
A novel Composite Smeared Finite Element for Mechanics (CSFEM) – 

some applications 

Vladimir Simic
a,b

, Miljan Milosevic
a,b,c

, Vladimir Milicevic
c
, Nenad Filipovic

 b,e
, Milos Kojic

b,d,f,*
 

aInstitute for Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana 

Cvijica bb, 34000 Kragujevac, Serbia 

bBioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 34000 Kragujevac, 

Serbia. 

cBelgrade Metropolitan University, Tadeusa Koscuska 63, 11000 Belgrade, Serbia. 

dHouston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX 77030, 

USA 

eUniversity of Kragujevac, Faculty for Engineering Sciences, Sestre Janic 6, 34000 Kragujevac, Serbia.  

fSerbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia. *Corresponding author: 

mkojic42@gmail.com (M.Kojic), Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner 

Ave., R7 117, Houston, TX 77030. 

 

Abstract 

Background: Mechanical forces at the micro-scale level have been recognized as an important factor 

determining various biological functions. The study of cell or tissue mechanics is critical to 

understanding problems in physiology and disease development. Objective: The complexity of 

computational models and efforts made for their development in the past required significant 

robustness and different approaches in the modeling process. Method: For the purpose of modeling 

process simplifications, smeared mechanics concept was introduced by M. Kojic as a general concept 

for modeling the deformation of composite continua. A composite smeared finite element for 

mechanics (CSFEM) was formulated which consists of the supporting medium and immersed 

subdomains of deformable continua with mutual interactions. Interaction is modeled using 1D contact 

elements (for both tangential and normal directions), where the interaction takes into account 

appropriate material parameters, as well as the contact areas. Results: In this paper we have presented 

verification examples with applications of the CSFEMs that include the pancreatic tumor tissue, nano-

indentation model and tumor growth model. Conclusions: We have described composite smeared 

finite element for mechanics (CSFEM) and contact elements between compartments that can interact. 

Accuracy and applicability are determined on two verification and tumor growth example. 
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INTRODUCTION: 
Cells inside the human body represent complex biological constituents (with viscoelastic behavior) 

that can absorb the physico-chemical and mechanical signals and stimuli from surrounding tissues and 

have an appropriate and active response by triggering cell growth, proliferation, differentiation, 

motility, etc. Forces that act on cells and surrounding space, such as shear force, loading force, stress, 

and strain, control various biological activities and responses to drugs. Smeared modeling concept is 

previously formulated and introduced in reference [1], with significant modifications presented in 

reference [2]. On the other hand, the extracellular matrix (ECM) is a complex and dynamic network 

that surrounds cells in all tissues, providing structural and mechanical support, and mediating diverse 

biological processes that are crucial for supporting tissue formation and function [3]. ECM serves as a 

binding (supporting) medium which integrates cells and shapes groups of cells into tissues and organs 

with defined biological and mechanical functions. There are a large number of studies showing that 

mechanical interactions between cells and ECM play an important role in biological processes. Tissue 

models that consist of specified cells and ECM components provide simplified biological systems 

suitable for studying cell-matrix interactions in tissue development [4, 5]. Also, quantitative 

measurements of the force exerted by these models provide a powerful and flexible approach to 

studying mechanisms of force impact on ECM-cells interaction [6, 7]. Measurements of tissue 

stiffness introduce additional data and the possibility to reveal mechanical functions of matrix 

components and cellular structural systems such as the cytoskeleton, which offers the possibility to 

model complex fibrous structures inside extracellular space. 

From the listed publications follows the complexity of computational modeling of physical fields and 

its representation (within a small tissue part in the human body, as well as in a specific organ), 

therefore it is desirable to have a computational methodology more feasible, more robust, and less-

demanding for practical applications. In physics, engineering, or medical science, composite media 

are mostly present, such as in geology according to [8] or in living organisms [9] (tissue, biological 

fluids), as well as in fracture mechanics where finite element method is applied [10]. Besides the 



existing composite-based models (developed in other science fields), the novel smeared concept is 

here applied to modeling the mechanical behavior of tissue and different types of cells (cancerous or 

healthy ones).  

A traditional approach to modeling problems within composite media is to divide the entire space into 

subdomains occupied by a basic constituent, with the corresponding laws and properties, and 

formulate the subdomain models. The next step is to model the interactions between the basic domain 

and immersed subdomains at common boundaries and solve for the unknowns describing the 

problem. This approach requires significant effort to specify all internal boundaries between domains, 

but this approach is almost not applicable to larger domains of tissue composed of complex 

extracellular space, cells, cell organelles, etc. This is a motivation to formulate simplified models 

which take into account media complexity, but still have satisfactory accuracy compared to the effort 

necessary for modeling complex models.  

Our previous research was related to a smeared concept for mass transport in the capillary system and 

tissue [11-14] with a demonstrated applicability and accuracy concerning traditional modeling 

methods. The concept is implemented into the in-house code PAK [14]. In this paper we present the 

applicability and accuracy of the method on a simple test model, and further, we compare real detailed 

geometry models and smeared representations; finally, the smeared model gives an insight into a 

tumor growth model. Regarding the tumor growth process, in our paper [16] we have managed to 

couple a tumor growth model embedded in a microenvironment, with a bio distribution model of a 

whole organ. This coupling method offered a better insight into regulation of the oxygen diffusion and 

possibility to include other therapeutic agents‟ molecules (i. e. chemotherapeutics). Next step was to 

introduce mechanical behavior of tumor due to prescribed volumetric growth inside cancer cells. 

METHODS: 
In this section, we first give the basic finite element balance equations and then summarize the 

formulation of the composite smeared finite element (CSFEM) as the fundamental element for the 

smeared methodology in mechanics. The steps are analogous to those in [1] and are given in [2]. 



Equations described below (used for formulating CSFEM) are integrated in the FE software, PAK 

(abbreviation in Serbian of „Program za Analizu Konstrukcija‟ - „Program for Structural Analysis‟). 

The software was originally developed at the University of Kragujevac, followed by research within 

BioIRC (Bioengineering Research and Development Center, Kragujevac, Serbia). It represents a high-

performance finite element analysis (FEA) software, tested and implemented over several decades 

[14], for solving general engineering problems and further extended to complex coupled multi-

physics/multi-scale problems. Regarding the graphical representation, the CAD Field & Solid is the 

University of Kragujevac and BioIRC‟s in-house pre- and post-processing 3D modeling and 

visualization tool developed over 20 years using the C++ programming language and the MFC 

(Microsoft Foundation Class) library. The main advantage of using this software is the simplification 

of the generation model process and ability to visualize, animate and easy- to- analyze the results. 

Regarding the pre-processing part, the CAD software is used in a form that can be run by the FE 

simulation code PAK. The FE model data containing a FE mesh, with accompanied material data, are 

exported to a file with extension *.dat .. The results of a FE simulation (i.e. field of displacements or 

other quantities) are exported to a file with extension *.unv, automatically imported by the CAD 

postprocessor. The CAD post-processor tool is used for importing and visualization of the computed 

results, and analysis by plotting various representations (as, for example, tumor radius versus time). 

Various options in the CAD offer to users inspection of the results or parametric studies. 

Composite smeared finite element for mechanics (CSFEM) 

The basic goal of the smeared model is to formulate a composite continuum finite element (CSFEM) 

that will take into account constituents of the true physical fields (continuum and 1D domains) that 

correspond to the “detailed” model (Fig 1.a). It is assumed that each of the compartments (showed in 

Fig. 1a as separate domains with their boundaries) has its own FE mesh of continuum elements, while 

for 1D domains we use 1D finite elements for modeling media such as blood vessels, fibers, 

cytoskeleton, etc. Considering the complexity of the presented detailed model, which requires 

significant effort for the model preparation and generation, in this case, it would be an impractical or 

even impossible task to achieve. Simplification of this model is shown in Fig. 1.b, where the smeared 



model is presented with a corresponding supporting domain that represents extracellular space (ie. the 

basic medium notated with the index b), and two immersed domains with noted velocities at contact 

boundaries (Cell 7 and Cell 8, Fig. 1c and d). The main goal is a formulation of the equivalent 

computational model, less demanding to achieve its geometry, with satisfactory accuracy concerning 

detailed representation.  Presentation of the methodology is according to the basic concept given in 

[1], with significant modifications in the reference [2]. 

[Place Figure 1 here] 

General expressions for the virtual power for composite media 

As can be seen from Figure 1d, there is a presence of a supporting medium (or the basic medium, with 

the index „b‟ Fig 1.d) in which are immersed other deformable bodies or domains (compartments). 

Let‟s denote the velocity field within a domain „k‟ as vectors
k

v . At the contact boundary between 

any immersed domain and the supporting medium, velocities for the supporting medium b and the 

domain k are expressed in the local coordinate system, 

,        v n t v n t
b b k b k k k k k k

n t n tv v v v         (3) 

where ,b k

n nv v  and ,b k

t tv v  are the velocity components in the direction of the boundary normal 
k

n  

and tangent 
k

t . The relative velocities at the boundaries are 

,        nrk nk nb trk tk tb

i i i i i iv v v v v v          (4) 

where 
nrk

iv and 
trk

iv  are relative velocities at the boundaries in normal and tangential direction, 

respectively. At the boundary between two domains „k‟ and „k+1‟ we have the relative velocities (r) in 

normal (n) and tangential direction (t) 

, 1 1 , 1 1,        nrk k nk nk trk k tk tk

i i i i i iv v v v v v            (5) 



Normal stresses, that are present at the interaction surface, are denoted as 
nk  while component of 

stress due to sliding between a compartment ‘k’ and the supporting medium is 
bk
τ , and between „k‟ 

and „k+1‟ is 
, 1k k

τ . 

Elementary surfaces, between the supporting medium b and the medium „k‟, and between two media k 

and k+1 are bkdA  and , 1k kdA  , respectively; and the projections of these surfaces on the coordinate 

directions are bk

idA  and , 1k k

idA  . 

Finally, the expression for virtual power due to both normal and tangent stresses is 

1
, 1 , 1 , 1

1 1 1

d d dN N N
stress b b k k k bk rbk bk k k k k k k

ij ij ij t t

k k k

b
ij

W e dV e dV v dA v dA        


  

  

     
 

(6) 

where b
ij

e , 
k

ije  and ,  b k

ij ije e  are the strain rate variations and the strain rates within supporting 

medium and domain k, respectively. The virtual power due to inertial forces is 

1

dN
in b b b b k k k k

i i i i

k

W v v dV v v dV    


          (7) 

where ρ
b
 and ρ

k
 are densities of the supporting and corresponding „k‟ domain, respectively.  

Finite element balance equations 

The above expressions serve as the basis for the formulation of the FE balance equations. The solids 

of interest are discretized into finite elements. Finite element balance equations for continuum space, 

for a time step Δt and iteration i, have a standard form [9], 

       1 int 1 11 i i i in iext

t

   
     

 
M K V F F F        (8) 

where 
( )i

V are nodal velocity increments for the current iteration i, 
ext

F are external forces at the 

element nodes; 
 int 1i

F  and 
 1in i

F  are internal forces due to stresses and inertial forces according to 

the previous iteration (i-1). In general, the matrices and nodal vectors can be expressed as [1] 



       int 1 1 1 1
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T T

V V
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V

dV dV

dV



   

 

  

 



M N N K B CB

F B σ F MV
       (9) 

where M is the element mass matrix, K  is the stiffness matrix,   is the density of the material, N  is 

the interpolation matrix, B  is the geometric matrix with the derivatives to spatial coordinates; C is the 

constitutive matrix,  1i
σ  is the stress tensor;  1i

V is acceleration according to the previous iteration. 

Other details may be found elsewhere [9].  

Formulation of composite smeared finite element applied for mechanics (CSFEM) 

 

Here, we summarize a smeared FE formulation for mechanics presented in [1, 2]. The finite element 

space is divided into domains that are immersed within the supporting medium as schematically 

shown in Fig. 2. Volumes of the domains are specified by the volumetric fractions 
V

kr  with respect to 

the total element volume V,  

V

k kV r V           (10) 

[Place Figure 2 here] 

and the volumetric fraction 
b

Vr  of the supporting medium (b) is 

1

1
dN

b k

V V

k

r r


                                                                                                  (11) 

At a contact surface, between two media, we formulate two contact elements (so-called connectivity 

elements) one in the normal direction (n) and the other in the tangential (t) direction. Regarding the 

contact elements, the nodal normal and tangential forces n

JiF  and t

JiF  at a FE node J, in directions of 

the global axes xi, are 

   
 

 
1, 1 1

IJi i
Ji J

in k kn k k n

J AF K V V r
 

                                           (12) 



and 

   
 

 
1, 1 1

IJi i
Ji J

it k kt k k t

J AF K V V r
 

                                            (13) 

where  i
J

n

Ar  and  i
J

t

Ar  are the area fractions of surfaces 
nA  and 

tA , in directions of the global 

coordinate axes xi, with respect to the area 
kA  

,     ,     
i i

n t
n ti i
A Ak k

A A

A A
r r                                                                    (14) 

where k k

AVA r V  is the area of the contact surface and k

AVr is the area-to-volume ratio, or the area 

ratio; i

tA  and 
n

iA  are the absolute values of the area projections. In the case of a 2D model we have

,    
t n t n

Ax Ay Ay Axr r r r  . 
 

The matrices 
 , 1n k k

IJK


 and 
 , 1t k k

IJK


 for a FE node J and directions i=1,2,3, are: 

           
1

, 1 , 1 , 1 , 1

11 22 12 21    
i i

k k
n k k n k k n k k n k k n n

n V AV A n V AV A
J

K K K K k r r r k r r r V


           
        (15)

 

           
1

, 1 , 1 , 1 , 1

11 22 12 21 , 1   0.5  
i i

k k
t k k t k k t k k t k k t t

k k V AV A V AV A
J

K K K K r r r r r r V


   


       
  

                   

where 
nk  and   are the stiffness and viscous resistance coefficients for the contact surfaces k and 

k+1, respectively. Other details, regarding the contact between domains, are given in [2]. 

RESULTS: 
This section is devoted to a presentation of several examples, first for the verification of the smeared 

mechanics concept- a comparison of the real pancreatic tumor tissue geometry to its smeared 

representation, and nano indentation example. Finally we present the tumor growth model, at the end 

of this section. 

Verification of the CSFEM on a simple uniaxial tension examples 



Verification of the smeared mechanics methodology applicability is performed on a comparison of 

detailed and smeared models without sliding conditions between all subdomains and supporting 

medium.  

Detailed model of pancreatic tumor tissue and equivalent smeared model.  

We here examine a 2D model of pancreatic tumor tissue with a real distribution of cells and 

extracellular space (exploited from CT image; Fig. 3a). Here we take extension load uniformly 

distributed at the right boundary, just over the extracellular material. The applied load increases 

linearly to the maximum force value of 4,000 N at time t=5.0s and decreases back to zero.  

[Place Figure 3 here] 

The model is rectangular-shaped (48.5 x 38.2 mm), with 80 irregular-shaped cells embedded into the 

extracellular space, here considered as the supporting medium, with different material properties than 

applied to cells. The material model used for both domains is linear-elastic (close to incompressible) 

with the Poisson ratio v = 0.49. Young‟s modulus for the extracellular space is E = 2000 N/mm
2
. The 

analysis considered a case where Young‟s moduli are equal (default value E = 2000 N/mm
2
) in both 

domains. Material density is taken to be 10
-3

 g/mm
3
. Regarding geometry data for the detailed model, 

the mesh shown in Fig. 3a contains 13,927 FE nodes, while the number of 2D FEs is 12,739. 

Compared to the smeared model, we used only 16 2D CSFEM elements (Fig. 3b) and 25 FE nodes, to 

model two domains – cells and extracellular space. The volumetric fraction for the cell domain is rV = 

0.517 (coverage of almost 52% of the entire space), average area fraction coefficient is rAV = 0.411, 

and the tangent area fractions in both coordinate directions are taken to be equal (irregular cells shape 

approximately corresponds to a circular shape), rAVx = rAVy = 0.636. The assumption is that there is no 

slipping between the cells and the extracellular space domain. 

Figure 4 shows the displacement field in the x-direction for the detailed (a) and smeared model (b) for 

three characteristic time steps (material model and material parameters are the same for both models 

and their domains). There is a fairly good matching of the results between the two models, when the 



tension reaches both the maximum values (Fig. 4; t = 5.0s) and random loading and unloading 

regimes (Fig. 4; t = 2.5s and 7.5s). 

[Place Figure 4 here] 

We also have examined the case when Young‟s modulus of the extracellular space in the supporting 

medium (Esupp = 1000 N/mm
2
) is two times smaller than in cells (compartment) domain (Ecell = 2000 

N/mm
2
). Compared to previous case (with the equal Young‟s moduli in both domains), it can be seen 

that, under the same force on the supporting medium, displacements of the supporting domain (tissue 

domain in the detailed model), at the maximum extension, are 25 percent larger (6.51 for the case 

with equal moduli, 7.82 for different moduli). This is due to the less stiff cell material.    

Nano-indentation example 

First, we have examined a nano-indentation example with experimental data used from Laboratory in 

Basel [15]. The indentation-type procedure has evolved during the last decade as an approach used to 

measure nano-scale stiffness of different types of lesions biopsies (i.e. breast) at the cellular level. An 

example of individual 20 × 20 𝜇m AFM (Atomic-Force Microscopy) stiffness maps collected across 

the entire surface of fresh biopsy specimens. is shown on Fig 5a. The model used in our case is shown 

in Fig. 5b; it is square-shaped (100x50 mm), consisting of a supporting medium and embedded 

compartment, with different material properties. The material model used for both domains is linear-

elastic (close to incompressible) with the Poisson ratio v = 0.49. Young‟s modulus for the supporting 

medium is E = 1000 N/mm
2
. Regarding material parameters for compartment Young‟s moduli are two 

times smaller than in the supporting domain (E = 500 N/mm
2
). Material density is taken to be 10

-3
 

g/mm
3
, for both domains. Volumetric fraction of cells is rV = 0.7, average area fraction coefficient is 

rAV = 0.411, and the tangent area fractions in both coordinate directions are taken to be equal- rAVx = 

rAVy = 0.636. The resistance coefficient is set to be 10.0. Here, we consider a case without slipping 

between the supporting domain and compartment. Regarding geometry data, the mesh shown in Fig. 

5b contains 5151 FE nodes, while the number of 2D FEs is 5004. The simulation lasts for 20 steps; 

with duration of one step is 0.5s. 



 [Place Figure 5 here] 

Figure 6 shows the displacement field in the x-direction for the nano-indentation model for one 

characteristic time step. Indentation force is applied on two nodes on the right boundary of the model 

and, due to symmetry; results are shown for a mirrored model around the axis of symmetry. It is 

notable that, comparing supporting domain displacements with and without slipping involved, in case 

of slipping has a larger value due to the sliding coefficient. Also, regarding compartment deformation, 

displacements of the compartment have the smallest values concerning the supporting domain due to 

sliding allowed by a smaller resistance coefficient and smaller value of Young moduli.  

[Place Figure 6 here] 

Displacements vs applied indentation force diagram are shown in Figure 7. It refers to the linear 

growth of displacements, especially for supporting domain, accompanied by the growth of indentation 

force. Followed by the displacement field in Fig 6, it is notable that the highest values are in the case 

of slipping for the supporting domain, and the lowest increase of displacement is in the case of the 

compartment, due to the sliding resistance.  

[Place Figure 7 here] 

Application of the CSFEM to tumor growth 

 
The cancer remains the second (17.8%) diseases of the total deaths per a year, just behind the heart 

diseases (20.6%). These large numbers, related to cancer, do not change significantly over years in 

spite of enormous effort, both from clinicians and biomedical engineers. Many approaches and 

computational models have been introduced, from the agent-based modeling, reviewed in [18], up to a 

hybrid-type model where the tumor space is divided into regions with descriptions on the cell level, 

and others as continua [19].  

This section is devoted to the application of our smeared model concept to tumor growth modeling 

concept. The model consists of a circular tumor that can grow due to the increasing volume of 

cancerous (tumor) cells. The tumor domain is surrounded by tissue of circular shape. Due to 



symmetry, only ¼ of the entire space is modeled (Fig. 8a), with the no-displacements through 

symmetry planes as boundary conditions. The CSFE is used (Fig 8b, CAD representation), with the 

extracellular space as the supporting medium in the tumor and the surrounding. Two groups of cells 

are immersed within the supporting medium: healthy cells in the entire domain and tumor cells within 

the tumor, with their volumetric fractions. 

The mass growth in this model is achieved by using the following procedure. The rate of the 

volumetric deformation due to the tumor growth is given as 

  ( )
growth growth

mass

Vgrowth

mass

d V

dt V

c d V
e

dt V






  


        (16) 

where 
3

growth

mass

kg
c

m s

 
 
 

 is the mass rate constant, 
growth

mass  is the density of additional mass and 
Ve is 

volumetric strain rate. The mass rate constant is taken from the [17]. 

In the implementation of our FE software [14], we used the volumetric strain rates to be the same in 

each coordinate direction. In 2D plane strain case, we have 

0.5
V V

xx yy V
e e e            (17) 

Stress increment due to a volumetric growth is 

   V

ijVjj
r  σ C e            (18) 

where C is the constitutive matrix, and rV  is volumetric fraction of cells. This stress increment is 

added to current stress of the material element, for the current time step. 

For the purpose of this paper, we have created parametric type of model, in order to simulate tumor 

growth process on different types and tumor geometries. Using custom made dialogs (in early 

mentioned software package CAD), we were able to define model radius, mesh structure, volumetric 

growth constants and material model used for each of the model domains. 

We have used one default radius of tumor- Rtum=3 mm and the surrounding tissue radius is constant 

Rtiss =10mm. The material of the healthy cells and extracellular space is linear-elastic, with the Young 

modulus E = 100 [N/mm
2
], and the Poisson coefficient v= 0.49, close to incompressibility condition. 

The volumetric fraction of tumor cells (within the tumor domain) is in the range rVtum = 0.3-0.5-0.7, 



while the area fraction coefficient rAV = 0.56; and the tangent and normal area fractions in both 

coordinate directions are equal- rAVx = rAVy = 0.636 (circular cell shape, calculated using (12)). The 

volumetric fraction of healthy cells is rVcell = 0.1 and rVcell = 0.6 within the tumor domain, and outside 

the tumor, respectively; therefore, the volumetric fraction of the extracellular space is calculated as 

rVex=1-rVcel- rVtum. Two cases are considered: without and with slipping (sliding) between 

compartments. It is assumed that tumor growth rate is a constant value, with a volumetric strain rate 

of 0.25/day, which is 0.25g/(gday). The time of our analysis in all models is 20 days, divided into 10 

equal time steps.  

[Place Figure 8 here] 

 

Displacements solutions for the case without slipping between compartments, with an initial radius 

Rtum=3mm, are displayed in Fig. 9. It displays tumor growth for three volumetric fractions of tumor 

cells after 10 and 20 days (in the middle and at the end of the simulation). Note that Young moduli 

and Poison‟s ratio are the same as for the other compartments (E = 100 [N/mm
2
], v= 0.49). As we 

have expected, it is obvious that the growth is faster in case of an increased volumetric fraction of 

tumor cells. The increase of the tumor radius over time is shown in Fig. 10 which displays the 

numerical aspect of the tumor growth process. 

[Place Figure 9 here] 

[Place Figure 10 here] 

Another case which we have considered is the one with prescribed internal radius- Rtum = 7mm, where 

we analyzed how volumetric fractions inside a specified domain affect growth. Results in Figure 11, 

for two time steps, show that the overall displacements are larger when compared to the previous case 

(over 95 percent approximately) which was expected. Figure 12 displays the growth of tumor radius 

for three selected volumetric fractions. 

[Place Figure 11 here] 



[Place Figure 12 here] 

CONCLUSIONS: 
In this paper, we have presented the smeared modeling concept for the mechanical field, with 

necessary steps and basic equations for formulating this concept according to our previous works-. 

The composite smeared finite element for mechanics (CSFEM) is described, derived using the virtual 

power for composite media and contact elements between compartments that can interact. Significant 

advance is demonstrated by implementation of the methodology into the FE simulation software and 

presented results. Accuracy and applicability of this methodology are assessed on two verification 

examples. The first example examined a uniaxial tension of pancreatic tumor tissue where we have 

demonstrated a fairly good agreement of the results between the smeared and detailed models, 

including the case when Young‟s modulus is not equal in all domains. Another example is a nano- 

indentation problem which shows the potential to model a complex indentation process. Further 

application to this problem assumes comparison with experiments and use of a large results database. 

Further generalization of the smeared methodology, with including fibrous structures, can lead to 

elegant modeling of complex cytoskeleton network inside cell models. 

Regarding modeling tumor growth process, we have considered an early stage growth of a 2D circular 

shape tumor with different volumetric fractions of cancerous cells inside. According to the presented 

results, we have showed that the applied methodology is accurate, with a potential to investigate 

additional conditions; effects on the tumor growth of stiffness of different compartments, and the 

slipping between supporting domain and other compartments. This methodology can also be extended 

to 3D problems, which would lead to more realistic models of volumetric deformations with geometry 

obtained from CT scans or uMRIs. The introduced concept is in the developing stage offering a basis 

that can further be modified and improved. 
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FIGURE CAPTIONS: 

Figure 1. a) 2D schematic representation of a “detailed” model of a composite medium (with denoted 

subdomains; extracellular space with embedded cells, organelles of cells and fibrous structure). b) Smeared 

representation of detailed a) model with noted velocities and stresses (in normal and tangent directions) at the 

common boundaries. c) Contact between two immersed domains (here noted as Cells 7 and 8) with contact 

boundary and velocities displayed d) Contact between supporting domain and immersed domain (here noted as 

„b‟ and Cell 78) with contact boundary and velocities displayed. 

Figure 2. Composite smeared finite element for mechanics, CSFEM, (3D representation). The element volume 

dV is composed of the supporting medium (volume V
b
) and subdomains (compartments with volumes V

1
 to 

K
V

). The nodal degrees of freedom include velocities of the supporting medium and immersed domains. Contact 

elements are used to couple velocities at the domain contact boundaries. 

Figure 3. a) Detailed model of pancreatic tumor tissue with 80 cells. b) Smeared model with tissue and cells 

domain. 

Figure 4. (a) Detailed model with cells compared to the smeared model (b). Displacement field at time steps 

t=2.5s (random time step in loading direction), 5.0s (maximum displacement in the x-direction), and t= 7.5s- 

(random time step in reverse loading direction). Young‟s moduli in the surrounding domain and cells are equal. 

Figure 5. a) Example of representative AFM map (20 × 20 x 5 𝜇m) with stiffness field displayed [15]. b) Test 

example 100x50 constrained and loaded in x-direction (Two last nodes on the right border, in the right corner).  

Figure 6. Displacement field in the x-direction for supporting medium, (cases with and without slipping), and 

compartment displacement. The initial configuration is given with a black dashed line. 

Figure 7. Displacement vs. Force diagram for Supporting medium, for cases with and without slipping, and 

compartment. The resistance coefficient between the compartment and supporting domain, in case of slipping, is 

η1 = 10. 

Figure 8. a) Model of circular tumor domain and surrounding tissue, 1/4 of the entire space due to symmetry. 

Sliding is allowed along the boundary lines (x and y-axis)  b) CSFE mesh of model generated in our in-house 

software CAD (number of FE nodes is 56 085, number of 2D elements is 32 254) 

Figure 9. Displacement field for 2 different time steps and 3 different volumetric fractions of cells inside area 

divided by internal radius- Rtum = 3mm (area specified by black dashed line). The black continuous line 

indicates how much area, in which we have specified different volumetric fraction cases (rV =0.3-0.5-0.7), had 

grown during the simulation process; the red chain line indicates the initial tissue boundary). 

Figure 10. Diagram of tumor radius increase over time for 3 volumetric fraction values of cancerous cells (initial 

radius of tumor is Rtum = 3 mm). 

Figure 11. Displacement field for  two time steps and  three volumetric fractions of cells inside the area bounded 

by the internal radius- Rtum = 7mm (area specified by black dashed line). The black continuous line indicates 

how much area, in which we have specified volumetric fraction cases (rV =0.3-0.5-0.7), had grown during the 

the growth process; the red chain line indicates the initial tissue boundary). 

Figure 12. Diagram of tumor radius increase over time for three volumetric fraction values of cancerous cells 

(initial radius of tumor is Rtum = 7 mm) 
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