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Executive Summary

This deliverable adresses the critical concern of floating-point accuracy in numerical simulations and
computation-intensive codes, emphasizing the need for early detection and resolution of numerical
bugs. It introduces Verificarlo-CI, a continuous integration workflow that monitors and optimizes
numerical accuracy during code development within QMCkl. It also details the design of optimized
versions of Sherman-Morrison-Woodbury (SMWB) kernels and show they achieve a good tradeoff
between accuracy and performance. The report also explores the benefits of mixed precision in the
CHAMP code. Overall, it underscores the importance of early numerical accuracy assessment and
offers practical solutions for tuning code performance and accuracy.

1 Introduction

Floating-point accuracy is an important concern when developing numerical simulations or other
computation-intensive codes. Real numbers cannot be represented exactly on a computer. For this
reason, their implementation requires finite approximations such as the IEEE 754 floating-point (FP)
representation that is widely used today on modern computers [1]. Due to the approximations,
numerical simulations with a large number of operation are prone to instabilities. Identifying and
fixing numerical bugs is essential to achieve high accuracy in simulation codes. Nevertheless, not
all algorithms require the same precision. Less sensitive kernels can be adapted to operate on lower
precisions, this can provide optimizations in terms of energy, computation time, data transfer time,
and storage size.

Tracking the introduction of numerical regression is often delayed until it provokes unexpected
bugs for the end-user, resulting in a tedious and costly process for the code developer to locate the
issue. To facilitate the tracking of numerical bugs of TREX packages, we developed Verificarlo CI,
a continuous integration workflow for the numerical optimization and debugging of a code over the
course of its development. Section 2 presents the design of Verificarlo-CI. It is based on Verificarlo,
a tool that extends the LLVM compiler to assess the accuracy of a code by using custom arithmetic
models, in place of standard floating point operations. When integrated into a repository, it provides
automatically updated test results and dynamic reports accessible through a Web browser.

Verificarlo-CI was build to monitor numerical accuracy within QMCkl, in particular, we used it
during the development of the Sherman-Morrison-Woodbury kernels (SMWB). Given a matrix A
and its inverse A−1, SMWB kernels efficiently update the inverse after a series of rank-1 updates
on A. They are an important building block in different Quantum Monte Carlo codes such as
QMC=Chem and TurboRVB. Due to their importance, particular care was taken to optimize them
both for numerical accuracy and performance. Multiple implementations have been developed offering
different tradeoffs depending on the user’s goals. In particular, some of the implementations reduce
numerical precision in a controlled fashion to gain performance. Section 3 presents the design of
SMWB kernels, characterizes their properties, and offers recommendations for the end user. The
kernels have been released as part of QMCkl.

We conclude this report, in section 4 with an analysis of mixed-precision benefits for the code
CHAMP. Using Verificarlo, we explore the sensibility of different CHAMP routines when executed

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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with single FP precision. Based on the report, we offer some recommendations.

Some experiments on reducing numerical precision for I/O storage were also conducted in collab-
oration with WP2. We tested how well the floating-point compression libraries developed by LLNL
operate on TREX I/O HDF5 files. In particular, we tested the zfp library [2] lossless compression
algorithms on the wave-function determinants of the CR2 dataset. Our prelimar experiments showed
that the zfp library did not provide a significant advantage over standard compression algorithms such
as GZIP on this dataset. Given that GZIP is shipped on the standard version of the HDF5 library, we
decided to use GZIP.

2 Verificarlo-CI

Despite FP accuracy being a known issue, modern tools for software development do not provide
automated numerical accuracy regression tests. To fill this need, we propose Verificarlo CI (or vfc_ci,
for Verif icarlo Continuous Integration), a tool that complements the Verificarlo software and operates
in the context of Git version management. GitHub and GitLab are very popular platforms to develop
modern numerical libraries and applications, and both have features for continuous integration (CI),
respectively GitHub Actions and GitLab CI/CD. These services are triggered on specific events such
as merging a pull request. From there, a variety of tasks can be accomplished, such as running tests
or opening issues. The integration of Verificarlo CI with these services, while being central to its
design, is still optional, which means that the tool can be used independently, or be integrated in any
other continuous integration workflow.

To facilitate its adoption, Verificarlo CI has been designed to be easy and fast to deploy, while
still being flexible enough to be relevant for most applications. For this reason, the setup requires a
few simple steps, and little to no attention afterwards. We provide the user with efficient ways to
insert FP probes in their tests, execute them with Verificarlo, setup CI Actions, and finally access and
interpret the results.

2.1 Monte Carlo Arithmetic with Verificarlo

Verificarlo [3, 4] is an open-source tool based on the LLVM compiler framework modifying at compi-
lation each floating point operation with custom operators. After compilation, the program can be
linked against various backends to explore FP related issues and optimizations.

To evaluate the numerical accuracy of a computation, Verificarlo computes the number of signif-
icant bits which is a measure of the relative numerical error. It captures the number of accurate bits
in the FP mantissa against a chosen reference. Unfortunately for many complex programs or inter-
mediate computations, an exact reference value is not known beforehand. To overcome this problem,
Verificarlo uses Monte Carlo arithmetic (MCA), a stochastic method that can simulate numerical
errors and estimate the number of significant bits directly.

MCA can simulate the effect of different FP precisions by operating at a virtual precision t. To
model errors on a value x, MCA uses the noise function inexact(x) = x + 2ex−tξ, where ex =
⌊log2 |x|⌋+ 1 is the order of magnitude of x and ξ is a uniformly distributed random variable in the
range

(
−1

2
, 1
2

)
. During the MCA run of a given program, the result of each FP operation is replaced

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.

2



D3.5 – Report on the reduction of numerical precision for computation and I/O

by a perturbed computation modeling the losses of accuracy [5]. From a set of MCA samples, it is
possible to estimate the significant bits s2 of a computation,

s2 = − log2

∣∣∣∣σµ
∣∣∣∣ (1)

where σ and µ are respectively the standard deviation and mean of the samples. Sohier et al. [6] pro-
vide sound confidence intervals for s2. Without making assumptions about the samples distributions,
they show that with only 29 samples s2 measures the number of significant bits with probability 0.9
and 0.95 confidence.

2.2 Designing CI for numerical correctness

Verificarlo pipeline

Figure 1 shows a bird’s eye view of the Verificarlo pipeline. Verificarlo can be used in any language
supported by the LLVM ecosystem such as C, C++, and Fortran. It has specialized compiler passes
that replace all FP operations by callbacks. The compiler passes also collect contextual information
that enables to locate numerical errors precisely in the code source and calling context. Doing the
interposition at compiler level allows to take into account the compiler optimization effect on the
generated FP operation flow. Furthermore, it allows to reduce the cost of this interposition by
optimizing its integration with the original code.

The instrumented program calls a numerical backend depending on the desired analysis. Verificarlo
includes six backends which are extensively documented in the user manual. The two most important
backends are:

� the mca-quad backend replaces standard IEEE-754 computations by Monte Carlo arithmetic as
described in the next section. To simulate MCA, intermediate operations need to be performed
with higher precision. Native float operations are performed with a double precision and
native double operations are performed with a quad precision.

� the vprec backend simulates the effect of using mixed-precision in a program. It allows to
customize the size of the exponent and of the mantissa during FP operations. For a full
description of this backend please refer to [7].

The latest version of Verificarlo fully supports OpenMP, Pthread and MPI parallel programs, and
backends have been designed to be reentrant and keep a coherent state between threads of execution.
Moreover, Verificarlo comes with multiple post processing tools, such as vfc_ci.

Verificarlo CI pipeline

It is on this basis that Verificarlo CI has been developed, with the goal to provide a fast and general
way to automate such numerical accuracy tests. The idea is to maintain a separate Git branch in
parallel to the main development branch in order to store the test results. This branch will be called
the CI branch. Each time users push modifications to the main branch, a distant runner will execute
a predefined set of tests and push the results to the CI branch. These files can easily be accessed

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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Figure 1: Bird’s eye view of the Verificarlo pipeline.

by the users, who can then run a simple web server to dynamically access and visualize their results.
This usage pipeline is shown in figure 2.

Figure 2: Verificarlo CI usage pipeline

All functionalities of Verificarlo CI are gathered into a single command-line interface (CLI) com-
prised of the three following sub-commands:

� setup: performs an automatic setup of the CI workflow, which can then be customised ac-
cording to the user’s needs.

� test: launches a test run by reading a configuration file that contains instructions to build and
execute the tests.

TREX: Targeting Real Chemical Accuracy at the Exascale project has received funding
from the European Union Horizon 2020 research and innovation program under Grant
Agreement No. 952165.
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� serve: runs a server that reads test results files, and gives access to an interactive report to
visualize results in a Web browser.

The following sections will describe the different steps required to operate this workflow.

Probe system To export variables directly from test programs, we design a source level C API
which works by placing ”probes” in a code. A probe is linked to both a test and a variable name,
and the names used to register the probe will be the one displayed in the report. All probes will be
stored in a single hash map structure. Exporting this structure to the vfc_ci tool is handled by the
API. In order to use the probes system in Fortran, we provide an interface using the ISO_C_BINDING
intrinsic module.

vfc_probe, vfc_probe_check and vfc_probe_check_relative are the main functions to
register a new probe, with an optional accuracy target that can be placed on the variable. These
targets can represent an absolute or relative error, and will be used to inform the user if the desired
accuracy is not reached on some of their variables.

A probe is identified by a unique combination of test and variable name at vfc_ci’s level. In the
below example, the probe is identified by the "test"/"var" couple, and an absolute error threshold
is set to 0.01:

vfc_probe_check(&probes, "test", "var", var, 0.01);

Generating a CI workflow To integrate Verificarlo CI with Github Actions or Gitlab CI/CD, the
two branches structure described in section 2.1 will be used. The CI branch is an orphan branch. It
facilitates the upload of the files from the CI runner, and the access by checking out the CI branch.
The vfc_ci setup subcommand provides a convenient way to setup the workflow by creating the
CI branch from a workflow configuration file on the main branch.

Running tests In order to be able to run the tests, the vfc_ci test subcommand requires a
description of the tests and Verificarlo backends to run. It is specified in a JSON configuration file,
which allows to specify and modify even complex test setups. Typically, the test subcommand will
be launched by the CI workflow, but it can also be called manually at anytime.

All the data processing is done during this step: when using Verificarlo’s MCA backend (or another
non-deterministic backend), the tool computes the significant bits of variables and checks the target
accuracy threshold to errors. The test results are exported to an HDF5 file, a hierarchical format
commonly used in HPC applications. The HDF5 files can optionally embed the ”raw” test results.
In the default CI workflow, this raw data is stored as a job artifact and accessible for a limited time,
to enable user defined additional analysis.

Finally, by default vfc_ci run links the test run to the last Git commit by fetching the associated
git metadata to be saved.

Test reports vfc_ci uses the Bokeh Python module to generate plots inside an HTML report and
make them available by running a server with the vfc_ci serve sub-command. Using widgets, the
user can interact with the plots that are dynamically updated by requesting data from the server.
The report is organised into different views:
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� Runs comparison: this view compare the evolution of a variable over time (i.e. the different
commits). Each metric is displayed in a dot plot where the different commits are shown on the
x-axis. If an element of the plots is associated to a failing check, it will be displayed in red.
Clicking on an element of the plots in this view will open the ”Run inspection” view for the
corresponding run.

� Run inspection: this view focuses on a particular run, and allows to visualize results for either
one test, variable or backend, grouped by one of the two remaining factors. Currently, This
view is only available for stochastic backends where s, µ and σ are defined.

� Check table: this view summarizes all the accuracy targets attached to probes allowing to
check which ones are passing or failing.

Section 3.6 shows how Verificarlo-CI was used to detect bugs during the development of SMWB
kernels within QMCkl.

3 Numerical optimization of QMCkl’s SMWB kernel

This section addresses the numerical problems of the implementation of the Sherman-Morrison
method within QMCkl. We validate the performance and accuracy using a benchmark from
QMC=Chem.

This work addresses the following goals. To

� solve a numerical problem that exists in the Sherman-Morrison method, as implemented and
used extensively in the QMC=Chem [8] software package,

� extend and generalise this method to include higher-rank cases (Woodbury matrix identity),

� implement these methods and optimise them to run efficiently on high performance computing
architectures offering different precision-performance tradeoffs.

In section 2.1 we briefly explain why the Sherman-Morrison method is used in QMC=Chem.
Then we formally introduce the Sherman-Morrison formula in Section 2.2. Finally, in Section 2.3 the
problem with the current iterative implementation and how it arises will be explained as well.

3.1 The case for using Sherman-Morrison in QMC=Chem

In many QMC methods the many-body wave function Ψ(r1, . . . , rN) for N electrons (where ri is
the location of electron i ∈ {1, . . . , N}) is expressed as an expansion of Ndet determinants of Slater-
matrices, containing ordered collections of single-electron basis-wave functions

Ψ(R) =

Ndet∑
k=1

ck detS↑
k(R↑) detS↓

k(R↓) (2)
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where R = r1, . . . , rN , R↑ and R↓ are the subsets of coordinates associated with spin-up and
spin-down electrons. The matrix elements of Sσ

k (σ =↑, ↓) are defined as

[Sσ
k ]ij = ϕj(ri) (3)

and ϕj are the single-electron orbitals. The coefficients ck take care of the normalisation of the

many-body wave function (
∫ +∞
−∞ |Ψ|

2dR=1).

Sometimes this expansion only contains one big Slater determinant, sometimes it contains many
smaller ones. In our test-case, based on data extracted from QMC=Chem, it concerns the latter.

During the course of minimising the total energy of the system, in each Monte Carlo step the
kinetic energy of the system

Ekin ∝ −
N∑
i=1

∇2
ri
Ψ(r1, . . . , rN) (4)

needs to be calculated. Each Laplacian ∇2
ri
is acting only on the ϕj(ri) parts of the wave function.

To compute ∇2
ri
Ψ for a given ri the following identity is used extensively

∂ri detS = detS Tr (S−1∂riS), ri ∈ {xi, yi, zi} (5)

We therefore need to keep track of the inverses of the Slater-matrices to compute basic quantities
like the kinetic energy of the system.

Common manipulations of the many-body system to move towards a lower total energy are
moving single electrons and/or manipulating electron orbitals. This corresponds to changes either in
the rows or the columns in the Slater-matrix. Whenever there is a change in the Slater-matrix due
to one these manipulations, the inverse of the Slater-matrix needs to be re-computed.

A full inverse can be computed with software libraries like LAPACK [9] or MKL [10], but it turns
out that we do not need to recompute the entire inverse matrix. We can use the Sherman-Morrison
formula to update the old inverse Slater-matrix using the changes of the Slater-matrix. This turns
out to be much less computationally expensive in most cases than recomputing from scratch the
whole inverse Slater-matrix from the updated Slater-Matrix.

3.2 The Sherman-Morrison formula

Any change in a single row or column of a general N ×N invertible matrix A can be expressed by a
matrix U , constructed by the matrix product of two vectors u and v

U = uv⊤ (6)

where v⊤ is the transpose of v. If there is a change in the mth (1 ≤ m ≤ N) column of A, then
v will be the mth column of the N ×N identity matrix, while u contains the changes to the matrix
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elements of A, such that the changed matrix Ã

Ã = A+ U = A+ uv⊤ (7)

A change like U is called a rank-1 update because the dimension of the image of U , when U is treated
as an operator on a vector x, is 1

dim(img(U)) = 1 (8)

Another way of seeing this is to realise that all the rows/columns of U are linear combinations of
each other, and therefore the dimension of the row/column space of U is 1.

The new inverse Ã−1 can then be computed from the old inverse A−1 with the following formula

Ã−1 =
(
A+ uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
(9)

This is in the literature called the Sherman-Morrison (SM) formula.

3.3 The iterative problem of SM in QMC=Chem

Multi-row or multi-column changes can be expressed by a rank-K matrix U , which is simply a sum
of K rank-1 matrices Uk defined by

U =
K∑
k=1

Uk =
K∑
k=1

ukv
⊤
k (10)

such that

Ã =
K∑
k=0

Ak = A0 +
K∑
k=1

ukv
⊤
k (11)

where A0 is identified with the unmodified starting matrix A.
The SM-formula can be applied iteratively for each Uk until all K changes to A−1 have been

applied

A−1
k = A−1

k−1 −
A−1

k−1ukv
⊤
k A

−1
k−1

1 + v⊤k A
−1
k−1uk

, 1 ≤ k ≤ K (12)

and A−1
K is simply the final Ã−1.

When K is small compared to the dimension N of the matrix (and N is not too small itself),
computing the new inverse matrix using SM is much cheaper than inverting the whole matrix from
scratch with routines like LAPACK that do a full LU-decomposition every time. However, the
speed-up of applying a chain of K rank-1 updates with the SM comes with a cost.
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The SM-method has a problematic property. When K > 1, a situation can arise where one of
the Uk in the chain causes an Ak to become singular and det (Ak) = 0. In that case A−1

k is no longer
defined, but when det (Ak) is close to zero, A

−1
k still exists, though it can have a large numerical error.

Even though the final inverse Ã−1 is guaranteed to exists, there is no such guarantee
for the intermediaries A−1

k . But there is a silver lining. Looking at Eqn. (11) we see that apply-
ing the updates to A is a commutative procedure; we may apply the update in whatever order we like.

Saying that det (Ak) zero is equivalent to saying that the denominator in Eq. (12) is zero. So we
can introduce a ‘break-down’ parameter β such that

0 < β ≪ 1 (13)

where β := 1 + v⊤k A
−1
k−1uk. With this parameter we express what close to zero means. A value of

β = 1 × 10−3 is customary in QMC=Chem. This values was also used during the experiments we
did. Then for a given β, A−1

k−1 and uk we stop updating when∣∣1 + v⊤k A
−1
k−1uk

∣∣ < β. (14)

When this happens update uk is put in a waiting queue. When all the updates are applied in
the first pass, the waiting queue is processed in a second pass. The same can happen in the
second pass and we end up with a new queue. Most of the time this process ends and eventually
all updates are applied in some random order. But sometimes the queue cannot be emptied
and thus a good order does not exists. When this happens a full inverse is computed from
scratch. It might be that if we would have started with another uk we could have found a good
order. But this kind of algorithm would probably be much slower than simple computing a full inverse.

In the next section we will introduce several numerical methods that will either mitigate this
problem or remove the possibility for it to happen completely.

3.4 Numerical methods

In this section we list and explain the numerical methods and algorithms that we developed to solve
the numerical problems present in the current implementation of iterative SM in QMC=Chem. They
are not necessarily listed in the order that we developed and tested them, but rather in order of
ascending success rate.

To measure the success rate we used a straight forward method. We can define the following
residual matrix

ρ := Ã−1Ã− I (15)

we can use ρ to define an error on Ã−1. In the same way that we introduced the break-down parameter
β before we define the following tolerance

0 < τ ≪ 1 (16)
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that will determine if the final Ã−1 is acceptable or not. Using the element-wise Max-norm we impose
the following condition on the residual matrix ρ

∥ρ∥max < τ (17)

Whenever this inequality holds the numerical error on Ã−1 is acceptable. We have chosen value of
τ = 1× 10−3, the same as the value of β. We choose this value because it was the typical order of
magnitude of the norm of the residual matrix composed of the matrix/matrix-inverse pairs from the
dataset extracted from QMC=Chem.

We now proceed to introduced the numerical methods we used and developed.

A näıve approach to iterative Sherman-Morrison

This method is the most simplistic of all the iterative methods and also the one that has the lowest
success rate. It corresponds to Eq. (15) in P. Maponi’s 2006 paper titled ‘The solution of linear
systems by using the Sherman-Morrison formula’ [11]. This formula expresses the new inverse matrix
A−1 as a product chain of intermediary updated inverse matrices {A−1

k }

A−1 =

(
1N −

A−1
k−1ukv

⊤
k

1 + v⊤k A
−1
k−1uk

)
· · ·
(
1N −

A−1
1 u2v

⊤
2

1 + v⊤2 A
−1
1 u2

)(
1N −

A−1
0 u1v

⊤
1

1 + v⊤1 A
−1
0 u1

)
A−1

0 (18)

During the course of applying the chain of rank-1 updates, the denominators in Eqn. (18) are
compared with β as in Eqn. (13). When the condition is true the update process is stopped.

For a given number of updates K, this kernel works as follows:

Algorithm 1: The “Näıve” kernel

Data: A−1
0 , dimA−1

0 , detA−1
0 , K, {uk, vk}, β

Result: A−1
K , detA−1

K

initialisation: loop counter: k ← 1;
while k ≤ K do

compute: ck ← A−1
k−1uk (column vector);

compute the denominator: dk ← 1 + v⊤k ck;
if |dk| < β then

exit;

update: detA−1
k−1 ← detA−1

k−1 × dk;
select the row from A−1

k−1 that is updated: ek ← v⊤k A
−1
k−1 (row vector);

update: A−1
k−1 ← A−1

k−1 − ckd
−1
k ek;

increment loop counter: k ← k + 1;

Even though it is the kernel with the lowest success rate we decided include it for the reason that
if only one update is considered, it will not fail and is the fastest of all the listed kernels here, due to
it’s low complexity.
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Partial pivoting: Maponi’s method for solving linear systems

When we were first looking at the problem where a chosen order leads to a singular matrix in the
course of applying a chain of rank-1 updates, we were guided by intuition to the notion of partial-
pivoting. When performing Gaussian elimination on a matrix A to solve for the vector x in the matrix
equation

Ax = b (19)

the choice of pivot matters. Making a bad choice for the pivot element can lead to large errors in
the solution due to propagation and amplification of round-off errors. In partial pivoting the row
with the largest absolute value is chosen to minimise these errors.

The work of P. Maponi [11] is a logical starting point when considering partial pivoting in the
context of using the Sherman-Morrison formula. Instead of computing the inverse directly he is using
the Sherman-Morrison formula iteratively to solve a system of linear equations. He does this by
defining the intermediate solution vectors xk and the auxiliary solution vectors yk,l = A−1

k ul. The
inverse is then updated using the formula

A−1 =

(
1N −

yM−1,p(M)v
⊤
p(M)

1 + v⊤p(M)yM−1,p(M)

)
· · ·

(
1N −

y1,p(2)v
⊤
p(2)

1 + v⊤p(2)y1,p(2)

)(
1N −

y0,p(1)v
⊤
p(1)

1 + v⊤p(1)y0,p(1)

)
A−1

0 .

(20)

We tested Algorithm 3 from his work, which used the idea of re-ordering the updates explained in
Section 3.4. For a given update l, first all vectors yk,l are evaluated. The yk,l that gives the largest
value for

∣∣1 + v⊤l A
−1
k ul

∣∣ is chosen and applied. This kernel is referred to as Maponi A3.

We show later that the numerical and computational performance of this method is not on par
with the other ones presented in this report. Perhaps because of the added complexity to first obtain
the solution x via the auxiliary solutions yk,l and use the to reconstruct the intermediary {A−1

k } and
A−1.

For a given number of updates K, the kernel works as follows:
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Algorithm 2: The “Maponi A3” kernel

Data: A−1
0 , dimA−1

0 , K, {uk, vk}, β
Result: A−1

K

for k ← 1 to K do
compute initial auxiliary sequence {y0,k}: y0,k ← A−1

0 uk;

for l← 1 to K − 1 do
for a given l, select from {yl−1,k} the k that gives the largest value of:
dk ←

∣∣1 + v⊤0 yl−1,k

∣∣;
update: A−1

l−1 ← A−1
l−1 − d−1

k yl−1,kv
⊤
k A

−1
l−1;

for k ← l + 1 to K do
compute next auxiliary sequence {yl,k}:
yl,k ← yl−1,k −

v⊤l yl−1,k

1+v⊤l yl−1,l
yl−1,l, k ∈ {l + 1, . . . , K};

Reordering the updates

This is the approach currently used in QMC=Chem. It is an improvement of the previous “Näıve”
method. When an update uk causes Eqn. (14) to be true, instead of exiting it is kept in a
delay-queue. The next update is then evaluated and if it does not trigger a break-down, it is applied
and the inverse is updated. If not, it is also sent to the delay-queue. Then the next update is
evaluated, etc.

When the whole list is evaluated the method considers the updates left in the delay-queue. If it
is empty it is finished if it is not, the delay-queue is considered the new list of updates and they are
re-evaluated. If one triggers a break-down it is again sent to a delay-queue. The whole algorithm is
repeated until the update queue is empty.

Sometimes this is not possible and the number of updates left in the queue is equal to the
number that were going in. In this case the algorithm exits with an error. It is then up to the user
what to do next. The algorithm is implemented as a recursive function in C.

For a given number of updates K, the kernel works as follows
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Algorithm 3: The “Reordering” kernel

Data: A−1
0 , dimA−1

0 , detA−1
0 , K, {uk, vk}, β

Result: A−1
K , detA−1

K

initialisation:
loop counter: k ← 1;
number of later updates: L← 0;
later updates queue: {ul, vl} ← ∅;
while k ≤ K do

compute: ck ← A−1
k−1uk (column vector);

compute the denominator: dk ← 1 + v⊤k ck;
if |dk| < β then

add update uk to the queue: {ul, vl} ← uk, vk;
increment number of later updates: L← L+ 1;
increment loop counter: k ← k + 1;
continue to the next iteration;

update: detA−1
k−1 ← detA−1

k−1 × dk;
select the row from A−1

k−1 that is updated: ek ← v⊤k A
−1
k−1 (row vector);

update: A−1
k−1 ← A−1

k−1 − ckd
−1
k ek;

increment loop counter: k ← k + 1;

if L = K then
exit;

else if L > 0 then
recursive call using A−1

K−L, dimA−1
K−L, detA

−1
K−L, L, {ul, vl};

Slagel’s method of update splitting

This method is an improvement overt the previous ‘reordering’ approach. It is inspired by Joseph
Tanner Slagel’s splitting method [12].

The improvement is simple and captured as a flow-chart in figure 3. Once an update uk causes
Eqn. (14) to be true, instead of only pushing the update to the delay-queue, the update is first split
in half, uk → 1

2
uk. Then the first half of uk is applied since it can no longer cause Eqn. (14) to be

true. Then the other half is pushed on the delay-queue. Then the next update is considered. Either
it is applied entirely, or split in half. The algorithm is then executed recursively until the delay-queue
is empty.
We also provide the details in algorithm 4. It can be formally proved that by using this method
it will take a finite number of splits to apply any chain of rank-1 updates, as long as the fully
updated matrix is guaranteed to have an inverse. If you are interested in the proof, it is found in
Theorem 3.1.4 in Section 3.1.2 of [12].
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u ← updates.pop( )

Check Eq. (14) for u ?

Split u

updates.push_back( ½ u )

Apply SM step with ½ u Apply SM step with u

updates.empty() ?

End

no

yes

singular valid

Figure 3: Flow-chart for update splitting

All at once: the Woodbury matrix identity

To circumvent the problem of iterative SM altogether we can use its generalised form, called the
Woodbury (WB) Matrix Identity. The SM-formula is simply the special case for a rank-1 update
matrix. This is its most general form

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (21)

where U : N ×K, C : K ×K and V : K × N are conformable matrices. The matrices U and V
contain the updates and the update locations in the Slater-matrix repectively. Notice that

D := C−1 + V A−1U (22)

is at most K ×K. To give some perspective, when calculating the electronic structure and ground
state properties of the compound Benzene with QMC=Chem, in 75% of the cases the number of
updates that need to be applied to the inverse Slater-matrix is not larger than K = 6, whereas the
Slater-matrix is N = 21.

Having said that, using Woodbury for rank-K updates can be more costly than K rank-1
SM-iterations, depending on the architecture and the implementation. There is no way to know
a priory if this will be the case, so we recommend running a benchmark for an SM-kernel and a
Woodbury-kernel and make the final choice based on the results.
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Algorithm 4: The “Splitting” kernel

Data: A−1
0 , dimA−1

0 , detA−1
0 , K, {uk, vk}, β

Result: A−1
K , detA−1

K

initialisation:
loop counter: k ← 1;
number of later updates: L← 0;
later updates queue: {ul, vl} ← ∅;
while k ≤ K do

compute: ck ← A−1
k−1uk (column vector);

compute the denominator: dk ← 1 + v⊤k ck;
if |dk| < β then

split the current update in half: ck ← 1
2
ck;

add half of update uk to the queue: {ul, vl} ← 1
2
uk, vk;

update the denominator: dk ← 1 + v⊤k ck;
increment number of later updates: L← L+ 1;

update: detA−1
k−1 ← detA−1

k−1 × dk;
select the row from A−1

k−1 that is updated: ek ← v⊤k A
−1
k−1 (row vector);

update: A−1
k−1 ← A−1

k−1 − ckd
−1
k ek;

increment loop counter: k ← k + 1;

if L > 0 then
recursive call using A−1

K−L, dimA−1
K−L, detA

−1
K−L, L, {ul, vl};

Notice also that for C = I, U = u and V = v⊤, D reduces to

D = 1 + v⊤A−1u (23)

and since v⊤A−1u is scalar, we recover the SM-denominator D−1 = 1/
(
1 + v⊤A−1u

)
.

In our implementations we use C = I, so the WB-formula we use to compute the new inverse is

A−1
new = A−1

old −BD−1E (24)

where

B := A−1
oldU (25)

D := I + V B (26)

E := V A−1
old (27)

The algorithm for K updates is listed below
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Algorithm 5: The “K ×K Woodbury” kernel

Data: A−1
old, dim(Aold), det(Aold), K, U, V , β

Result: A−1
new, det(Anew)

compute: B ← A−1
oldU ;

compute: D ← 1 + V B;
compute: E ← V A−1

old;
compute: det(D) from LU factorization;
if |det(D)| < β then

exit;

update: det(Anew)← det(Aold)× det(D);
compute: D−1 from earlier LU factorization;
compute: A−1

new ← A−1
old −BD−1E;

3.5 HPC versions

To run with optimum efficiency on HPC architectures we used several well known techniques. Most
of the time was spent optimising the vectorisation that is discussed next. We also considered loop-
unrolling for a fixed number of updates in the WB-kernel. To fine tune the performance even more
and have specialised kernels for every system size we use source-code generation.

Vectorisation To vectorise the loops fully a few things need the be setup correctly simultaneously.
Only then all the obstacles for the compiler are removed and it can do its work the way we want.

Zero-padding of arrays Loops in our SM kernel were not automatically vectorised completely
when the leading dimension of an array was not an integer multiple of the CPU’s vector register size.
In this case a tail-loop was inserted and this has a negative impact on performance. It is then better
to add a small amount of extra work by padding the arrays with extra zeros, so that their leading
dimension becomes an integer multiple of the vector register size. Then tail-loops are unnecessary.
Even though more work is done, vector-instructions are usually faster than scalar-instructions.

The amount of zero-padding depends on the size of vector registers of the CPU. For example for
an Intel CPU with AVX2 extensions, the size of a vector register is 256 bits. This is equivalent to 8
ints/floats or 4 long ints/doubles 64 bit machine. For AVX512 these numbers double.

The datasets we used to benchmark the performance of our kernels were all zero-padded and in
the argument list of the kernel calls there are always two arguments that need to be passed. The real
dimension of the arrays and the zero-padded dimension, called the leading dimension.

Pointer aliasing The compiler is only able to vectorise the loops properly if it knows that the
pointers that point to the arrays are pointing to distinct blocks of memory. In other words, the
pointers cannot at any single point during the execution of the function body point to the same
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memory address.

If the compiler is not sure of this and the memory of one of the arrays could be accidentally
overwritten by using the pointers to other arrays, it will insert extra assembly instructions to make
sure that the intended result is guaranteed. This will of course come with a performance cost so we
need to prevent this from happening.

Luckily there is a way to tell the compiler that pointers do not alias by using the restrict

keyword in the pointer arguments of the function header. For example, for two double-pointers this
could look like:

void some_function(double* __restrict DATA, double* __restrict OTHER_DATA);

Contiguous memory and memory alignment A final issue that can arise when vectorising
loops is when the memory of the array is not contiguous and/or the data in the array is not aligned
to memory addresses that are predictable. In this case simple pointer arithmetic is not possible and
the compiler needs to insert extra assembly code to make sure it fetches the correct data. In that
case vector instructions cannot be used and therefore the final code will only be partially vectorised,
or not at all.

Again, we helped the compiler by making sure that the arrays contiguous in memory and that the
data addresses is properly aligned to n-byte boundaries by declaring e.g., for a K element double-
array Array:

double __attribute__( (aligned(8)) ) Array[K];

Manual loop-unrolling: 2 × 2 and 3 × 3 WB and the Blocking kernel For the Woodbury
kernel we have improved the performance by considering special cases. Looking at Figure 6, it is
evident that most of the time the number of updates that have to be processed is small, mostly
one, two or three updates. It is for that reason that we made two special cases of the K × K
Woodbury kernel: a 2× 2 case and a 3× 3 case. Because the number of rank-1 updates are known
we can unroll and simplify some loops. It also permits us to use explicit expressions for computing
the determinants and inverses of the 2 × 2 and 3 × 3 matrix D of Eq. (22), removing the need for
expensive calls to LAPACK for the LU-decomposition and matrix inversion.

To deal with all the possible cases we made a kernel that combines the Splitting kernel with the
WB 2× 2 and 3× 3 kernels that we call the “Blocking”-kernel.

To maximise arithmetic intensity the total number of updates is divided first in blocks of 3 rank-1
updates. Each of these blocks are then send to the WB 3 × 3-kernel. If any of these blocks fail
due to |detD| < β, the updates in the block are attempted with the Splitting-kernel and the split
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updates are moved to a queue for later.

After all blocks are done we check if the remainder is either 2 or 1 rank-1 updates. If the
remainder is 2, the updates are send to the WB 2× 2-kernel. If this kernel fails due to |detD| < β,
the last 2 rank-1 updates are also attempted with the Splitting-kernel, any split updates are also
moved to the queue for later.

If the remainder is 1, the last update attempted with Splitting-kernel, again adding half of it to
the queue in case of a split.

Then finally, if there are any, the remaining halves in the queue are sent to the Splitting kernel
which should always converge.

There is also a special case for 4 rank-1 updates. Performance measurements have shown that
doing 4 rank-1 updates in 2 blocks of 2 rank-1 updates is faster than doing them in a block of 3
and the remaining one with the Splitting kernel. The method is the same as for the general case: if
a block of 2 rank-1 updates fails, it is sent to the Splitting kernel and any split updates are moved
to a queue to processed in the end.

The algorithm looks as follows:
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Algorithm 6: The “Blocking” kernel

Data: A−1, dimA−1, detA−1, K, U, V , β
Result: Ã, det Ã
first initialisation:
number of later updates: L← 0;
later updates queue: {ul, vl} ← ∅;
if K = 4 then

call WB 2× 2 with the first 2 rank-1 updates;
if WB 2× 2 fails then

call Splitting-kernel1 with the first 2 rank-1 updates;
if any splits then

add half of those updates uk to the queue: {ul, vl} ← 1
2
uk, vk;

increment number of later updates: L← L+ (1 ∨ 2);

call WB 2× 2 with the last 2 rank-1 updates;
if WB 2× 2 fails then

call Splitting-kernel1 with the last 2 rank-1 updates;
if any splits then

add half of those updates uk to the queue: {ul, vl} ← 1
2
uk, vk;

increment number of later updates: L← L+ (1 ∨ 2);

if L > 0 then
call Splitting-kernel2 using A−1

K−L, dimA−1
K−L, detA

−1
K−L, L, {ul, vl};

exit;
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second initialisation:
number of 3 rank-1 update blocks: N ← ⌊K/3⌋;
remainder: R← K mod 3;
for number of blocks N do

call WB 3× 3 for each successive block of 3 rank-1 updates;
if WB 3× 3 fails then

call Splitting-kernel1 with the 3 rank-1 updates of the current block;
if any splits then

add half of those updates uk to the queue: {ul, vl} ← 1
2
uk, vk;

increment number of later updates: L← L+ (1 ∨ 2 ∨ 3);

if R = 2 then
call WB 2× 2 with the last 2 rank-1 updates;
if WB 2× 2 fails then

call Splitting-kernel1 with the last 2 rank-1 updates;
if any splits then

add half of those updates uk to the queue: {ul, vl} ← 1
2
uk, vk;

increment number of later updates: L← L+ (1 ∨ 2);

else
call Splitting-kernel1 with the last rank-1 update;
if a split then

add half of the update uk to the queue: {ul, vl} ← 1
2
uk, vk;

increment number of later updates: L← L+ 1;

if L > 0 then
call Splitting-kernel2 using A−1

K−L, dimA−1
K−L, detA

−1
K−L, L, {ul, vl};

exit;

Actually, only the non-recursive part of the Splitting kernel is used here. It doesn’t call itself after it applied and/or
split the updates. It only populates the update queue and increment the number of later updates if there are splits.

Here the full recursive version of the Splitting kernel is used.

Explicit array dimensions and kernel-template generation When the array dimensions and
loop bounds are known to the compiler at compile time it can optimise more aggressively for
loop-unrolling and vectorisation, greatly reduce the number of assembly instructions and increase
the overall performance.

To that end a Python script is used to automatically generate C-source code for each specific
system size. This allows the C-compiler to know always the array dimensions and loop-bounds
at compile time. For the users a general kernel will be exposed in the QMCkl that contains a
switch-mechanism that calls the internal specialised kernels that were generated by the Python
script. A simple example of how this is done in C, for the fictitious kernel kernel(size,
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other parameters), is shown in Listing 1.

double kernel(size, other_parameters)

{

switch(size)

{

case 1: return kernel_1(other_parameters);

case 2: return kernel_2(other_parameters);

...

...

...

case n: return kernel_n(other_parameters);

}

}

Listing 1: Automatic kernel selection based on the function argument size.

3.6 Usage of Verificarlo-CI during SMWB kernel development

In this section, we illustrate how we used Verificarlo CI during the SMWB kernel development process.
As shown previously, QMCkl implements different algorithms to apply SM formula with a set

of updates (uj, vj), for j = 1, ...,m. The naive approach applies these updates in sequence. This
method is called Naive.

Depending on the updates ordering, the SM denominator can be close to zero [13], meaning that
the matrix A becomes singular. This makes the method numerically unstable. A refined algorithm
using Slagel splitting [14] is called Splitting.

To implement the Woodbury formula, blocks of rank-3 and rank-2 updates are built. If the
intermediate matrix update is singular, the corresponding updates will be applied as rank-1 with
SM2. This method is called Splitting+Blocking. Because it changes the order of operations, one
must ensure that the numerical accuracy is preserved compared to Splitting.

All these algorithms have been tested with Verificarlo CI on a set of matrices and updates from
a real QMC=Chem use case on Benzene. For each test, we measure the residual with the squared
norm

∑n
i=1(AA

−1 − I)2ii.
During the development of SMWB, the ”Run inspection” view of the report allowed us to spot

a bug that caused our implementation to numerically fail. Figure 4 shows a box plot obtained from
this view: the number of significant bits s2 has been computed for each combination of test and
algorithm, and grouped by algorithms.

We observe some outputs for which SMWB has a high numerical error. After investigation, we
discovered than in the initial implementation of SMWB, delayed updates were directly applied after
each Woodbury step. This reduces the numerical stability because it increases the probability of
producing singular intermediate matrices. It was fixed by moving all the updates to the very end of
the update queue.
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Figure 4: Significant bits of Frobenius norm for all cycles and algorithm combinations for commit
6f282f3, grouped by algorithms. SMWB fails catastrophically in some cases.

Figure 5, obtained from the ”Runs comparison” view, illustrates that from commit 67f5379:
after the fix, SMWB behaves similarly to SM2.

Thanks to Verificarlo CI we were able to detect this numerical discrepancy and fix it early in the
development process.
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3.7 Experiments with QMC=Chem

QMC=Chem relies heavily on the use of SM for updating the determinants and inverses in the
many-body wave function. So any gain in numerical accuracy and/or performance could have a
significant impact on its overall performance.

Because we want to know how our algorithms would behave in QMC=Chem we tested them
using real data extracted from a short run of QMC=Chem on the Benzene molecule. This way we
can also account for the behaviour of the kernels due to any particularities of the data itself. How
we extracted the dataset will be explained in the next section.

We then proceed with explaining the exiting problems with the current implementation of the SM-
method. After that we elaborate on the measurement procedure and give details about the machine
architecture on which the measurements have been performed. Finally, we present the experimental
results.

Dataset extraction

We tested our kernels on datasets [15] that we extracted from QMC=Chem using Variational Monte
Carlo (VMC) to run a ground state calculation for Benzene (42 electrons, 21 spin-up, 21 spin-down),
using 329 and 15784 determinants respectively. The datasets are extracted after a single electron
move, when the MOs and determiants in Eqn. 2 are being updated. Additional Fortran write-
statements were added to the file $QMCCHEM ROOTsrc/det.irp.f to extract and save the following
data

� the number of the determinant in the chain, starting from 1 and omitting numbers
i × Ndets, i = 0, 1, . . . that are computed with LAPACK

� the dimension of the Slater-matrix

� the number of rank-1 updates (= number of MO/column changes)

� the Slater-matrix S before update

� the inverse Slater-matrix before update

� the column-indices of the updates

� the updates themselves as replacement-updates

Fig. 6 shows the distribution of the occurrence frequency of the number of rank-1 updates. Both
the datasets have a maximum of 15 rank-1 updates per changed determinant. The only difference is
their relative occurrence frequency, for the 329-determinant dataset 1–6 rank-1 updates account for
75% of the cases, whereas for the 15784-determinant dataset it is 1–8 rank-1 updates.
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Figure 6: Distribution of the occurrence frequency for each number of rank-1 updates that can
occur. The blue area represents the 3rd quartile of the distribution. For the 329-determinants case,
75% of the time updates consist of 1–6 rank-1 updates. For the 15784-determinants case updates
consist of 1–8 rank-1 updates.

Problems in the current implementation

We now continue to list the issues in the current implementation of iterative Sherman-Morrison in
QMC=Chem. All of these issues have been addressed in our improved kernels.

Issue 1: Numerical accuracy with large number of determinants The SM implemented
in QMC=Chem at this moment is equivalent to the reordering method described in Section 3.4.
In case there is one determinant along the chain that has more than one rank-1 update and a
suitable order to apply the Uk cannot be found the whole inverse is recomputed with LAPACK.
Then the next determinant in the chain is again updated using SM, if possible. If not, LAPACK,
etc. In our particular case for Benzene with 329 determinants and the used value of β = 1 × 10−3

in QMC=Chem, LAPACK was never called mid-chain. But for the case of 15784 determinants,
numerical accuracy suffers too much before the end of the chain is reached. LAPACK is called about
20 times per 15784-determinant chain.

Because of this, QMC=Chem is loosing more time during LAPACK calls then if it were to use
only Sherman-Morrison. The challenge is therefore to first increase the numerical accuracy of the
SM method. Once that is achieved, calls to LAPACK should only occur for the first determinant in
the chain and thereby increasing the overall performance.

If we can improve the numerical accuracy of the kernels, calls to LAPACK mid-chain could be
reduced as well as is part of its performance cost.

Issue 2: Low arithmetic intensity (HPC) All of the SM methods discussed below have one
property in common in that they consist mostly of Matrix-Vector operations (BLAS Level 2). To
increase the performance of applying multiple rank-1 updates even more it would be fruitful if we could
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somehow increase the arithmetic intensity by using Matrix-Matrix operations (BLAS Level 3). One
way of doing that is to use the more general Woodbury matrix identity discussed in Section 3.5 or 4.2.

Measurement machine architecture and measurement procedure

All the measurements have been performed on Intel-based PC with a Core i9-10900 64-bit CPU
and 32 GB of non-ECC memory. The CPU has the following vector instruction extensions: SSE4.1,
SSE4.2 and AVX2.

In the experiments with Benzene, the Slater-matrices will receive at most 15 rank-1 updates. One
series of 1 ≤ k ≤ 15 rank-1 is called an update cycle. For each update cycle we read the following
data from the dataset (except D):

D : dimension of the Slater-matrix (only once at the beginning)

S : the current Slater-matrix

S−1 : the current inverse Slater-matrix

K : the number of rank-1 updates

C : the vector of length K containing the column numbers that need to be updated

U : K ×D matrix containing the column updates

During the measurement, the following data is written to STDOUT

CYCLE cycle number

UPDS number of updates K in the cycle

ERR IN check on the input matrices S and S−1: 0 if ∥ρin∥ < τ , 1 otherwise

ERR BREAK check on the SM or WB denominator during update: 0 if
∣∣1 + v⊤k A

−1
k−1uk

∣∣ > β, 1 otherwise

ERR OUT check on the output matrices S and S−1: 0 if ∥ρout∥ < τ , 1 otherwise

SPLITS number of splits for kernels that use Slagel-splitting. This is a global variable that is set to zero
at the start and updated during kernel execution.

BLK FAILS number of failed blocks of 3- or 2 rank-1 updates for the Blocking kernel. This is a global
variable that is set to zero at the start and updated during kernel execution.

MAX element-wise max-norm of ρout

FROB Frobenius-norm of ρout

COND Condition number ∥S−1S∥ of the output matrices

CPU CYC Number of CPU cycles for the whole update cycle
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CPU CYC/UPD Number of CPU cycles / K

CUMUL Cumulative of all update cycles

REC Number of recursions for recursive kernels. This is a global variable that is set to zero at the
start and updated during kernel execution.

Then the measurement program will do the following, based on the chosen kernel and N that
has to be set at execution:

Set the global cumulator to 0;
for each update cycle do

1. Read S, S−1, K, C and U from dataset

2. Check ∥ρin∥ < τ and write to ERR IN

3. Set CPU CYC and SPLITS to 0

for N repetitions do
Make a copy S−1

copy of S−1 and use it in the chosen kernel;

for the chosen kernel do

1. Poll the CPU cycle counter

2. Execute the chosen kernel and record the exit status in ERR BREAK

3. Poll the CPU cycle counter again

4. Add CPU cycle difference to accumulator

1. Copy the updated S−1
copy back to S−1

2. Divide cycle- and split-accumulator by N and record in CPU CYC and SPLITS

3. Add CPU CYC to the global cumulator and record in CUMUL

4. Divide cycle-accumulator by K and record in CPU CYC/UPD

5. Update S

6. Check ∥ρout∥ < τ and write to ERR OUT

7. Write the recorded measurements to STDOUT
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Results for the numerical accuracy

To measure the numerical accuracy we use the two parameters β and τ defined in Eqns. (13, 16).
It has been determined empirically through the use of QMC-Chem that a good “near zero” value,
below which the quality of the updated inverse suffers too much, is β = 1 × 10−3. After a kernel
has updated the inverse Slater-matrix the residual ρ is computed and the inequality Eqn. (17) is
evaluated with τ = 1 × 10−3. When the inequality holds the inverse Slater-matrix is considered
numerically acceptable and passes. When the inequality doesn’t hold, the inverse is considered
numerically unacceptable and fails.

The number of passes and fails are collected and with them we define the following fail rate

Fail rate =
# of fails

# of passes + # of fails
× 100% (28)

329 α-determinants

In Table 1 the fail rates are shown for 10384 update cycles and 329 determinants in the wave function.
The Näıve-kernel is particularly bad because as the number of rank-1 updates increases along the
329-determinant chain the probability of encountering a rank-1 update that cause singular behaviour
increases as well. The Reordering-kernel is already two orders of magnitude better, having only 26
failed updates. The Splitting– and Blocking-kernel are clearly the best, with only 21 failures. Unlike
the failures for the Näıve-kernel, these are not failures of the kernels themselves due to denominators
that are too small, but due to a too large max norm of the residual matrix ρ.

Kernel # Pass # Fail Failrate (%)

Näıve 6598 3786 36.46

Reordering 10358 26 0.25

Splitting 10363 21 0.20

Blocking & Splitting 10363 21 0.20

Maponi A3 9544 840 8.09

Maponi A3 & Splitting 9921 463 4.46

Table 1: Fail rates for Benzene with 329 α-determinants and 10384 update cycles in total, β =
1× 10−3 and τ = 1× 10−3.

Numerical drift For the case of 329-determinants there is a general trend that the max norm of
the residual matrix ∥ρ∥max steadily increases while going along the chain, and then falls back again
after the next first determinant is computed with LAPACK. This behaviour is shown in Fig. 7. This
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suggest the numerical noise is slowly accumulated and carried along the chain. Unfortunately the
failing cases are not in general situated near the ends of chains so it might be that they were simply
caused by particularly ill conditioned input matrices.

Figure 7: Numerical drift, steadily increasing from the beginning to the end of the 329 determinant
update chain.

Numerical accuracy independent of number of updates Another interesting aspect of the SM
and WB kernels is that the numerical accuracy, measured by the Max-norm of the residual matrix
ρ does not seem to depend on the number of rank-1 updates they have to apply. This is shown in
Figure 8. For most kernels and number of updates the Max-norm appears the be centred around
1× 10−5. There is one extra branch at 1 rank-1 update centred around 1× 10−11. These correspond
to the second determinants in the chain as discussed just above.

15784 α-determinants

For this case we chose to show a slightly larger level of detail by giving the fail rates for five repre-
sentative number of rank-1 updates: an overall fail rate all, the case where there is only 1 rank-1
update to compare against the Näıve kernel, 2 to compare against Woodbury 2 × 2 (WB2), 3 to
compare against Woodbury 3× 3 (WB3) and 6 to see how well the Blocking kernel performs against
Reordering/Splitting. The results are summarised in Table 2. As in the 329-determinant case, the
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Figure 8: The influence of the number of rank-1 updates to numerical accuracy for various kenrnes.

Näıve kernel is by far the worst as rank-k, with k > 1, are very common. It is surprising however
that for the rank-1 update case the Näıve kernel seems to do ever so slightly worse than the Split-
ting kernel, but maybe we are actually looking at the machine noise level; they are the same upto
4 decimal digits. For the rank-2 update case WB2 is slightly worse than Splitting, Reordering and
Blocking because the Woodbury kernels seem cause slightly larger loss of precision than the SM-only
kernels. The Blocking kernel behaves the same as the Splitting-kernel because it retries the failed
cases of WB2 (because the denominator is too small) by sending them to the Splitting kernel and
then passes. For WB3 we see the same behaviour for the rank-3 update cases. The failing blocks
are retried using the Splitting kernel. Overall the Blocking and Splitting kernels behave numerically
equivalent and are the best compared to the others. The Blocking kernel is a few more failing cases
because WB2 and WB3 are slightly less accurate, but as we will see later this comes with a slight
increase in speed.

Results for the performance

Before we jump to the final performance results there are two aspects that are interesting on their
own right. One of them is the performance per rank-1 update, which as will be shown varies little.
Then we will consider performance stratification.
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# upds (222008 cycles) Kernel: Näıve Splitting Reordering WB2 WB3 Blocking

all (222008 cycles) 48.780 .831 .932 – – .831

1 (23533 cycles) .939 .931 .939 – – .931

2 (29388 cycles) 5.962 .759 .769 .783 – .759

3 (26239 cycles) 54.545 .808 .873 – .842 .808

6 (19442 cycles) 73.835 .741 .905 – – .746

Table 2: Fail rates for Benzene with 15784 α-determinants, 222008 determinants in total, β =
1× 10−3 and τ = 1× 10−3. The fail rates are shown for five relevant number of updates.

Figure 9: Performance in CPU-cycles per rank-1 update for various kernels.

Performance per rank-1 update Fig. 9 shows the number of CPU-cycles per rank-1 update
versus the number of rank-1 updates for various kernels. Focussing our attention on the 3rd there are
two main branches. One is centred around 250 CPU-cycles/rank-1 update. For one rank-1 update
the spread is due to variability of the machine itself. For the cases of more than one rank-1 update
this is mainly due to the number of splits for the Splitting kernel, or the number of failed blocks in
the Blocking kernel.
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Looking at the left two panels of Fig. 10, for the case of Benzene, 329 determinants the maximum
number of splits is always one less than the number of updates, in case of the Splitting kernel. The
Blocking kernel seems to get away with less splits in general, except in the case of two rank-1 updates.
On the right two panels of Fig. 10 we plotted the average number of CPU cycles per rank-1 update
as a function of the number of splits. In the passing cases the number of CPU cycles per update
increase linearly as the number of splits increases, up until 6 splits where it plateaus. For the failing
cases there are never more than 3 splits, but most of these occurrences are clustered around 0–2 splits
and take an average of about 300 CPU cycles per update.

Performance stratification When we plot the element-wise max-norm of the residual matrix ρ
against the number of CPU cycles for all kernels, we get the picture that is shown in Figure 11.
Each coloured point on this plane corresponds to exactly one update chain computed for the kernel
corresponding to that colour. Where this point is located on the plain, together with all the others
of the same colour, eventually determines the numerical accuracy and performance of the kernel.
When looking at Figure 11 carefully we can see clusters of vertical stripes, except for the LAPACK
kernel. Each of these clusters corresponds to a specific set of circumstances. E.g. the green cluster
of stripes in the top-left corner are all above the tolerance threshold τ and are failing update-chains.
The vertical stripes are formed by how many updates were applied successfully by the “Näıve kernel”
before a break-down occurred.

The cluster in the bottom-left between 200 and 300 CPU cycles/update are the update chains
that correspond the first ones after a full inversion with LAPACK and have only one rank-1 update.
So they did not have the time to accumulate any numerical noise, hence their relatively small residual.
Then there is the big cluster in the middle covering most remaining cases. The light blue stripes
are formed by the recursions of the “Reordering” kernel. Some update chains are harder than oth-
ers so sometimes it takes more than a few recursive calls to find a successful order. This accounts
for the rather wider range of required CPU cycles/update than that of the “Splitting” and “Block-
ing+splitting” kernels. To look a bit closer at the big cluster in the middle we selected only the
update-chains containing nine rank-1 updates and only plotted the ones that passed with the ‘’Split-
ting” kernel. This is shown in the upper panel of Figure 12. In this case the vertical stripes are
formed by splits, where the spacing between the stripes correspond to how many times the kernel
had to split an update before it could be successfully applied. Not every possible number of splits
occurs, as can be seen in the right panel of Figure 12. Here we separated the points by the number
of splits. In the case of nine rank-1 updates, only 0, 1, 3, 7 and 8 splits occur, hence difference in
the spacing of the stripes.

3.8 Classification of all the kernels

To have a good idea of the numerical accuracy and performance of each of the kernels we have
included Figure 13. For each kernel we averaged the results for the numerical accuracy along the
vertical axis, the element-wise max-norm of ρ, and took the median of the number of CPU cycles
per rank-1 update along the horizontal axes. This results in an easy to read overview for each kernel.
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Ideally the best kernel resides in the lower-left corner of the square and the worst possible one in the
upper-right corner.

What is immediately apparent when looking at the left panel, is that even though the inverses
computed directly with Intel’s MKL are the most accurate (lowest max-norm of ρ), it is also the
most costly. Similarly, even though the Näıve kernel is the fastest, it is also the least accurate in
cases where there are more than one rank-1 update.

To have a better resolution in the part where the remaining kernels are clustered together
the MKL kernel has been removed in the second panel. In the lower-left corner we can see the
two kernels Splitting and Blocking+splitting (pink square and red dot). Their performance is
similar to the Reordering kernel (green square) but have a better numerical accuracy of at least
one order of magnitude. This is good news because it should help with the issues raised in section 3.3.

For some reason the Woodbury K ×K kernel performs relatively bad in terms of accuracy and
performance.

3.9 Final recommendations

Summarising the previous results we can conclude with the following recommendations

Single rank-1 updates When there are only single rank-1 updates we don’t have to worry about
the relatively low numerical accuracy of the Näıve kernel because this is only due to the possible
singular behaviour induced by iterative process in multi rank-1 updates. In this case the Näıve will
give you the best perforce overall.

All other cases In all other cases the Blocking+Splitting kernel is the best option. It has the
same numerical accuracy as the Splitting kernel but with the benefit of being slightly faster due to
its higher arithmetic intensity.

4 Impact of Mixed-precision in CHAMP

In this numerical exploration of CHAMP [16] we used the Delta-Debug functionality of the numerical
analysis tool Verificarlo to analyse the sensitivity of the total energy (TE) and inter-nuclear forces
(INF) to numerical noise. On the tested datasets we conclude that for the TE we can reduce most of
the code to single precision (SP) floating-point (FP) numbers without sacrificing numerical accuracy.
The INFs are more sensitive and only a few functions can be reduced to SP. This might negate any
speedup gained from converting said functions to SP.

4.1 Verificarlo and the VPREC backend

Verificarlo (VFC) [17] is a tool for debugging and assessing FP precision and reproducibility. It is
an extension to the LLVM compiler that can use various arithmetic backends. In this exploration we
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used the VPREC backend libinterflop vprec.so. It supports all the major languages including
C, C++, and Fortran. Unlike source-to-source approaches, it captures the influence of compiler
optimisations on the numerical accuracy.

The VPREC backend simulates any FP formats that can fit into the IEEE-754 double precision
format [7]. The backend allows modifying the bit length of the exponent (range) and the pseudo-
mantissa (precision). Here we only used VPREC to modify the pseudo-mantissa.

4.2 Delta-Debug and VFC-DD

Delta-Debug (DD) method is a generic bug-reduction method [18] that allows to efficiently find
minimal sets of conditions that trigger a bug. In the context of Verificarlo Delta-Debug (VFC-DD),
which is an implementation of the DD method that is guided by VFC, the ‘conditions’ are the
dependencies of the quantities-of-interest’s numerical precision and a ‘bug’ means: whenever the
numerical accuracy of these quantities-of-interest, that depend on these conditions, drop below a set
amount of significant digits. When this happens the program is said to “fail” and otherwise it is said
to “pass”.

Once VFC-DD knows what ‘passing’ and ‘failing’ means it uses a systematic way to inject a user-
configurable amount of noise in some FP operations during program execution, but not in others. By
using this method VFC-DD will output one or more ‘minimal sets’ called ddmin{X}, where X is the
number of the minimal set. Each of these minimal sets contain a minimal configuration of conditions
that trigger a bug. It is then the complement of the union of these ddmin{X} sets that gives a list of
quantities that can be safely moved to a lower precision without sacrificing the numerical accuracy
of the quantities-of-interest.

With this list in hand we can then set out to reduce the precision in some “hot” parts of the code
in the hope to gain a speed-up without sacrificing numerical accuracy. If you want to know how the
method works from a conceptual point of view, I encourage you to read Chapter 4 in reference [18].

4.3 Methodology

In order for Verificarlo and VFC-DD to work with CHAMP, Verificarlo needs Flang as its frontend to
LLVM to compile CHAMP. To compile CHAMP with Flang a few minor changes needed to be made.
The version of CHAMP that we used is based on commit:

https://github.com/

filippi-claudia/champ/commit/

f84d4e2037c914b38d82dba63abafd1f860a3c51

No changes have been made that change the behaviour of CHAMP. The changes made are to
guarantee successful compilation with Verificarlo/Flang. To enable VFC-DD functionality in CHAMP
the compiler flag --ddebug needs to be passed:

verificarlo-{c/c++/f} --ddebug -c <input.{c/cpp/f/f90}>

After that, CHAMP/vmc.mov1 is run on a configuration of Butadiene

/path/to/champ/bin/vmc.mov1 -i butadiene.inp -o butadiene.out
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During the measurements we have chosen to monitor the number of significant digits of the
total energy and inter-nuclear forces. They are monitored by extracting them from the output file
butadiene.out generated by CHAMP. For these experiments we monitored only FORCE 1 and
ignored the forces of the other three nuclei since they are computed using the same code path.

The VFC-DD run is executed by using the Python script vfc ddebug that needs two arguments.
The first argument is a script that takes care of running the executable that needs to be analysed,
commonly called ddRun. It can be any kind of script, Shell, Python, Perl, etc.

The second argument is a script that compares the values of a specific run with injected noise
against the values of a reference run done at the beginning. This script is assumed to fail when
a certain criteria is not met, e.g. the number of significant digits drops below 5. It is com-
monly named ddCmp and can be written in any kind of language as long is it is able to return
exit code ‘0’ back to the shell in case of success and anything else in case of fail. A minimal ex-
ample that applies VFC-DD to Archimedes’ method for computing π with ddRun and ddCmp scripts
can be found here: https://github.com/verificarlo/verificarlo_tutorial/tree/master/
verificarlo-tutorial/archimedes.

Once the VFC-DD is started ddRun runs CHAMP. The first run is done with the IEEE backend
which produces the reference values. After that a second run is done with the VPREC backend where
the mantissa is cut at a preset value of 24 bits. The python script ddCmp is then run to compare the
two values and calculate the number of significant binary digits with the following formula

s = − log2

∣∣∣∣xVPREC − xIEEE

xIEEE

∣∣∣∣ (29)

where xVPREC is the monitored value obtained from a run with the VPREC backend and xIEEE is the
reference value obtained from the first run with the IEEE backend.

4.4 Mixed precision experiments on CHAMP

Arithmetic operations in SP takes half the amount of time of the same operation in DP, so the
expected speed-up is 2×. But in reality it is a bit more complicated. Moving to SP will lead to an
overall reduction in arithmetic operations and in case of vectorised computations it can potentially fit
more elements in a vector if there are less bits per element. Moreover, there could be a gain due to
a reduction in memory size that causes better cache occupation, therefore reducing communication
over cache lanes.

These effects can sometimes compound and lead to super-linear behaviour in the speed-up but,
this is very rare. In memory- or communication-bound codes, most of the gains can come from using
less memory. In most cases the speed-up will be somewhere between 1 and 2.

So, if DP is used everywhere where it is not needed, then the code could be slower than it needs
to be. The obvious thing to do would be to switch to SP and have a potential speedup.

Total energy We found that as far as the TE is concerned, see Table 3, all the code, except
subroutine splfit in splfit.f can be switched to SP without sacrificing numerical accuracy.
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Function name Required precision (VPREC)

splfit Double

ALL OTHERS Single

Table 3: CHAMP/VMC Butadiene CIPSI. Investigated precision on TOTAL ENERGY for all func-
tions.

4.5 Inter-nuclear forces

The INFs, see Table 4 are slightly more sensitive to numerical noise. Most functions, containing
about 81% of the selected lines, need to stay in DP. But other functions, containing the remaining
19% of selected lines, can be changed to SP. The number of functions containing lines that can be
moved to SP is still rather long and would require a significant amount of manual labor to move to
SP and test, and this for a yet unknown amount of gain in speed. We have therefore cross-referenced
this list of functions with a list of functions obtained with a hotspot analysis using MAQAO ONE
View [19]. From this list we selected the functions that make-up more than 2% of the execution
time. They are listed in Table 4. From the functions that take ≥ 5% of the execution time we list in
the last column what precision they require.

For example, we manually switched the subroutine orbitals quad to SP and checked that the
numerical accuracy was not affected by the change. This is indeed the case but since we cannot
change all the code to SP one needs to make sure that the arguments that are passed are precision-
matched before and after the call. This will an additional performance cost that needs to be balanced
against the potential gain of switching to SP.

In the list of hotspots in Table 4 also appear the functions powr8i4 and libm log l9. In
Intel’s Short Vector Math Library (SVML) there exist three versions of these functions; a low precision
version, called Enhanced Performance (EP), a medium precision version and a high accuracy version,
called High Accuracy (HA). To see if there is something to be gained we also experimented with the
three different version of these functions in CHAMP. To do this, additional Fortran compiler flags
need to be passed to the Intel compiler:

-fimf-precision={low,medium,high}:pow,log

-fimf-use-svml

In the first flag the user can select the desired precision for each arithmetic function. In this case
only the precision of the pow and log functions are modified. The other ones remain at the default
precision. If non of these flags are passed the default precision is used for all the SVML functions,
which is set to medium.

In Table 5 the results are shown for CHAMP running in ‘Standard’ mode, that is, with no flags
passed, and the three different precision modes of SVML in increasing precision. For each precision
CHAMP is run 25× to get a decent mean and STD for the execution times.
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Time spent (%)

Function name 500 dets 15k dets Required precision (VPREC)

orbitals 22.02 5.71 Double

nonloc 11.7 3.15

> orbitals quad:395 7 Single

orbitalse 5.56 3.36 Not called in VFC-DD

optjas deloc 4.66 16.45 Singel

splfit 4 Double

multideterminante grad 3.62 2.48

multideterminante 3.59 14.86 Double

multideterminant hpsi 3.56 3.49

n0 inc 2.6

basis fns vgl 2.48

basis fnse v 2.43

optorb compute 2.08

compute ymat 12.8 Double

detsav 4.66 Not called in VFC-DD

powr8i4 7.16 1.88

libm log l9 2.43 0.58

Table 4: CHAMP/VMC Butadiene CIPSI. Investigated precision on FORCES for functions of runtime
>= 5% of total run-time.

The results seem to suggest that the Standard mode of CHAMP has most in common with the
EP version, both in execution time and STD on the TE. We don’t understand this yet. The smallest
error on the TE is obtained with the HA version, while the execution time is not significantly larger
than that of the ‘Low’ and ‘Medium’ ones.

4.6 Recommendations

Single Precision only mode Since the TE is for the largest part completely insensitive to the
injected numerical noise, the idea is to use, e.g. preprocessor directives give the ability to choose
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Precision mean run-time (s) STD run-time (s) Total energy (Hartree)

Standard 18.761 0.12475 −26.2253208± 0.0089076

Low (EP) 18.861 0.12303 −26.2255374± 0.0083120

Medium 18.966 0.10977 −26.2344844± 0.0097661

High (HA) 19.199 0.11387 −26.2249791± 0.0076948

Table 5: Run-times for VMC.MOV1 for 3 different precision levels of Intel Short Vector Math Library
(SVML) operations pow and log.

between a Low Accuracy mode if one is only interested in the TE, and a High Accuracy mode
if one is also interested in computing inter-nuclear forces. This can be done by switching all the
variables in VMC.mov1 to SP, with the exception of subroutine splfit. In the High Accuracy mode
all the variables can be kept in DP with the exception of maybe the subroutines orbitals quad and
optjas deloc.

Try on different datasets All this work has been done on Butadiene. We do not know if the
numerical behaviour is much different when other materials are investigated. Considering the fact
for example that the INFs sometimes experience violent fluctuations whenever the reference deter-
minant gets too close to zero, depending on the input parameters, it would be prudent to see how
CHAMP/VMC behaves for other materials.

Move to Intel SVML High Accuracy for pow and log Table 5 suggests that moving the
arithmetic functions from medium to high accuracy comes with a very small cost in performance,
only 1.02× slower. An added benefit might by that during the Monte-Carlo process, because of the
higher accuracy, less iterations might be needed to reach the same level of convergence on the energy.
We don’t know if this is indeed the case, or how to check this. It could be interesting to see how
to check this. Additionally, moving to a larger number of determinants seems to diminish the time
spent in pow and log, so the move to HA should be come even less costly.

Optimisations on forces probably marginal Due to the possible overhead introduced by the
additional type conversions at the boundaries of function calls there might be no net speed-up. We
tried moving subroutine orbitals quad to SP and did the type conversion before and after the
functions call. We noticed no appreciable speedup. We therefore advise not to move the functions
in Table 4 that can be moved to SP (e.g. orbitals quad and optjas deloc) to SP as it will cost
a significant amount of manual labour with a possible marginal speedup.
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5 Conclusion

Verificarlo CI reuses the core backends of Verificarlo and therefore supplements the other existing
Verificarlo post-processing tools. To the best of our knowledge, it is the first tool that automates
numerical accuracy tests within a continuous integration workflow: it grants users the ability to define
such tests, and provides an easy way to visualize results throughout the development process of a
code. Verificarlo CI it is completely domain agnostic and could potentially be used on any code using
floating point in a variety of domain. Better integration of numerical concern in CI process make the
development processes safer and debugging easier, thus saving code developer precious time to focus
on their area of expertise. This work has been released within Verificarlo open-source project which is
available at https://github.com/verificarlo/verificarlo. A tutorial focusing on Verificarlo
CI is available at at https://github.com/verificarlo/vfc_ci_tutorial.

In future works, it would be interesting to validate these results on others datasets extending to
other materials than Butadiene. In the same spirit, we would like to numerically validate the proposed
improvements on other computing architectures such as ARM. On September 2023, we have released
a new version of Verificarlo fully supporting ARM64 architectures. Section 3 focused on the numerical
and performance optimization of the SMWB kernel, which is an important hotspot in multiple QMC
codes. In future works, it would be interesting to study other hotspots, such as Ewald summations
(important for example in TurboRVB).

All the SMWB computational kernels that are presented in this report are included in the TREX
Centre of Excellence Quantum Monte Carlo Kernel Library [20] (TREX-CoE/QMCkl). The reposi-
tory where the QMCkl code and documentation is stored can be found on https://github.com/

TREX-CoE/qmckl.
The kernels themselves as well as the code, documentation and regression testes can be found in an
‘Org-mode’ formatted file can be found the org/ subdirectory at https://github.com/TREX-CoE/
qmckl/blob/master/org/qmckl_sherman_morrison_woodbury.org.
The HPC versions of these kernels can be found at https://github.com/TREX-CoE/qmckl/tree/
master/org/hpc.
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Figure 11: The element-wise max-norm of the residual matrix ρ as a function of the number of CPU
cycles (averaged) for all tested kernels.
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Figure 12: Performance stratification caused by update splitting.
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Figure 13: Numerical accuracy versus performance
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