich materials have seen increasing interest in the last decade due to the
discovery of high-temperature superconductivity found first in H3S, and then in LaH10, showing critical
temperatures Tc as high as 250K, i.e., close to the room-temperature superconductivity dream. These
Tc values are larger than previous records measured in strongly correlated materials, such as cuprates
and pnictides, where superconductivity is unconventional. Superconductors in the hydrogen class are
instead driven by a strong electron-phonon coupling linked with large phonon vibrations and a metallic
behavior of the material. These conditions are usually met at a very high pressure. Superconductivity
there is thus mediated by lattice vibrations. Efforts are currently made to reduce the pressure at
which superconductivity appears to make this remarkable phenomenon technologically exploitable by
exploring the chemistry of hydrogen.

The resulting phase diagram of hydrogen-based materials is usually very rich, with many com-
peting phases (Figure 3). This is due to the interplay of electronic and vibrational effects. Both
electrons and nuclei must be accounted for to predict the various phases emerging at different pres-
sure and temperature conditions. Resolving these phase diagrams is useful to detect the presence of
possible high-temperature superconducting phases, but it also has other applications. One example is
determining the equations of state of gas planets, usually made of a mixture of hydrogen with other
light elements such as helium. Another example is the field of energy storage materials, which is of
critical importance for a green economy and a much coveted green transition.

Including both electrons and nuclei at the high accuracy needed to resolve the phase boundaries
of hydrogen materials is a very challenging problem. While QMC is beneficial to predicting accurate
internal electronic energies, coupling QMC calculations for electrons with path-integral molecular dy-
namics or path-integral Monte Carlo for quantum nuclei is out of reach with the present computational
capabilities. Thus, studying the most relevant hydrogen-rich systems is a formidable task. It is only
very recently that one of the most accurate phase diagrams of hydrogen has been computed in the
high-pressure region (400GPa–700GPa), where hydrogen is supposed to become a room-temperature
superconductor, thanks to extensive QMC calculations performed with the TREX code TurboRVB
within WP5. [5] In the latter calculations, the nuclear part has been computed with the self-consistent
harmonic approximation, which is computationally cheaper but less accurate than path-integral meth-
ods. A one-to-one comparison between the self-consistent harmonic approximation and the PIMD
has been recently done in Ref. [6], for the study of the H3S high-temperature superconductor.

Computationally more efficient but less accurate theories than QMC, such as DFT with simple
semi-local functionals, but also more elaborated and more expensive hybrid functionals, failed to
predict and explain these rich and complex phase diagrams. As elaborated in the Demonstrations
(WP5), we envisage that QMC at the exascale will open new possibilities for fundamental studies
of hydrogen and hydrogen-rich materials. However, the overall computational cost would remain
a severe bottleneck, even for the most efficient and well ported algorithms. Thus, the acceleration
provided by MLPs is even more important for these classes of materials.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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Figure 3: Structures considered for the low-temperature high-pressure phase diagram of hydrogen.
Coloured balls are the average centroid positions, sticks represent H2 molecules and the cloud of
smaller grey balls is a set of 250 configurations that sample the quantum probability distribution at
0K. All the structures, apart from the atomic one, are made of layers, out of which only one is shown.
P62/c-24 is made of alternating layers, one with atoms arranged in a honeycomb lattice (b), and the
other with molecular H2 in a C2/c-24 arrangement (not shown here).

Outputs

• Lorenzo Monacelli, Michele Casula, Kousuke Nakano, Sandro Sorella, Francesco Mauri: Quan-
tum phase diagram of high-pressure hydrogen, Nature Physics 19(6): 845, 2023. [doi]

• Romain Taureau, Marco Cherubini, Tommaso Morresi, Michele Casula: Quantum symmetriza-
tion transition in superconducting sulfur hydride from quantum Monte Carlo and path integral
molecular dynamics, arXiv: 2307.15684, 2023. [url]
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from the European Union Horizon 2020 research and innovation program under Grant
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4 Machine-learning potentials

To address the problem of the high computational cost of QMC calculations and thus to enable
efficient MD simulations at larger length and time scales but with QMC accuracy, MLPs based
on QMC reference calculations were developed in TREX. Due to the high computational cost of
QMC calculations, the usual strategy of training an MLP directly on QMC reference data fails as
it is too expensive to generate enough QMC training data. Instead, QMC corrections to a compu-
tationally cheaper physical baseline method, such as DFT, are employed. This approach is called
“∆-learning” [7] and has the advantage that learning the correction is an easier learning problem,
and thus requires less QMC training data.

The group of Sandro Sorella (SISSA) developed such a∆-learning MLP that provides the accuracy
of QMC calculations at the cost of DFT calculations. Specifically, they used kernel least-squares
regression with Smooth Overlap of Atomic Positions (SOAP) features to learn the difference between
DFT and QMC, as well as sparsification via farthest-point sampling. [8] The effect of sparsification
is shown in Figure 4. Together, this enabled them to train an accurate model using only 684 QMC
calculations of 128-atom configurations of H as reference in total.

As an application we present a benchmark study of the liquid-liquid transition of high-pressure
hydrogen and show the quality of our MLP, by emphasizing the importance of high accuracy for this
very debated subject, where experiments are difficult in the laboratory, and theory is still far from
being conclusive.

As a first application, they present a benchmark study of the liquid-liquid transition of high-
pressure hydrogen. These results have been published in Ref. [8]. Their reported MLP runs essentially
at the speed of the underlying DFT baseline method since the computational cost of the MLP is
negligible in comparison. While at least one order of magnitude faster than the QMC reference
method, this is still the same computational effort that most current MLPs based on DFT reference
data try to avoid. Matthias Rupp’s and Michele Casula’s groups are collaborating, together with a
PhD student at SISSA formerly supervised by Sandro Sorella, with the aim of investigating if the
so-called “ultra-fast potentials” (see below) trained on DFT reference data can be used as baseline
potential for the ∆-learning approach. This would enable a computational speed-up by several orders
of magnitude, this time, and pave the way to a more extended and comprehensive study of phase
diagrams of hydrogen and hydrogen-rich materials, with a larger stretch in temperatures and pressures,
and by preserving the QMC accuracy across the spanned phases. While the “ultra-fast potentials”
developed as MLP models for QMC internal energies is still work in progress, the achievement made
with the ∆-learning approach to develop QMC-quality MLP is remarkable, as proved in Refs. [8, 9].
In parallel, we are studying an improved strategy to generate unbiased training sets with QMC, made
of internal energies, ionic forces and pressures for a given set of nuclear configurations, computed for
the time being at the variational Monte Carlo level. This will require on the one hand an accurate
wave function optimization per nuclar configuration, on the other hand it will need the development of
improved workflows and workflow managers to control in an automated way the process of generating
a set of QMC reference values on a given pool of nuclear configurations constituting the ML training
set.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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Figure 4: Learning rate of ∆-learning MLP for hydrogen. Shown are the RMSE of predicted forces
as a function of the number of training local atom environments for liquid hydrogen, from which
we estimate the learning rate, both with sparsification (right panel) and without (left panel). With
sparsification, the model error approaches the error of the full model, but using one order of magntiude
fewer training data.

Outputs

• Stephen R. Xie, Matthias Rupp, Richard G. Hennig: Ultra-Fast Interpretable Machine-Learning
Potentials, arXiv: 2110.00624, 2021. An extremely data-efficient MLP that enables training
on QMC datasets.

• Andrea Tirelli, Giacomo Tenti, Kousuke Nakano, Sandro Sorella: High-Pressure Hydrogen by
Machine Learning and Quantum Monte Carlo, Physical Review B 106(4): L041105, American
Physical Society, 2022. [doi]

5 Summary and outcomes

The open-source, high-performance, exascale-ready, inter-operable flagship QMC codes and libraries
developed by the TREX consortium were used to study water and hydrogen. These two related
materials are of high and direct relevance for technological progress and thus society.

Michele Casula’s group (CNRS) investigated hydrogen’s role in hydrogen bonds of water by
exploring electronic properties affecting bond dynamics. Their study on protonated water hexamers
using QMC methods revealed temperature-dependent proton behavior. To extend findings, they
developed an MLP for water clusters.

TREX partners also studied the phase diagrams of hydrogen (H) and hydrogen-rich materials. The
rich phase diagrams of these systems can not be computed with lower levels of theory and requires
coupling QMC calculations for electrons with path-integral molecular dynamics or path-integral Monte
Carlo for quantum nuclei. One of H’s most accurate phase diagrams was calculated with the TREX
code TurboRVB.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

8 of 10

https://doi.org/10.1103/physrevb.106.l041105


D5.2– Report on machine learning results delivered for water systems

Training an MLP directly on QMC reference data fails as it is computationally too expensive to
generate enough QMC training data. Instead, “∆-learning” was employed by the group of the late
Sandro Sorella (SISSA) to train an accurate model for a liquid-liquid phase transition of high-pressure
hydrogen using only 684 QMC calculations.

The groups of Matthias Rupp (UKON, LIST) and Michele Casula (CNRS) collaborate to determine
whether so-called “ultra-fast potentials” trained on DFT reference data can be used as baseline
potential for the ∆-learning approach for further acceleration by several orders of magnitude. Further
efforts were made towards improved workflows for training set generation.

The following peer-reviewed published works (nine) and upcoming publications (one) are outputs
related to this report and acknowledge TREX funding:

• Lorenzo Monacelli, Michele Casula, Kousuke Nakano, Sandro Sorella, Francesco Mauri:
Quantum phase diagram of high-pressure hydrogen, Nature Physics 19(6): 845, 2023.
DOI 10.1038/s41567-023-01960-5

• Félix Mouhat, Matteo Peria, Tommaso Morresi, Rodolphe Vuilleumier, Antonino Marco
Saitta, Michele Casula: Thermal Dependence of the Hydrated Proton and Optimal Proton
Transfer in the Protonated Water Hexamer, Nature Communications 14: 6390, 2023.
DOI 10.1038/s41467-023-42366-4

• Marcel F. Langer, Florian Knoop, Christian Carbogno, Matthias Scheffler, Matthias Rupp:
Heat Flux for Semilocal Machine-Learning Potentials, Physical Review B 108(10): L100302,
American Physical Society, 2023. DOI 10.1103/physrevb.108.l100302

• Stephen R. Xie, Matthias Rupp, Richard G. Hennig: Ultra-Fast Interpretable
Machine-Learning Potentials, npj Computational Materials 9: 162, Springer, 2023.
DOI 10.1038/s41524-023-01092-7

• Giacomo Tenti, Andrea Tirelli, Kousuke Nakano, Michele Casula, Sandro Sorella: Principal
Deuterium Hugoniot via Quantum Monte Carlo and ∆-learning, arXiv:2301.03570, 2023.
DOI 10.48550/arXiv.2301.03570

• Andrea Tirelli, Giacomo Tenti, Kousuke Nakano, Sandro Sorella: High-Pressure Hydrogen by
Machine Learning and Quantum Monte Carlo, Physical Review B 106(4): L041105, American
Physical Society, 2022. DOI 10.1103/physrevb.106.l041105

• Dominik Lemm, Guido Falk von Rudorff, O. Anatole von Lilienfeld: Machine Learning based
Energy-Free Structure Predictions of Molecules, Transition States, and Solids, Nature
Communications 12: 4468, 2021. DOI 10.1038/s41467-021-24525-7

• Jan Weinreich, Nicholas J. Browning, O. Anatole von Lilienfeld: Machine Learning of Free
Energies in Chemical Compound Space using Ensemble Representations: Reaching
Experimental Uncertainty for Solvation, Journal of Chemical Physics 154(13): 134113, 2021.
DOI 10.1063/5.0041548

• Bing Huang, O. Anatole von Lilienfeld: Ab Initio Machine Learning in Chemical Compound
Space, Chemical Reviews 121(16): 10001, 2021. DOI 10.1021/acs.chemrev.0c01303
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• Thomas Bischoff, Bastian Jäckl, Matthias Rupp: Hydrogen under Pressure as a Benchmark
for Machine-Learning Potentials, in preparation, to be published in 2024.

Results presented at the international workshop on Crash TEsting machine learning force
fields: Applicability, best practices, limitations (TEA), University of Luxembourg,
Luxembourg, October 23–25, 2023. URL tea-uni-lu.github.io
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