
Ensure Software Quality
EOSC Task Force 5 Sub Group 3

David, Mario (LIP) Colom, Miguel (ENS Paris-Saclay)
Garijo, Daniel (UPM) Castro, Leyla Jael (ZB MED)

Louvet, Violaine (CNRS) Ronchieri, Elisabetta (INFN/CNAF)
Torquati, Massimo (UNIPI) del Caño, Laura (CSIC/CNB)

Leong, Cerlane (CSCS) Van den Bossche, Maxime (KU Leuven)
Campos, Isabel (CSIC/IFCA) Di Cosmo, Roberto (INRIA)

February 28, 2024

Contents

1 Introduction 1
1.1 The Research Software lifecycle . 2
1.2 Document organization . 2

2 Classification of quality characteristics, attributes, and metrics 3
2.1 Software Quality Models: survey . 4
2.2 Software Quality Characteristics . 5
2.3 Software Quality Attributes and Metrics . 8

3 Landscaping 10
3.1 Definition and references of Research Software . 10
3.2 Research Software stack . 10
3.3 Examples for Research Software stack and types 11

3.3.1 By Research Software type . 11
3.3.2 Layer by layer in the software stack . 12

4 Recommendations 13
4.1 Quality Attributes recommendations . 13

4.1.1 Common recommendations . 13
4.1.2 User story: Individual development . 13
4.1.3 User story: Team Project . 13
4.1.4 User story: Team OSS . 14
4.1.5 User story: Team Service . 15

4.2 Example of tools, services and infrastructures . 16
4.2.1 About version control and software forges 16
4.2.2 About Continuous Integration/Continuous Delivery - CI/CD 17
4.2.3 About intellectual property and licensing 17
4.2.4 About packaging . 18

1

https://orcid.org/0000-0003-1802-5356
https://orcid.org/0000-0003-2636-0656
https://orcid.org/0000-0003-0454-7145
https://orcid.org/0000-0003-3986-0510
https://orcid.org/0000-0002-8742-8952
https://orcid.org/0000-0002-7341-6491
https://orcid.org/0000-0001-6323-3459
https://orcid.org/0000-0003-0981-2040
https://orcid.org/0000-0001-8241-6277
https://orcid.org/0000-0002-0938-0156
https://orcid.org/0000-0002-9350-0383
https://orcid.org/0000-0002-7493-5349

4.2.5 About documentation . 18
4.2.6 About management bugs . 18
4.2.7 About tests . 19
4.2.8 About support . 20
4.2.9 About code analysis . 20
4.2.10 About security . 20
4.2.11 Transversal needs . 21

5 Perspectives 22
5.1 Developers . 22
5.2 Users . 24
5.3 Service providers . 24

6 Metadata for quality software 27
6.1 Metadata schemas for Software . 27
6.2 The FAIR principles for Research Software (FAIR4RS) 28
6.3 Mapping Quality Attributes to FAIR4RS . 29

7 Summary and conclusions 30

A Quality Attributes 32
A.1 Source Code Metrics: EOSC-SCMet . 32
A.2 Time and Performance Metrics: EOSC-TMet . 33
A.3 Qualitative Attributes: EOSC-Qual . 34
A.4 DevOps-SW Release and Management Attributes: EOSC-SWRelMan 37
A.5 DevOps - Testing Attributes: EOSC-SWTest . 40
A.6 Service Operability Attributes: EOSC-SrvOps . 42

1 Introduction

Quality assessment is an important trait for software and for services. It allows researchers and
service managers to have higher trust that, during its use and operation, the software and related
services will work as expected, give the correct results and meet their requirements. Furthermore,
it also contributes to their maintainability, stability and sustainability while facilitating the
collaboration between developers and promoting good practices of software development [1].

In the framework of the EOSC Association several Task Forces have been created with the
following topics:

1. Implementation of EOSC.

2. Metadata and data quality.

3. Research careers and curricula.

4. Sustaining EOSC.

5. Technical challenges on EOSC.

Regarding topic 5, it was divided into three subtopics:

1. Technical interoperability of data and services.

2. Infrastructure for quality Research Software.

3. AAI Architecture.

Regarding the Task Force “Infrastructure for Quality Research Software”, it was further
subdivided into 3 sub-groups:

1. Software Lifecycle (sub-group 1).

2. Information Science (sub-group 2).

3. Ensuring Software Quality (sub-group 3).

The present document regards the work performed by sub-group 3 Software Quality in research.

It is deemed important to have a definition of Research Software (RS from here on). The
sub-group has adopted the following definition [2]:

“Research Software (RS) is commonly used to refer to software used and/or generated in a
research context, including and not limited to scientific, non-scientific, commercial, academic
and non-academic research.”

The main objectives of this report are:

• To provide technical and organisational recommendations to improve RS quality based on
a thorough review of the literature, in particular the software used in the services offered
through EOSC.

• Identify Quality Attributes that are appropriate for RS and make recommendations for RS
based on a set of such Quality Attributes.

1

1.1 The Research Software lifecycle

The Research Software lifecycle has been the work of sub-group 1 of this Task Force and is
reported here [3]. This document reproduces the diagram show in Figure 1 due to its relevance
regarding both the Quality Attributes related to the development phase (center box number 3),
the Quality Attributes related to the Software release and management (boxes “Maintenance”
and “Deployment” number 5) and the Quality Attributes related to FAIR for Research Software
(box “Publication” number 4).

Figure 1: Research Software lifecycle. From sub-group 1 [3].

1.2 Document organization

The structure of the document is as follows:

• Section 2 describes a survey conducted within the sub-group. The objective was to search
for articles and documents describing Quality Models and corresponding Quality Attributes
or Quality Characteristics. The complete list of Quality Attributes are given in Appendix A.

• In Section 3, the RS stacks, RS types and user stories, are identified. This classification is
important for the recommendations in next section.

• In Section 4, recommendations are given for what Software Quality Attributes are more
relevant for RS, depending on the stack, type and users or teams in their role as de-
velopers. There are also recommendations for software release and management and for
services/platforms in production.

• In Section 5, the user perspectives are described, i.e., the point of view of developers, users
and resource (or service) providers.

• Section 6 associates Quality Attributes and FAIR principles for RS.

• Last, the summary and conclusions are drawn in Section 7.

2

2 Classification of quality characteristics, attributes, and
metrics

A significant notion in software engineering is quality, understood as a series of desirable particu-
larities that are required for improved computer programs, meaning that they are well adapted to
their purpose, accurate, highly available, or any other property which makes them more robust.

Whereas this is a concept which is easy to understand, arriving at a consensus on how to properly
define it, is a significantly more complex task. Indeed, the problem can be addressed from plenty
of different perspectives, each of them giving more or less importance to some particularities.

It is not the goal of this report to propose any particular definitions, but to analyse how the
problem has been addressed in relevant works in the literature and how the characteristics can
be classified as attributes. As such, in Section 2.1 we detail the method used for a survey of the
literature.

In Section 2.2 we review what are, according to the literature, the Quality Characteristics that
can be related to good software. The characteristics can be related to quality from very different
points of view (ranging from metrics of the source code to service operability, just as an example).
These are classified as Quality Attributes and Metrics in Section 2.3.

It is quite important to define the notions of Verification and Validation (V&V) of the Qual-
ity Attributes and Metrics, as well as Test, since this is the cornerstone to prove the correctness
and user requirements satisfaction of a given Software or service. The following definitions from
610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology [4] apply:

• Software Validation: The process of evaluating software during or at the end of the devel-
opment process to determine whether it satisfies specified requirements.

• Software Verification: The process of evaluating software to determine whether the products
of a given development phase satisfy the conditions imposed at the start of the respective
phase.

• Software Test: An activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation i s made of some aspect
of the system or component.

Although reproducibility does not explicitly appear as a characteristic of the software itself in our
survey, it is a fundamental requirement for Research Software. See Section 3.1 for our definitions
and context of Research Software. Indeed, the Scientific Method is, after all, based on the
possibility of being able to repeat the experiments and refuting them to build up new knowledge.
Specifically for Research Software, we need to consider its reproducibility as a characteristic of
quality.

The definitions of repeatability, reproducibility, and replicability depend much on each research
field. Sometimes the concepts of reproducibility and replicability have their meaning swapped
with respect to other communities or disciplines.

Some consensus seems to have been reached in computational sciences after the report Artefact
Review and Badging1 version 1.1 by ACM. The scope of their definitions is intended to be very
wide and to cover as many disciplines as possible. They refer, in a generic way, to the team and
their experimental setup.

1https://www.acm.org/publications/policies/artifact-review-and-badging-current

3

https://www.acm.org/publications/policies/artifact-review-and-badging-current

We shall use these definitions in this report and put them in the context of computer science
with the following meaning:

• Repeatability: Performed with the same team and same experimental setup. In our
context, it means that the software can be executed as many times as needed. Researchers
should be able to run the program several times always obtaining the same results.

• Reproducibility: Performed by a different team but the same experimental setup. Re-
garding computing, we could think of two groups of developers which need to obtain results
from a program given its source code. If the two groups have exactly the same computer
hardware and the same environment, they could simply compile the same source code,
obtain the same executable binary code, execute the program, and obtain the same (or
equivalent) results when providing the program with the same input data.

• Replicability: Performed by a different team and with a different experimental setup.
In our context and following the previous example, one of the groups do not have access
to the source code of the research method, but instead they have the corresponding de-
tailed description published in a journal. These detailed descriptions can be, for example,
a pseudocode or text in the article where all the parameters and significant operations are
completely specified. Thus, replicability is defined as their capacity to arrive at an equiv-
alent program after following the descriptions. Lack of replicability could be explained
in this example due to missing pre or post-processing steps, missing parameters or their
values, or ambiguous parts left for the interpretation of the reader.

In Section 5.2 we discuss the users’ perspectives regarding reproducibility of Research Software.

2.1 Software Quality Models: survey

The classification into characteristics and attributes is based on a thorough review of the lit-
erature, in order to avoid biases on the classification and recommendations with the personal
preferences or pre-established beliefs of the members of the sub-group. We followed the protocol
and methodology proposed by Kitchenham and Charters [5] consisting of the following steps:

1. Source selection and search: We searched in the SCOPUS database, including the top
five journals in software engineering related to software 2 and articles of the “International
Conference on Software Engineering”, one of the top venues for software engineering. We
also added documents and web resources that the Task Force sub-group considered relevant.
The search included the keywords “software quality” in the title of the publications. The
following journals were considered:

• IEEE Transactions on Software Engineering.

• Empirical Software Engineering.

• Journal of Systems and Software.

• Software & Systems Modeling.

• Information and Software Technology.

• IEEE Software.

• Software Quality Journal.

2https://research.com/journals-rankings/computer-science/software-programming

4

https://research.com/journals-rankings/computer-science/software-programming

The following SQL query was used to filter out the articles in this step:
TITLE (software AND quality) AND

(LIMIT-TO (EXACTSRCTITLE , "Software Quality Journal")

OR LIMIT-TO (EXACTSRCTITLE , "Proceedings International Conference On Software Engineering")

OR LIMIT-TO (EXACTSRCTITLE , "IEEE Transactions on Software Engineering")

OR LIMIT-TO (EXACTSRCTITLE , "Empirical Software Engineering")

OR LIMIT-TO (EXACTSRCTITLE , "Journal of Systems and Software")

OR LIMIT-TO (EXACTSRCTITLE , "Software & Systems Modeling")

OR LIMIT-TO (EXACTSRCTITLE , "Information and Software Technology")

OR LIMIT-TO (EXACTSRCTITLE , "IEEE Software")

) AND (LIMIT-TO (SUBJAREA , "COMP") OR LIMIT-TO (SUBJAREA , "ENGI"))

We obtained 272 results with this process. Additional filtering was applied with the fol-
lowing criteria:

• Articles with no abstracts.

• Articles which were simple summaries of already existing proceedings.

• Articles that a preliminary review of the abstract and title made clear that were out
of our scope.

• Articles that did not propose any quality dimensions. For example, those papers that
just discuss practices.

2. Inclusion and exclusion criteria: The most important criterion for not considering
articles in our survey was to exclude those which simply did not belong to the software
engineering field. We did not attempt to tighten much the criteria for the exclusion, as we
intended to gather as much related material as possible to be filtered out in the next field.
Another early exclusion criterion was the language; we excluded non-English articles.

3. Selection procedure: After the previous selection, 147 papers remained for further anal-
yses by reading their title and abstract. This allowed us to assess the pertinence of the
article to the software engineering domain and their relevance to be used as a source for gen-
eral quality software recommendations, assuming it mentioned software quality attributes.
Although the protocol that we followed ensured that no human bias was introduced, it
also prevented some very relevant papers related to Quality from being considered. Four
additional articles were added in this step [6, 7, 8, 9], after the sub-group discussed the
issue.

4. Review process: After the previous selection procedure, 19 relevant articles remained.
These are the ones which are finally reviewed in our survey. We performed this step by
groups of 2 or 3 reviewers per article, in our sub-group.

The list of relevant articles obtained by this procedure, allowed us to define a list of characteristics
and attributes which are presented in the following sections.

2.2 Software Quality Characteristics

We identified a list of significant quality characteristics mainly from three sources:

• The ISO/IEC 25010:2011(E) standards [10]; is a norm that proposes two models for the
characteristics. The first group is related to the context in which the software product is
used, and contains five characteristics. The second group has eight characteristics according
to characteristics of the software of the computer system itself, without relying on how it
is used.

• The ISO/IEC/IEEE 24765:2017 standard [11]; defines a common vocabulary for systems
and software engineering, in a way that it is always applicable to general applications.

5

This standardised list provides a vast quantity of very precise definitions that avoid trivial
misinterpretations, and that therefore we apply in this report.

• The chapter Design Fundamentals of the Microsoft Application Architecture Guide [12];
the chapter Quality Attributes from the Microsoft’s Application Architecture Guide also
helped establish a common terminology in our definitions.

The analysis of the existing literature resulted in a significant number of characteristics which
were associated with the concept of quality. All the characteristics were taken into account in our
study, but some of them were filtered out since they were not useful to perform the classification
in quality attributes. Indeed, some characteristics were pertinent at the time of the publication
of the article, but after a few years they became obsolete. For example, producing a very small
sized compiled binary per se as an indication of quality does not make much sense nowadays,
whereas in the past it could be directly related to the ability of storing the program in a very
limited memory or permanent media. Other characteristics were discarded because they were
very specific to a given domain, such as real-time applications or critical systems. They remain
valid characteristics to take into account, but they are not general enough or not applicable to
Research Software or useful to the proposed recommendations.

We ended up with a list of 25 significant quality characteristics from the three above mentioned
sources. The characteristics are defined as follows:

1. Accessibility; degree to which a product or system can be used by people with the widest
range of diversity and capabilities to achieve a specified goal in a concrete context of use [10].
The range of capabilities includes diversity associated with age or any functional diversity.
Accessibility can be specified or measured either as the extent to which a product or system
can be used by users with diverse capabilities to achieve specified goals with effectiveness,
efficiency, freedom from risk and satisfaction in a specific context of use, or by the presence
of properties which specifically support the product’s accessibility.

2. Attractiveness; degree to which a user interface enables pleasing and satisfying interaction
with the user [10]. For example, one can include here properties of the product or system
such as the use of colour and the nature of the graphical design. This characteristic is also
known as interface aesthetics.

3. Availability; degree to which a system, product, or component is operational and acces-
sible when required for use. We adapted this definition from [11].

4. Confidentiality; degree to which a product or system ensures that data are accessible
only to those who have been authorised access [10]. This characteristic is a Security char-
acteristic specialised on the privacy of the data.

5. Compatibility; degree to which a product, system, or component can exchange infor-
mation with other products, systems or components, and performs its designed functions,
sharing the same hardware or software environment [10]. This definition is very close to the
one of Interoperability. Here we focus on the ability of the software to perform its functions
in a suitable environment, whereas in Interoperability we refer to the format of the data
which is exchanged.

6. Ease of use (or usability); degree to which a product or system can be used by particu-
lar users to achieve their own goals with effectiveness, efficiency, and satisfaction in a given
context of use. Usability can either be specified or measured as a product quality charac-
teristic in terms of its sub-characteristics, or specified or measured directly by a subset of

6

System/Software Product Quality [10].

7. Fault tolerance; degree to which a system, product, or component operates as intended
despite the presence of hardware or software faults. We adapted this definition from [11].

8. Functional suitability; degree to which a product or system provides functions that meet
stated and implied needs when used under specified conditions [10].

9. Installability; degree of effectiveness and efficiency a product or system can be successfully
added or removed in a specified environment [10].

10. Interoperability; degree to which two or more systems, products, or components can
share data, encoded in agreed formats. This definition was adapted from [11].

11. Maintainability; degree of effectiveness and efficiency with which a product or system
can be modified by the intended maintainers [10]. Modifications can include corrections,
improvements, or adaptation of the software to changes in the environment, and in the
requirements and functional specifications. Modifications include both those carried out
by specialised support staff, as well as those carried out by business or operational staff
or end users. Maintainability can be interpreted as either an inherent capability of the
product or system to facilitate maintenance activities, or the quality-in-use experienced by
the maintainers for the goal of maintaining the product or system. It includes installation
of updates and upgrades.

12. Modifiability; degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading the product [10].

13. Operability and Manageability; degree to which a product or system has attributes
that make it easy to operate and control [10]. Operability corresponds to Controllability,
that is, the operator’s error tolerance and the conformity with users’ expectations.

14. Performance; related to how well the system works taking into account the amount of
resources used under stated conditions [10]. The resources might include other software
products, the software and hardware configuration of the system, and any needed supplies
(as for example print paper or storage media).

15. Portability / Adaptability; degree of effectiveness and efficiency with which a system,
product, or component can be transferred from one hardware, software or other operational
or usage environment to a different one [10]. Portability can be interpreted as either an
inherent capability of the product or system to facilitate porting activities, or the quality-
in-use experienced for the goal of porting the product or system.

16. Recoverability; degree to which, in the event of an interruption or a failure, a product
or system can recover the directly affected data and re-establish the desired state of the
system [10]. Following a failure, a computer system will typically be down for some time,
which is determined by its recoverability.

17. Reliability; degree to which a system, product, or component provides specific functions
under concrete conditions for a specified period of time. This definition is adapted from [11].
Lack of reliability can sometimes be caused by flaws in the requirements, the design, and
the implementation, as well as because of contextual changes.

18. Resource utilisation; degree to which the amount and types of resources consumed by
a product or system when performing its functions, meet the requirements [10]. Human
resources are included in this category.

7

19. Reusability; degree to which a software artefacts (say, code, executable files, or any assets)
can be exploited in other systems, or utilised to build other artefacts [10].

20. Safety; degree to which a product or system mitigates the potential personal risk to
humans or to system components, in the intended contexts of use [10].

21. Scalability; this characteristic can be seen from the point of view of the system, or the
applications. In the first case it is the measure of a system’s ability to increase or decrease
in performance and cost in response to changes in application and system processing de-
mands. Examples would include how well a hardware system performs when the number
of users is increased, how well a database withstands growing numbers of queries, or how
well an operating system performs on different classes of hardware. Enterprises that are
growing rapidly should pay special attention to scalability when evaluating hardware and
software [13]. When referring to algorithms, protocols, or applications it can be defined
as being able to efficiently handle a growing demand of work or need of more performance
by means of adding more resources to the system on which the software is running. Re-
sources can be added both to single nodes (vertical scalability) and to the system as a
whole (horizontal scalability) [14].

22. Security; degree to which a product or system protects the information and data it man-
ages (say, stores or transmits) in a way that access is only given to persons or systems with
the appropriate level of authorisation they were granted [10]. Related to Security we can
also find:

• Survivability; degree to which a product or system continues to fulfil its mission by
providing essential services in a timely manner despite the presence of attacks, covered
by Recoverability.

• Immunity; degree to which a product or system is resistant to certain attacks, covered
by Integrity.

23. Supportability; is it defined as the ability of the system to provide helpful information
to identify and resolve issues in case of malfunction [12]. The existence of a helpdesk, issue
tracking, bug reporting, or related services also contribute to supportability [7].

24. Testability; degree of effectiveness and efficiency with which test criteria can be established
for a system, product, or component. Then the tests might be run to determine whether
the criteria have been met [10].

25. Time behaviour; degree to which the response, processing times, and throughput rates
of a product or system meet the requirements when performing its functions [10].

2.3 Software Quality Attributes and Metrics

The Software Quality Characteristics which are classified in the previous section can actually
be seen from very different points of view, thus allowing for a different type of classification of
characteristics in different classes, which we will refer to as Quality Attributes and Metrics.

The survey and procedure described in Section 2.1 allowed us to identify 239 Quality Attributes
and Metrics that were gathered into a single table. We found that, depending on the source, the
same attribute or metric could be found under different names, but with a very similar definition
or meaning. Those were merged to prevent duplication.

8

We ended up with 126 Quality Attributes and Metrics, it includes the references to the original
articles used. We considered attributes which objectively could be treated as metrics. The
attributes were subdivided into six categories and, for each metric or attribute, a new codename
was proposed in order to have a coherent naming convention throughout the document. The
following categories and their codenames are proposed:

• Source Code Metrics (EOSC-SCMet): 17 metrics. Metrics related to the source code,
such as the number of lines of code or the number of assertions, for example.

• Time and Performance Metrics (EOSC-TMet): 11 metrics. Metrics related to time or
periods of time. For example, the number of resolved bugs per period of time.

• Qualitative Attributes (EOSC-Qual): 27 attributes. Qualitative attributes are obtained
in general through surveys to, or some manual analysis by software developers, administra-
tors, or users. In general, these are not possible to automate and are in general subjective.

• DevOps - Software Release and Management Attributes (EOSC-SWRelMan): 34 at-
tributes. Largely based on the DevOps methodology, they can be automated for Veri-
fication & Validation. Although the possibility of having code reviews in the software
development process is a manual step.

• DevOps - Testing Attributes (EOSC-SWTest): 25 attributes. Again based in DevOps,
these are related to software testing and can also be automatically verified. For example,
whether integration tests are used in the system.

• Service Operability Attributes (EOSC-SrvOps): 12 attributes. They refer to scientific
services or platforms in operation. For example, whether the system provides monitoring
and accounting services.

In Appendix A each attribute or metric entry has the following elements, as shown in Figure 2:

• Codename: naming convention proposed by the sub-group;

• Name: as found in the source reference;

• Associated characteristics: one or more from subsection 2.2;

• Definition: obtained from aggregating or merging the source references;

• Research Software level: from the user stories in subsection 3.1;

• Reference to the source articles.

Figure 2: The structure of each Attribute or Metric entry, as it appears in the Appendix.

9

3 Landscaping

3.1 Definition and references of Research Software

Research Software is not only software. To be able to clearly identify quality attributes for
Research Software we rely on its definition given in page 1.

The most important characteristic is the link with scientific publications. The purpose of Re-
search Software is that it supports the scientific results, and from that it is expected to reproduce
the published results. Regular software does not necessarily have this expectation.

The goal of this section is to cross-reference the elements of software quality from the previous
section with the sub-group 1 [3] (“Software Lifecycle”, c.f. Section 1), typology of Research Soft-
ware development, in order to identify the tools and infrastructures needed to satisfy minimum
quality criteria, taking into account the specificities of Research Software.

As a reminder, sub-group 1 has defined different categories of software development related to
the context in which they are performed:

1. Individual development - Individual creating Research Software for his/her own use
(e.g. a PhD student): Based on a research question, software is created by a single person
with the specific aim of answering the research question and producing research output
(paper, dataset, etc).

2. Team Project - A research team creating an application or workflow for the use within
the team: Research Software is created by a team to answer a series of research questions
(often as part of a larger research project).

3. Team OSS - A team / community developing (possibly broadly applicable) open source
Research Software: Software is created by a team (possibly distributed over multiple or-
ganisations) to answer a broad range of research questions.

4. Team Service - A team or community creating a research service: A service platform is a
set of software components which are used to provide services for a large number of users,
most of whom make use of these offerings via the Internet (e.g. cloud services).

Although there are other references, for instance 3 define similar or equivalent categories as
enumerated above while 4 rely on the same definition of RS as we did in page 1.

3.2 Research Software stack

A typical scientific software stack [15] has the composition shown in Table 1.

Note that Stack level 1 is not considered in this report. The Research Software types are sum-
marised next including some examples:

1. Library: SciPy, TensorFlow, FFTW, BLAS, LAPACK.

2. Framework: JupyterLab, RStudio.

3. Application (such as Monte-Carlo simulation Software): Gromacs, Amber, GEANT4,
COMSOL.

4. Analysis script and workflows: Jupyter notebooks, R scripts.

3https://docs.google.com/presentation/d/1uwxSwd8chbG7bVn5lPvNNhv5f_JeeelA2mN9NXhlOhA
4https://zenodo.org/record/7589725

10

https://docs.google.com/presentation/d/1uwxSwd8chbG7bVn5lPvNNhv5f_JeeelA2mN9NXhlOhA
https://zenodo.org/record/7589725

5. Services and platforms: Galaxy server, Scipion, SAPS, O3AS.

Stack Stack definition Types

4 - Project spe-
cific code

Software written by scientists for a specific research project.
It can take various forms including scripts, notebooks, and
workflows, but also special-purpose libraries and utilities.

Library; Analysis script and
workflows; Services and plat-
forms

3 - Domain spe-
cific tools

Tools and libraries that implement models and methods
which are developed and used by specific communities.
GROMACS, MMTK, Amber.

Library; Application; Services
and platforms

2 - Scientific in-
frastructure

Infrastructure created specifically for scientific computing,
but not for any particular application domain: mathematical
libraries such as BLAS, LAPACK, or SciPy, scientific data
management tools such as HDF5.

Library; Framework; Services
and platforms

1 - Non-scientific
infrastructure

Compilers and interpreters, libraries for data manage-
ment; gcc, python...

–

Table 1: RS stacks, stacks definitions and RS types. Stack level 1 is not considered in this report.

3.3 Examples for Research Software stack and types

To be able to identify quality attributes for Research Software, we need to understand clearly
what is expected from the different types identified in the previous sections.

3.3.1 By Research Software type

The different expectations described below add up to each other, when the context of development
grow in complexity.

Individual researcher creating software for personal use

The author must be able to manage the different versions of the code. He/She often has to come
back to the software after a long time (to answer to a reviewer for a publication, to address a
new scientific question or confirm previous results).

He/She perhaps needs to execute the software on different computers and different operating
systems or versions (for example the use of a supercomputer).

He/She has to share the code when he/she submits his article.

A research team creating an application or workflow for use within the team

The team must be able to manage the development with several people. The way to program
should be homogeneous, and everybody must have a clear vision of who does what.

A new arrival in the team must be able to easily understand the structure of the software and
the way to develop its code.

A team / community developing Open Source Software

For a community Research Software, it is important to facilitate different types of contribution
and to manage correctly the rights attribution.

It is important to take into account Validation & Verification of the code. The code has to be
easy to maintain and to upgrade.

A community software must be as easy as possible to install, use and report bugs, problems or
suggestions/new features. Strong software support must be in place to help the users.

A team or community creating a service, a platform or an infrastructure

11

The main expectations are availability, reliability, security, performance and scalability of the
service or platform for users and operators.

A team / community developing software in an industrial context

In the case of industrial context, expectations can vary depending on the contract between
academic researchers and the company.

3.3.2 Layer by layer in the software stack

Regarding this categorisation, the user’s point of view supersedes the developer’s point of view.

A scientific infrastructure

A scientific infrastructure, as described in [15], is by definition a software used by other software.
That is, it is not a standalone code. Therefore it must be easy to install and to interface/integrate
with other software.

Users expect this type of software to be robust and to be sufficiently sustainable since it is often
the foundation of their own code.

A domain specific tool

A domain specific tool is similar to that of a community software. It must be easy to install on
different operating systems and easy to use. It should have good retro-compatibility. It should
be easy to cite. It is important for users to be able to know precisely what the software does
without having to read the source.

A project specific code

A project specific code has similar characteristics and requirements to that of a single person
or team developing the code. Reproducibility plays an important role. It must be easily citable
and archived for sustainability reasons. It often depends on the scientific infrastructures.

12

4 Recommendations

4.1 Quality Attributes recommendations

4.1.1 Common recommendations

Table 2 shows the list of Quality Attributes that are common to all types of Software, and to
all user stories described in subsection 3.1. They are deemed important and not too difficult to
implement even by an individual researcher or software developer.

These attributes are about documentation, open source code including a license, visible descrip-
tion about intellectual property that is important to establish ownership and scientific recogni-
tion. They also include avoiding redundant code and addressing security concerns (e.g. no world
writable files and directories).

RS Stack RS Type

All All
EOSC-SCMet-02: % of redundant code
EOSC-SCMet-10: Number of comments
EOSC-Qual-27: Intellectual Property
EOSC-SWRelMan-01: Open source
EOSC-SWRelMan-02: Version Control System (VCS)
EOSC-SWRelMan-10: Open-source license
EOSC-SWRelMan-29: Documentation online
EOSC-SWRelMan-30: Documentation updates
EOSC-SWRelMan-32: Documentation production
EOSC-SWTest-15: No world-writable files or directories

Table 2: Recommended common Quality Attributes.

4.1.2 User story: Individual development

In the case of individual development of analysis script and workflows (Table 3), the recommen-
dations are the common attributes listed in Table 2.

RS Stack RS Type

4: Project specific code 4: Analysis script and workflows
All common Quality Attributes: Table 2

Table 3: Recommended Quality Attributes, individual development, Analysis script and work-
flows.

In the case of software type “Library”, we add packaging and code deployment to the common
attributes as listed in Table 4 (c.f. RS lifecycle diagram 1 box 5).

RS Stack RS Type

4: Project specific code 1: Library
All common Quality Attributes: Table 2
EOSC-SWRelMan-12: Packaging
EOSC-SWRelMan-15: Code deployment

Table 4: Recommended Quality Attributes, individual development, library.

4.1.3 User story: Team Project

In the case of a team working on a project on analysis script and workflows, there is an increase
in responsibility. As such it is recommended to add support that includes the reporting and

13

solving bugs and source code hosting in common VCS repositories, as shown in Table 5. See RS
lifecycle diagram 1 boxes Maintenance and Community Feedback.

RS Stack RS Type

4: Project specific code 4: Analysis script and workflows
All from User story: Individual development: Table 3
EOSC-TMet-02: # Resolved bugs
EOSC-TMet-03: # Open bugs
EOSC-SWRelMan-03: Source code hosting
EOSC-SWRelMan-04: Working state version
EOSC-SWRelMan-07: Support

Table 5: Recommended Quality Attributes, team project, analysis script and workflows.

The case of Research Software type “Library”, the recommendation is to add testing with respect
to the previous cases, this is shown in table 6. See RS lifecycle diagram 1 boxes Maintenance,
Community Feedback and Testing/CICD.

RS Stack RS Type

4: Project specific code 1: Library
All from User story: Individual development: Table 4
EOSC-TMet-02: # Resolved bugs
EOSC-TMet-03: # Open bugs
EOSC-SWRelMan-03: Source code hosting
EOSC-SWRelMan-04: Working state version
EOSC-SWRelMan-07: Support
EOSC-SWTest-01: Code style
EOSC-SWTest-02: Unit tests
EOSC-SWTest-03: Test doubles
EOSC-SWTest-07: Functional testing

Table 6: Recommended Quality Attributes, team project, library.

Table 7 regards the development, deployment and operation of a service. We add recommen-
dations related to further types of tests such as APIs and integration (when applicable). Fur-
thermore, there are several Quality Attributes related to security such as the use of service
certificates to encrypt endpoints, use of strong authentication and authorization mechanisms
even in the case of limited access to the services. See RS lifecycle diagram 1 boxes Maintenance,
Community Feedback and Testing/CICD.

RS Stack RS Type

4: Project specific code 5: Services and platforms
All from User story: team project, library: Table 6
EOSC-SWTest-05: API testing
EOSC-SWTest-06: Integration testing
EOSC-SWTest-16: Public endpoints and APIs encrypted
EOSC-SWTest-17: Strong ciphers
EOSC-SWTest-18: Authentication and Authorization
EOSC-SWTest-20: Service compliance with data regulations (GDPR)

Table 7: Recommended Quality Attributes, team project, services and platforms.

4.1.4 User story: Team OSS

This subsection describes the recommendations when a medium to large team is responsible for
the development of Open Source Software for research. Thus, the increase in responsibility with
respect to the previous cases of smaller teams or individual researchers, implies higher scores in
the Quality Attributes. As such, we add Quality Attributes for more complete documentation,

14

additional types of tests including security and peer code review, as shown in Table 8. See RS
lifecycle diagram 1 box Testing/CICD.

RS Stack RS Type

3 and 2: Domain specific tools and Scientific infrastructure 1: Library
All from User story: Team Project: Table 6
EOSC-TMet-04: Defect rates
EOSC-SWRelMan-08: Code review
EOSC-SWRelMan-26: Documentation version controlled
EOSC-SWRelMan-27: Documentation as code
EOSC-SWRelMan-28: Documentation formats
EOSC-SWTest-08: Performance testing
EOSC-SWTest-13: Static Application Security Testing (SAST)
EOSC-SWTest-14: Security code reviews

Table 8: Recommended Quality Attributes, team OSS, library.

Table 9 shows the case for a Framework or Application, it adds further types of testing such
as scalability and development methodology called Test-Driven Development (TDD). See RS
lifecycle diagram 1 box Testing/CICD.

RS Stack RS Type

3 and 2: Domain specific tools and Scientific infrastructure 2 and 3: Framework, Application
All from User story: Team OSS, Library: Table 8
EOSC-SWTest-04: Test-Driven Development (TDD)
EOSC-SWTest-10: Scalability testing

Table 9: Recommended Quality Attributes, team OSS, frameworks and applications.

The Quality Attributes related to software release management are shown in Table 10. In the
case of an Open Source Software development team, software release and management is part
of its responsibility. Thus, the additional recommended Quality Attributes include the existence
of a helpdesk and/or bug tracking system, recommendation for software versioning, packaging
and documentation. This reflects the RS lifecycle diagram 1 boxes Maintenance, Community
Feedback and Deployment.

EOSC-SWRelMan-09: Semantic Versioning
EOSC-SWRelMan-13: Register/publish artefact
EOSC-SWRelMan-17: SCM tool
EOSC-SWRelMan-20: Installability
EOSC-SWRelMan-25: Provide checksums

Table 10: Recommended Quality Attributes for SW release and management.

4.1.5 User story: Team Service

This subsection refers to a medium to large team developing an Open Source scientific research
service or platform that is used by many researchers, possibly from different fields. The list
of Quality Attributes is significant with several types of tests including security, complete set
of documentation, helpdesk for support and bug reporting. See RS lifecycle diagram 1 boxes
Maintenance, Community Feedback and Testing/CICD.

In the case of services and platforms in production, additional Quality Attributes are recom-
mended. Table 12 shows this list. They include the existence of a helpdesk and/or bug tracking
system, monitoring, accounting, authentication and authorization mechanisms, documentation
and policies to access and use the service or platform.

15

RS Stack RS Type

3 and 2: Domain specific tools and Scientific infrastructure 5: Services and platforms
All from User story: Team Project: Table 7
EOSC-TMet-04: Defect rates
EOSC-SWRelMan-08: Code review
EOSC-SWRelMan-26: Documentation version controlled
EOSC-SWRelMan-27: Documentation as code
EOSC-SWRelMan-28: Documentation formats
EOSC-SWTest-04: Test-Driven Development (TDD)
EOSC-SWTest-08: Performance testing
EOSC-SWTest-09: Stress testing
EOSC-SWTest-10: Scalability testing
EOSC-SWTest-12: Open Web Application Security Project (OWASP)
EOSC-SWTest-13: Static Application Security Testing (SAST)
EOSC-SWTest-14: Security code reviews
EOSC-SWTest-19: API security assessment
EOSC-SWTest-21: Dynamic Application Security Testing (DAST)
EOSC-SWTest-22: Interactive Application Security Testing (IAST)
EOSC-SWTest-23: Security penetration testing
EOSC-SWTest-24: Security assessment
EOSC-SWTest-25: Security as Code (SaC) Testing

Table 11: Recommended Quality Attributes, team service, services and platforms.

EOSC-TMet-08: # Registered users
EOSC-TMet-09: # Active users
EOSC-TMet-10: Amount computing resources
EOSC-TMet-11: Amount storage resources
EOSC-SWRelMan-17: SCM tool
EOSC-SWRelMan-20: Installability
EOSC-SWRelMan-22: Infrastructure as Code (IaC) validation
EOSC-SWTest-16: Public endpoints and APIs encrypted
EOSC-SWTest-17: Strong ciphers
EOSC-SWTest-18: Authentication and Authorization
EOSC-SWTest-20: Service compliance with data regulations (GDPR)
EOSC-SWTest-24: Security assessment
EOSC-SrvOps-01: Acceptable Usage Policy (AUP)
EOSC-SrvOps-02: Access Policy and Terms of Use
EOSC-SrvOps-03: Privacy policy
EOSC-SrvOps-04: Operational Level Agreement (OLA)
EOSC-SrvOps-05: Service Level Agreement (SLA)
EOSC-SrvOps-06: Monitoring service public endpoints
EOSC-SrvOps-07: Monitoring service public APIs
EOSC-SrvOps-09: Monitoring security public endpoints and APIs

Table 12: Recommended Quality Attributes for a service or platform in production.

4.2 Example of tools, services and infrastructures

4.2.1 About version control and software forges

Version control systems help track and manage changes to files and particularly to source code.
A software forge is a web-based collaborative platform for developing and sharing codes.

The Quality Attributes related to version control are the following:

• EOSC-SWRelMan-02: Version Control System (VCS)

• EOSC-SWRelMan-03: Source code hosting

• EOSC-SWRelMan-04: Working state version

Version control is an essential tool for software development. Software forges have become vital
tools for all software developers. This type of infrastructure is often deployed at different levels;

16

laboratory, project, institution, etc.. Commercial software forges (such as GitHub and GitLab),
are significantly used in the academic context. A recent report of the Software and Sources Codes
College of the Committee for Open Science illustrate the landscaping in France [16] shows this
trend.

An important point is that most of the software forges integrate a large variety of tools (most of
them listed below), that goes far beyond version control.

Software forges are a key platform to manage contributions to the code from many diverse people.
They integrate the mechanism of Pull or Merge Requests, allowing any developer to contribute
to the code and being peer reviewed, for the purpose of adding a new functionality, bug and
security fixes, etc.

4.2.2 About Continuous Integration/Continuous Delivery - CI/CD

Continuous Integration and Continuous Delivery (CI/CD), is one of the best practices in soft-
ware development that implement the DevOps methodology. Changes are immediately and
automatically tested and executed, and packages (or artefacts) are built and published in public
repositories.

CI/CD systems are the way to implement the verification of a set of Quality Attributes. The
set of QAs to be verified, is implemented through a pipeline that is executed in one such CI/CD
service. The CI/CD system is connected with the software forges, and the pipelines are triggered
when there are changes in the source code. Package building, testing, deployment, documentation
linting, are some of the tasks that can be automated in CI/CD pipelines.

Examples of CI/CD systems are services such as; Jenkins (https://www.jenkins.io/), GitLab
CI (https://docs.gitlab.com/ee/ci/) and Travis CI(https://travis-ci.com/).

The Software Quality as a Service (SQAaaS) platform (https://sqaaas.eosc-synergy.eu), is a
service developed in EOSC-Synergy project5, it allows Jenkins pipeline composition for automatic
tests as well as Badge awarding according to predefined verification of Quality Attributes and
allows to perform Verification & Validation of the Software or Services.

4.2.3 About intellectual property and licensing

The quality attributes related to legal issues and licensing are:

• EOSC-Qual-27: Intellectual Property (IP)

• EOSC-SWRelMan-01: Open Source

• EOSC-SWRelMan-10: Open-Source license

There is no real tool to verify the IP, where support can be provided by the institution. This
support must be as large as possible including the help about Developer Certificate of Origin
(DCO), or Contributor License Agreement (CLA).

Regarding Open Source and license, there are tools to verify that a given Open Source license
file is present in the software forge, comparing it with a know database of Open Source licenses,
one such tool is “licensee”6.

5https://www.eosc-synergy.eu/.
6https://github.com/licensee/licensee

17

https://www.jenkins.io/
https://docs.gitlab.com/ee/ci/
https://travis-ci.com/
https://sqaaas.eosc-synergy.eu
https://www.eosc-synergy.eu/
https://github.com/licensee/licensee

4.2.4 About packaging

Software packaging is the process to build a self-contained package or artefact of a software, in
order for it to be easily installable.

The Quality Attributes regarding this topic are:

• EOSC-SWRelMan-12: Packaging

• EOSC-SWRelMan-15: Code deployment

The number of packaging system is very large, thus we list just a few of such tools and services.
We focus on mostly used tools in academic research and open source context. This is not an
exhaustive list.

Tools Usage URL Comment

Guix Packaging system https://guix.gnu.org/en/ Generate reproducible environment
Nix Packaging system https://nixos.org/ Generate reproducible environment
CMake Build system https://cmake.org/ Include many processes like compilation, pack-

aging, testing
Docker Container technol-

ogy
https://www.docker.com/ Certainly the most used

Singularity Container technol-
ogy

https://sylabs.io/ Technology used in many computing centers

KubernetesContainer orches-
tration

https://kubernetes.io/ Mostly used in services deployment

Openshift PaaS https://www.redhat.com/fr/
technologies/cloud-computing/
openshift

Based on Docker and Kubernetes technologies

RPM Package manager https://rpm.org/ RedHat and derivatives packaging system
deb Package system https://wiki.debian.org/

Packaging
Debian/Ubuntu and derivatives packaging sys-
tem

Table 13: Tools and services for packaging and deployment

It should be noted that each of these tools, services and packaging systems are available or used
in most research infrastructures.

4.2.5 About documentation

Documentation is of critical interest for software and covers many Quality Attributes:

• EOSC-SWRelMan-29: Documentation online

• EOSC-SWRelMan-30: Documentation updates

• EOSC-SWRelMan-32: Documentation production

• EOSC-SWRelMan-26: Documentation version controlled

• EOSC-SWRelMan-27: Documentation as code

• EOSC-SWRelMan-28: Documentation formats

The production of documentation is mostly manual but there are quite a few number of tools
that help generate or produce it.

4.2.6 About management bugs

Bug tracking systems or more generally issue tracking systems are common components for
software development. The relevant Quality Attributes are:

18

https://guix.gnu.org/en/
https://nixos.org/
https://cmake.org/
https://www.docker.com/
https://sylabs.io/
https://kubernetes.io/
https://www.redhat.com/fr/technologies/cloud-computing/openshift
https://www.redhat.com/fr/technologies/cloud-computing/openshift
https://www.redhat.com/fr/technologies/cloud-computing/openshift
https://rpm.org/
https://wiki.debian.org/Packaging
https://wiki.debian.org/Packaging

Tools Usage URL Comment

Doxygen Automatic generation https://www.doxygen.nl/ Multi-languages
Sphinx Automatic generation https://www.sphinx-doc.org/en/

master/
For Python language

Javadoc Automatic generation https://www.oracle.com/java/
technologies/javase/javadoc-tool.
html

For Java language

MediaWiki Wiki engine https://www.mediawiki.org/wiki/
MediaWiki

Available on GitLab platform

GitLab
Pages

Automatic generation https://docs.gitlab.com/ee/user/
project/pages/

Available in GitLab platform
with CI

Hugo Static web site gener-
ation

https://gohugo.io/ Based on Go language

Pelican Static web site gener-
ation

https://getpelican.com/ based on Python language

Table 14: Tools and services for documentation

• EOSC-TMet-02: # Resolved bugs

• EOSC-TMet-03: # Open bugs

Most software forges include a bug or issue tracking system. There are other tools such as
Redmine (which is also a forge software like, https://www.redmine.org/), Trac (http://
trac.edgewall.org/), GLPI (https://www.glpi-project.org/), Request Tracker (https:
//bestpractical.com/request-tracker) or Bugzilla (https://www.bugzilla.org/).

4.2.7 About tests

Automated Software testing is considered a best practice in software development. This can be
implemented in CI/CD pipelines (Section 4.2.2) and covers the following Quality Attributes:

• EOSC-SWTest-02: Unit tests

• EOSC-SWTest-03: Test doubles

• EOSC-SWTest-07: Functional testing

• EOSC-SWTest-05: API testing

• EOSC-SWTest-06: Integration testing

• EOSC-SWTest-08: Performance testing

• EOSC-SWTest-13: Static Application Security Testing (SAST)

• EOSC-SWTest-04: Test-Driven Development (TDD)

• EOSC-SWTest-10: Scalability testing

• EOSC-SWTest-09: Stress testing

There are a large number of tools and they cover several programming languages and frameworks,
we list below a few of them:

• For Python; tox (https://tox.wiki), pytest (https://pytest.org/).

• For Java; JUnit (https://junit.org/).

• For C++; CppUnit (http://freedesktop.org/wiki/Software/cppunit).

19

https://www.doxygen.nl/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://www.oracle.com/java/technologies/javase/javadoc-tool.html
https://www.oracle.com/java/technologies/javase/javadoc-tool.html
https://www.oracle.com/java/technologies/javase/javadoc-tool.html
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/ee/user/project/pages/
https://gohugo.io/
https://getpelican.com/
https://www.redmine.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
https://www.glpi-project.org/
https://bestpractical.com/request-tracker
https://bestpractical.com/request-tracker
https://www.bugzilla.org/
https://tox.wiki
https://pytest.org/
https://junit.org/
http://freedesktop.org/wiki/Software/cppunit

4.2.8 About support

The existence of a helpdesk is very important for users, operators, developers to create tickets
about bugs, questions, new features, security issues, operation or usage of the software or service.
The helpdesk contributes to the trust and adoption of the corresponding software or service. The
Quality Attribute related to support is:

• EOSC-SWRelMan-07: Support

There are many services that can be used for support and we list a few of them:

• GitHub issues https://docs.github.com/en/issues: is an issue tracking system inte-
grated within the GitHub repository

• GitLab issues https://gitlab.com/gitlab-org/gitlab/-/issues: is to GitHub but for
GitLab.

• Jira from Atlassian https://www.atlassian.com/software/jira: is an issue and project
tracking system.

• Request Tracker - RT https://bestpractical.com/request-tracker: Helpdesk.

• Zammad https://zammad.com/en: Ticketing system.

4.2.9 About code analysis

Static code analysis contribute to Software quality, the relevant Quality Attributes are the fol-
lowing:

• EOSC-SCMet-02: % of redundant code

• EOSC-SCMet-10: Number of comments

• EOSC-SWTest-01: Code style

• EOSC-SWTest-15: No world-writable files or directories

• EOSC-SWRelMan-08: Code review

There are many tools that can help to automate this analysis as part of CI/CD pipelines. These
follow best practices and implement code conventions checking and well identified programming
rules.

4.2.10 About security

Security is a critical topic especially for platforms and services, but also for other types of
Software. Several Quality Attributes are related to security:

• EOSC-TMet-04: Defect rates

• EOSC-SWTest-12: Open Web Application Security Project (OWASP)

• EOSC-SWTest-13: Static Application Security Testing (SAST)

• EOSC-SWTest-14: Security code reviews

• EOSC-SWTest-16: Public endpoints and APIs encrypted

• EOSC-SWTest-17: Strong ciphers

20

https://docs.github.com/en/issues
https://gitlab.com/gitlab-org/gitlab/-/issues
https://www.atlassian.com/software/jira
https://bestpractical.com/request-tracker
https://zammad.com/en

Tools Usage URL Comment

Pylint Static code analysis https://pylint.pycqa.org/ For Python language. Others *lint
tools exists for others languages : CP-
Plint for CPP, JSLint for JavaScript

Hadolint Dockerfile linter https://github.com/hadolint/
hadolint

To ensure best practice in Docker im-
ages

checkstyle Static code analysis https://checkstyle.sourceforge.net/ For Java language
pycodestyleStatic code analysis https://pypi.org/project/

pycodestyle/
Check Python code against some of the
style conventions in PEP 8

flake8 Static code analysis https://flake8.pycqa.org/en/latest/
#

Check Python code against some of the
style conventions in PEP 8

SonarQube Automatic reviews
with static analysis
of code

http://sonarqube.org/ Supports many programming lan-
guages

gcov Dynamic coverage
analysis

https://gcc.gnu.org/onlinedocs/gcc/
Gcov.html

Program must be compiled with spe-
cific options

valgrind Memory error detec-
tion

https://www.valgrind.org/ Runs programs on a virtual processor

Table 15: Tools for static and dynamic code analysis

• EOSC-SWTest-18: Authentication and Authorization

• EOSC-SWTest-19: API security assessment

• EOSC-SWTest-20: Service compliance with data regulations (GDPR)

• EOSC-SWTest-21: Dynamic Application Security Testing (DAST)

• EOSC-SWTest-22: Interactive Application Security Testing (IAST)

• EOSC-SWTest-23: Security penetration testing

• EOSC-SWTest-24: Security assessment

• EOSC-SWTest-25: Security as Code (SaC) Testing

Some of the analysis tools include dynamic security analysis. Others, such as Splint (http://
www.splint.org/, for C language) or Bandit (https://bandit.readthedocs.io/en/latest/
for Python language) can be used for static security code analysis.

4.2.11 Transversal needs

The tools and services listed in the previous sections are not enough to produce high quality soft-
ware. Training is crucial at different level (students, researchers, and even software developers),
in order to promote best practices and a good use of the different tools and services.

This can be done in different ways:

• Introduction of specific courses in formal education.

• Lifelong training.

• On line training (such as MOOCs)

• Seminars, webinars, tutorials, hands-on courses.

It is also of crucial importance to develop proximity support for all scientific communities on
these topics.

21

https://pylint.pycqa.org/
https://github.com/hadolint/hadolint
https://github.com/hadolint/hadolint
https://checkstyle.sourceforge.net/
https://pypi.org/project/pycodestyle/
https://pypi.org/project/pycodestyle/
http://www.python.org/dev/peps/pep-0008/
https://flake8.pycqa.org/en/latest/#
https://flake8.pycqa.org/en/latest/#
http://www.python.org/dev/peps/pep-0008/
http://sonarqube.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.valgrind.org/
http://www.splint.org/
http://www.splint.org/
https://bandit.readthedocs.io/en/latest/

5 Perspectives

Perspectives regarding Research Software quality include many different aspects that researchers
and the scientific community at large consider relevant when evaluating the quality of software
used or developed in a particular research field. These aspects are all equally essential to ensure
the credibility and reliability of the research results themselves while meeting the expectations of
software users. Clearly, the different perspectives on the quality of Research Software can branch
significantly based on the individuals using it, the type of software, and the context in which it
is used.

In the following, we shall discuss perspectives according to two distinct points of view: the one of
the developers of Research Software, and that of the users who may be either other researchers
extending research into the same or different research field or mere software users. Finally,
we discuss the aspects related to the services and resources that enable the development, the
execution, and the fruition of the results produced by Research Software.

5.1 Developers

Research software is developed by different individuals e.g., academic researchers, Research Soft-
ware engineers (RSEs), as well as entities such as research departments in industries and academic
laboratories, depending on the context and purpose of the software.

Section 3.1 defines several categories of software development related to the context in which they
are performed. Here, we refer to the category of Research Software developer, which includes,
but is not limited to, the following:

• Academic Researchers and RSEs: Researchers who develop software tools or appli-
cations to support their own research projects. Such software is often tailored to specific
research needs and might be used extensively only in the research group or laboratory in
which it originated. Increasingly, however, groups of academic researchers, in some cases
with heterogeneous expertise, are collaborating within a laboratory or research project
to build tools and software frameworks for their current research and to facilitate the
study of other individuals or research groups. A virtuous example of Research Software
that is widely used in academia and industry, resulting from the collaboration of Euro-
pean research groups with other international research players is Quantum ESPRESSO, a
software suite for first-principles electronic-structure calculations and materials modeling,
distributed under the GNU General Public License.

• Research Institutions: Research software is sometimes developed by research institu-
tions, universities and research organizations (e.g., the CERN). These institutions often
have dedicated software departments or laboratories that create software tools for various
research projects.

• Non-profit Organizations: Some non-profit organizations (e.g., the Free Software Foun-
dation) focus on the development of software and tools that are made available to the
community (including the research community) free of charge or at a reduced cost, usually
via donations.

• Research communities: Open research communities are essential for advancing and
promoting collaborations in the research and scientific communities. These communities
comprise individuals, organizations, and institutions committed to open research principles,
including open access to research publications, data sharing, open-source software, and open

22

https://society-rse.org/
https://foundation.quantum-espresso.org/
https://www.gnu.org/licenses/
https://home.web.cern.ch/
https://www.fsf.org/
https://www.fsf.org/

quality assurance assessment. Examples of research communities include the Center for
Open Science (COS), the OpenAIRE (Open Access Infrastructure for Research in Europe)
or thematic Research communities such as; WORSICA (Water Monitoring Sentinel Cloud
Platform) or O3AS (Ozone Assessment Service).

Note that there is no direct relation between Research Software developer categories and software
development categories, for example individual developer can initiate an OSS project. Further-
more, as observed by J. Cohen et al. [17] good Research Software can make the difference between
valid, sustainable, reproducible research outputs and short-lived, potentially unreliable or erro-
neous outputs.

Research software developers are devoted to producing high-quality software that facilitates or
enables scientific research and technological advancements but also adheres to best practices
in software development to ensure reliability, maintainability, and long-term viability. Hence,
regardless of the developer category, the quality and reliability of Research Software are essential
to ensure the validity and reproducibility of research results.

One crucial aspect for Research Software developers is acknowledging the value of Research
Software and recognising its authorship. This point may significantly impact the developers’
progress in their careers. In many cases, the contributions of researchers who develop software
are only acknowledged through citations in academic papers since Research Software is almost
always directly or indirectly linked to one or more publications. In this regard the Coalition
for Advancing Research Assessment (CoARA: https://coara.eu/), has the vision that the
assessment of research, researchers and research organisations recognises the diverse outputs,
practices and activities that maximise the quality and impact of research.

Additionally, traditional academic evaluation systems often underestimate the production of
Research Software, preferring to rely on other achievements. Recently, many institutions have
recognized the importance of addressing this issue, fostering a growing sensibility in establishing
practices to assess and acknowledge Research Software development. Such new sensitivity will
help create a more inclusive and accurate assessment of modern research specifically for what
concerns Research Software development.

Another important aspect is the developers’ rights regarding the Research Software they produce.
Do they have all the rights to the Research Software they produce or contribute to develop? This
aspect has several implications regarding intellectual property, exploitation or results, re-use in
other research fields or contexts, re-licensing all or part of the software, and so on. The answer
to the question depends on several factors, including institutional policies, funding agreements,
collaboration agreements, and the licensing choices made by the developers for their software.
Developers working within academic institutions or other research organizations may be subject
to institutional policies regarding intellectual property. In some cases, the institution may claim
ownership of the software or have specific policies governing the rights of developers.

Moreover, if the Research Software development is funded by external entities (such as govern-
ment agencies, private organizations, or foundations), the funding agreement terms may stipu-
late the ownership and rights associated with the software. However, more and more often, some
funding agencies encourage or require that software developed with their support be released as
open-source. For example, the EU Open Source Software Strategy 2020-2023) states that the
internal strategy, under the theme “Think Open”, sets out a vision for encouraging and lever-
aging the transformative, innovative and collaborative power of open source, its principles and
development practices. It promotes the sharing and reuse of software solutions, knowledge and
expertise, to deliver better European services that benefit society and lower costs to that society.

23

https://www.cos.io/
https://www.openaire.eu/
https://worsica.incd.pt/
https://o3as.data.kit.edu/
https://coara.eu/
https://commission.europa.eu/about-european-commission/departments-and-executive-agencies/digital-services/open-source-software-strategy_en

Generally, developers retain copyright in their software unless institutional policies or employ-
ment contracts state otherwise. In that case, developers typically have the right to choose the
license under which they release their software and thus determine how others can use, modify,
and distribute it. In light of all these aspects, it is of foremost importance for developers to be
aware of and understand the legal and contractual aspects surrounding the software they create.

5.2 Users

Research software users are heterogeneous and can include individuals with different backgrounds
and coming from disparate professions. However, the primary users of Research Software are
usually researchers, research engineers, and scientists.

The diversity of users highlights the interdisciplinary nature of Research Software, which often
spans various scientific fields and application domains. Adequate documentation, hands-on tuto-
rials, and the steady availability of user support are crucial for ensuring that Research Software
meets the users’ needs and contributes to advancing knowledge in different fields.

Reproducibility of results

From the user’s perspective, a crucial aspect is the reproducibility of the results of a published
study in a scientific manuscript or project document. This has to do with the ability to access
the software and data used to produce the results, i.e., the software artefact. We refer the reader
to Section 2, where the definitions proposed by ACM, and followed in this report, are given.

Users must have access to the software source code to examine the algorithms used, verify their
implementation, and understand how the software works in every aspect.To this end, the avail-
ability of comprehensive documentation and the long-term availability of the software artefact
are essential. Indeed, users should have access to clear instructions on how to configure the
software, install dependencies, compile the code, and reproduce specific experiments or analyses.
Documentation of source code is certainly a plus to improve transparency and reproducibility of
results.

The access to the data used in the study is essential for reproducing results through the Research
Software. Users should have access to the same data used by the authors to run the software.
Moreover, knowledge of the computational environment, including the operating system, software
versions, dependencies, and hardware specifications used to obtain the results, is essential to
facilitate the user to reproduce the results, this can be achieved by proper provenance metadata.
Containers technology and virtual environments are more and more often used, when possible,
to help recreate the exact computational environment.

However, users of Research Software should also recognize that exact reproducibility may not
always be achievable due to some endogenous factors, such as data variability and different
hardware-software platforms over time, or even due to exogenous factors related to the inherent
randomness of the specific methodology used (e.g., Monte Carlo methods). Collaborative and
transparent practices within the research community and between Research Software developers
and the user community can help increase the culture of reproducibility by ensuring that results
produced using Research Software are easily verifiable.

5.3 Service providers

In this section, an external service provider (or simply service provider) refers to a company or
organization that offers services to assist individual researchers and research entities in developing

24

and releasing their Research Software. A service provider may offer either physical resources
or software tools and infrastructures. Several service providers meet the needs of researchers
and developers engaged in Research Software development. Examples include GitHub, Zenodo,
and Slack, to mention a few. Many software developers use such external services to enhance
collaboration, streamline software development, maintain and disseminate the software they
developed.

However, although not every Research Software project needs to leverage services offered by
external service providers, the possibility of relying on such services without worrying about
the maintainability of the service itself is undoubtedly an excellent value for Research Software
developers. For example, researchers often rely on cloud services, such as Amazon Web Services
(AWS) and Google Cloud Platform (GCP), to access scalable computing infrastructures using a
pay-as-you-go service model in which customers are charged on the basis of their actual usage or
consumption of a service, rather than paying upfront a fixed fee. These computing infrastructures
are usually complex to manage and maintain, requiring specialized expertise and a consistent
budget. Additionally, they provide flexibility in handling different workloads and optimizing
resource utilization. Therefore, service providers are crucial actors to enable the development
and execution of the software and the fruition of the results produced by the Research Software.

External services that represent an added value for Research Software can materialize in various
forms. We refer the reader to Section 4.1, for quality attributes recommendations related to
services. The following are some particularly significant services.

• Code hosting and version control. Examples are GitHub and GitLab, which offer ver-
sion control, collaboration features (e.g., issue tracking), and code sharing. These platforms
help to maintain a transparent development process.

• Continuous Integration and Deployment. Examples are Travis CI and Jenkins.
These services automate the testing and deployment of software, ensuring code quality
and streamlining the release process.

• Containerization Services. Examples are Docker Hub, Podman, and Containerd which
offer services that facilitate the packing, distribution, and sharing of Research Software
along with its dependencies, thus enhancing the reproducibility, software portability, and
scalability.

• Cloud Computing Platforms. Examples are AWS, Microsoft Azure, and GCP, which
provide scalable infrastructure, enabling researchers to access computing resources on-
demand.

• Software and Data Repositories. Examples include Zenodo, Dryad, and Figshare.
They offer data and software archiving and sharing services, improving the accessibility
of research artefacts. SoftwareHeritage, on the other hand, is an example of archiving
and preserving the source code of software projects. The goal is to provide a reliable and
persistent archive to ensure the availability of source code to future generations.

• Collaboration Platforms. Examples include Slack and Microsoft Teams, which offer
communication and collaboration tools that improve team coordination, project manage-
ment, and encourage real-time communication.

• High-Performance Computing Centers. Several national and regional HPC centers
(e.g., CINECA and BSC) provide researchers with access to powerful computing resources,

25

https://github.com
https://zenodo.org/
https://slack.com
https://aws.amazon.com/
https://cloud.google.com/
https://github.com
https://about.gitlab.com/
https://www.travis-ci.com/
https://jenkins.io
https://hub.docker.com/
https://podman.io
https://containerd.io
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://zenodo.org/
https://datadryad.org/
https://figshare.com/
https://www.softwareheritage.org/
https://slack.com
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.cineca.it/en
https://www.bsc.es/

enabling them to perform complex simulations and analyses that require significant com-
puting power.

There are also code review, training, and consultancy services for improving software development
and maintenance. For example, Code Review facilitates code review processes to help maintain
code quality, identify issues, and ensure that contributions meet established standards. Software
Carpentry provides workshops, training events, and educational resources to help researchers
improve their software and data skills.

Given the large number of potentially valuable services for Research Software, an open prob-
lem is the fragmentation of these external services, i.e., the phenomenon whereby various soft-
ware services, tools, or platforms are distributed and heterogeneous, which often results in the
parcelization of services with poor interoperability and increased access costs. On the other hand,
Research Software developers who invest in a single set of services from a specific vendor may
become locked into a particular platform or ecosystem, thus limiting their flexibility and interop-
erability and introducing difficulties in migrating to alternative solutions. These phenomena can
have important practical implications for Research Software developers that could be overcome
by building open and interoperable multi-service infrastructures for Research Software.

26

https://www.reviewboard.org/
https://software-carpentry.org/
https://software-carpentry.org/

6 Metadata for quality software

Software metadata has become a crucial asset when deploying and publishing software, as it
describes the key aspects of a software package (e.g. the name, id, version, license, authors,
etc.), aiding comparison against similar efforts and helping users with faceted search. Package
managers such as PyPI,7 Maven Central8 or CRAN9 provide ways of gathering metadata using
their own representation.

With the increasing adoption of the FAIR principles [18], using metadata to describe research
outcomes (including Research Software and code) is becoming a common practice. As with
package managers, metadata make it easier for tool registries and aggregators to present Research
Software with common descriptors that can be indexed and compared. Although metadata on
their own does not guaranty quality, some metadata elements align to quality principles (e.g,
documentation, licensing, version naming, etc.).

In Section 6.1 we review common metadata schemas. In Section 6.2, we discuss the relationship
between FAIR and software code quality. Finally, in Section 6.3, we map some of the Software
Quality Attributes with closely related FAIR principles for Research Software (FAIR4RS).

6.1 Metadata schemas for Software

A number of schemas, vocabularies and ontologies describe software at different levels of detail.
The Description of a Project (DOAP) ontology10 proposes metadata terms for capturing software
projects, emphasizing how a project itself is managed (issues, bug tracking, wiki discussions, etc.).
Other vocabularies such as OntoSoft [19] take on a scientist’s perspective by capturing software
metadata through a series of questions that researchers are familiar with. On a more abstract
formalization level, the Core Software Ontology (CSO)11 specifies terms for describing software
and web services by extending the DOLCE upper ontology [20].

Other schemas have been specialized for a given domain. For example, the Software Ontology
(SWO)12 builds on the Open Biomedical Ontologies such as the Basic Formal Ontology [21] to
describe software. These ontologies describe a thorough taxonomy of input and output types
and formats, particular to the biomedical domain.

Finally, other community initiatives have opted for a lightweight approach. Codemeta [22] aims
at creating a minimal metadata schema for Research Software and code. It is based on two
types from https://schema.org [23], namely SoftwareSourceCode and softwareApplication. In
addition, the Codemeta initiative has aligned metadata schemas from many software registries
and repositories13 making it easier to exchange records between them. Codemeta is one of
the recommendations from the Scholarly infrastructures for Research Software [24], which calls
for EU representatives to “help establish a stable, long-term governance” for the vocabulary.
Two different initiatives have already proposed Codemeta extensions to capture the semantics of
software tools. The first one is Bioschemas14, a collaborative community project aiming at adding
structured markup to Life Science websites, which provides a profile (i.e., a recommendation of

7https://pypi.org/
8https://search.maven.org/
9https://cran.r-project.org/

10http://usefulinc.com/ns/doap
11http://km.aifb.kit.edu/sites/cos/
12http://purl.obolibrary.org/obo/swo.owl
13https://codemeta.github.io/crosswalk/
14https://bioschemas.org/

27

https://schema.org
https://schema.org/SoftwareSourceCode
https://schema.org/SoftwareApplication
https://pypi.org/
https://search.maven.org/
https://cran.r-project.org/
http://usefulinc.com/ns/doap
http://km.aifb.kit.edu/sites/cos/
http://purl.obolibrary.org/obo/swo.owl
https://codemeta.github.io/crosswalk/
https://bioschemas.org/

usage created on top of a schema.org type) for describing ComputationalTools. The second one
is the Software Description Ontology [25], which extends Codemeta with additional metadata
fields to capture executable commands, configuration and limitations of a software component.

6.2 The FAIR principles for Research Software (FAIR4RS)

After the FAIR guiding principles for data were proposed [18], the scientific community discussed
how to adapt them to different research artefacts. The FAIR Principles for Research Software
Working Group15 was created in September 2021 by the Research Data Alliance to adapt the
FAIR principles to Research Software. As a result [26] summarizes the community discussion,
defining the FAIR4RS principles as follows:

F: Software, and its associated metadata, is easy for both humans and machines to
find.

• F1 - Software is assigned a globally unique and persistent identifier.

– F1.1 - Components of the software representing levels of granularity are assigned
distinct identifiers.

– F1.2 - Different versions of the software are assigned distinct identifiers.

• F2 - Software is described with rich metadata.

• F3 - Metadata clearly and explicitly include the identifier of the software they describe.

• F4 - Metadata are FAIR, searchable and indexable.

A: Software, and its metadata, is retrievable via standardized protocols.

• A1 - Software is retrievable by its identifier using a standardized communications protocol.

– A1.1 - The protocol is open, free, and universally implementable.

– A1.2 - The protocol allows for an authentication and authorization procedure, where
necessary.

• A2 - Metadata are accessible, even when the software is no longer available.

I: Software interoperates with other software by exchanging data and/or meta-
data, and/or through interaction via application programming interfaces (APIs),
described through standards.

• I1 - Software reads, writes and exchanges data in a way that meets domain-relevant com-
munity standards.

• I2 - Software includes qualified references to other objects.

R: Software is both usable (can be executed) and reusable (can be understood,
modified, built upon, or incorporated into other software).

• R1 - Software is described with a plurality of accurate and relevant attributes.

– R1.1 - Software is given a clear and accessible license.

– R1.2 - Software is associated with detailed provenance.

• R2 - Software includes qualified references to other software.

15https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

28

https://bioschemas.org/profiles/ComputationalTool
https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

• R3 - Software meets domain-relevant community standards.

6.3 Mapping Quality Attributes to FAIR4RS

Many of the FAIR4RS principles described in Section 6.2 are tightly coupled with good practices
for quality software and code. Table 16 aligns each of the FAIR4RS principles with the Software
Quality Attributes shown in Appendix A. For each alignment we provide a brief explanation
justifying the rationale of our decision.

FAIR4RS
principle

Quality Attribute Rationale

F1
EOSC-SWRelMan-11
EOSC-SWRelMan-13
EOSC-SWRelMan-25

A metadata file describing a software component should be appropriately identified and tied to its
corresponding software project (e.g., on the source code repository). A software project package
should be uploaded to a public registry (e.g., everytime there is a new release). The metadata file
should contain the software identifier and its corresponding version Checksums must be used to
identify each software binary file uniquely.

F1.1
EOSC-SWRelMan-05
EOSC-SWRelMan-33

Different branches should be used to address code changes with different scope. Each branch
should be identified uniquely within a code repository. The documentation associated to a project
must have a persistent identifier and linked to/from the metadata describing the software whenever
needed (i.e., if the documentation resides outside the software, each one will have its own persistent
identifier).

F1.2
EOSC-SWRelMan-02
EOSC-SWRelMan-04
EOSC-SWRelMan-06
EOSC-SWRelMan-09

A version control system should exist for the software project code, with a main identified branch
where new features are merged. A strategy for transitioning between version releases should be
in place. Changelogs and/or release notes should be used to keep trace of changes between ver-
sions/releases. Semantic versioning should be used to uniquely define each code release.

F2
EOSC-SWRelMan-11
EOSC-SWRelMan-26
EOSC-SWRelMan-29
EOSC-SWRelMan-30
EOSC-SWRelMan-31
EOSC-SWRelMan-32

EOSC-Qual-24

The software project should contain enough information for a reader to verify its objectives. A file
including information about the authors (aka creators or contributors) should be provided (e.g.,
citation file) together with a metadata file describing the software project with links to/from
the actual software (be aware that information about the project is not necessarily the same
as for the software itself). Software project could benefit from a Software Management Plan.
Documentation should be used to describe the Research Software component, using version control
to track differences between software versions. A README file should be provided describing
the project with metadata in a human-readable format (e.g., installation instructions, authors,
citation, etc.).

F3 EOSC-SWRelMan-
11

A metadata file should contain an identifier of the software project it describes.

F4 EOSC-SWRelMan-
11

A metadata file should be provided to facilitate metadata propagation when releasing code (e.g.
storing the code in Zenodo).

A1

A1.1 EOSC-SWRelMan-
01

The software project should be publicly available online.

A1.2 EOSC-SWTest-18 An authentication mechanism should be enabled for the target service. Metadata describing the
software should include, when necessary, information on how to access the software (e.g., member-
ship, payment, free of access) and complemented with a license (discussed later in this table).

A2 EOSC-SWRelMan-
13

Metadata can be made accessible via registries. It is therefore a good idea to register the software
in appropriate registries (e.g., some communities will have their own software registries or will
suggest one of general purpose).

I1
EOSC-Qual-29

EOSC-SWTest-01
The software component should comply with internationally recognized standards. Code should
follow standard best practices.

I2 EOSC-SWRelMan-
11

Metadata should point to its documentation, tutorials, etc.

R1
EOSC-SWRelMan-11
EOSC-SWRelMan-29

A metadata file and documentation should describe the software project with accurate, relevant
attributes.

R1.1
EOSC-SWRelMan-10
EOSC-SWRelMan-34

EOSC-SrvOps-01
EOSC-SrvOps-02

A license should be associated with the software project, especially if the project is open source.
The documentation of a software project should also provide a license. In case a service is deployed,
an “Acceptable Usage Policy” and “Terms of Use” policy should be clearly defined.

R1.2
EOSC-SWRelMan-29
EOSC-SWRelMan-30

Software documentation should motivate the rationale and organizations behind the development
of a software project, as well as related initiatives that may have been derived from. Funding
sources should also be acknowledged.

R2
EOSC-SWTest-25

EOSC-SWRelMan-12

Third party dependencies should be documented and checked for security flaws. A software project
should be adequately packaged and installed, containing all the third party dependencies needed
for doing so.

R3
EOSC-Qual-29

EOSC-SWRelMan-32

A software project should comply with internationally adopted standards. Project documentation
should be adapted to the domain-relevant community. Metadata should also comply to community
standards (e.g., Codemeta, Bioschemas, see more information in section 6.1).

Table 16: Mapping FAIR4RS to software quality attributes

29

7 Summary and conclusions

In this report we have tried to provide insights on how the quality of Research Software could be
improved from several different points of view, as well as providing practical recommendations.

We avoided letting the professional views of the authors contributing to this document affect its
objectivity. Indeed, each of us have had our own experience on Software development and/or
operating software and services, which would not necessarily be representative or general enough
for all users and situations.

To overcome this problem, we conducted a systematic and thorough survey of the existing liter-
ature according to the keywords, title, and field of the articles. The list was further processed
to exclude non-suitable articles (for example those not actually discussing about quality aspects,
among other criteria). Finally, we ended up with a set of relevant articles that were included in
our study, which led to a classification into software quality characteristics and software quality
attributes and metrics.

Given that the classification is motivated from what is found in significantly published peer-
reviewed articles, this provided an unbiased list of characteristics, which we further classified
into significant attributes and metrics. We summarised the list of attributed and metrics in
Appendix A, where each entry contains our own proposed codename, its name in the source
reference, the associated characteristics, its definition, its context of use, and a reference to the
source article for tracking and proper citation.

The survey of the broad existing literature and the classification took a large time and effort, but
we are convinced that it was the only proper way to proceed in order to describe the landscape
of Research Software and, eventually, propose recommendations.

In the Introduction section of the document, we tried first to define what Research Software.
Our study is specific for Research Software and therefore it was needed to give a definition. We
realised that this attempt could probably end up in an endless discussion before reaching an
agreement on a precise definition. Therefore, we took the definition for Research Software as
from [2]; any software which is linked to a scientific publication, given that this is surely the most
important of its characteristics.

Software systems can be, in general, organised in different ways, one of them being a stack of
components and their dependencies. We reviewed the stack upon which software is built, from
libraries to complete services and platforms.

To complete the landscape section, we included a discussion about what could be the expectations
depending on the type of Research Software and depending on specific layers of the Software
stack. From the first classification, one can clearly notice that the requirements for a team to
build a complete services are very different from those of individual researchers who build their
own scripts to produce results for a publication. In the second classification, we discussed the
different contexts where Software could be considered, for example as a scientific structure or as
a domain-specific tool.

The classification on characteristics, attributes, and metrics from the survey, along with the
landscaping on Research Software, allowed us to propose practical recommendations.

Given the landscape of different users and scopes of Research Software, we wrote the recom-
mendations at two different levels. The first group are general recommendations for all types
of software including, of course, Research Software. In each group, we listed the corresponding
quality attributes.

30

The second group of recommendations are related to what we have called user stories, and are
recommendations depending on the role of the users. We have considered a user working in a
team, a developer working on an open source project and a user developing a service or platform.

As a case of special interest, we added a section specifically about software in production stage,
discussing the management of its release cycle and quality attributes related to services and
platforms in production.

In order to facilitate understanding, we provide specific examples and use cases where the rec-
ommendations could be applied.

From the recommendations, it comes in a natural way the section about the perspectives or
expectations of developers, users, and service providers with respect to Research Software. We
profiled which kind of developers are typically working with Research Software, as well as its
users. Last but not least, we included also the perspectives of service providers with specific
examples of platforms and services.

Finally, we discuss about metadata of software and the FAIR principles and its relation with
quality. We show examples of existing tools and initiatives to include metadata for software and
discuss how this is important. With respect to the FAIR principles, we focus specifically on the
FAIR4RS of the Research Software Working Group, and we map most of the FAIR4RS principles
with the quality attributes we propose in this work.

The topology of all software is complex, and defining what should be the characteristics and
attributes which define what we understand as its quality is challenging.

Indeed, not all quality criteria is equally applicable to different types of Research Software or in
any context. The landscaping indeed shows this diversity, and we took that into account, when
curating our proposed list of characteristics, attributes and metrics.

Our recommendations also take into account this diversity, completed with actual use case ex-
amples.

We hope the classification and recommendations given in this report will be useful to produce
better Research Software to all actors involved.

31

A Quality Attributes

A.1 Source Code Metrics: EOSC-SCMet

EOSC-SCMet-01: Size of the software application: Maintainability.

• The software product’s rebuild value is estimated from the number of lines of code. This
value is calculated in man-years using the Programming Languages Table of the Software
Productivity Research [27].

EOSC-SCMet-02: % of redundant code: Maintainability, Modifiability.

• A line of code is considered redundant if it is part of a code fragment (larger than 6 lines of
code) that is repeated literally (modulo white-space) in at least one other location in the
source code [27].

EOSC-SCMet-03: # Lines of code: Maintainability.

• Number of lines for the whole software project or components / modules / classes / func-
tions / methods [28, 27].

EOSC-SCMet-04: % of assertions: Maintainability.

• Percentage of lines of source code containing assertions. Assertions are used as a means
for demonstrating that the program is behaving as expected and as an indication of how
thoroughly the source classes have been tested on a per class level [29].

EOSC-SCMet-05: Cyclomatic Complexity: Maintainability.

• Cyclomatic complexity (i.e., the number of linearly independent paths through a program’s
source code) of the whole software component or modules/components/classes/functions/methods.
Cyclomatic complexity is created by calculating the number of different code paths in the
flow of the program. A program that has complex control flow requires more tests to
achieve good code coverage and is less maintainable [30, 28, 27, 29, 31].

EOSC-SCMet-06: Cyclomatic Complexity test/source ratio: Maintainability.

• Ratio between the sum of cyclomatic complexities of all tests and the source code [29].

EOSC-SCMet-07: Number of arguments: Maintainability.

• Number of arguments or parameters used in functions. Functions with many parameters
may be a symptom of bad encapsulation [27, 31].

EOSC-SCMet-08: Number of function calls: Maintainability.

• Measures the inter-dependencies between unique classes through parameters, local vari-
ables, return types, method calls, generic or template instantiations, base classes, interface
implementations, fields defined on external types, and attribute decoration. Good soft-
ware design dictates that types and methods should have high cohesion and low coupling.
High coupling indicates a design that is difficult to reuse and maintain because of its many
inter-dependencies on other types [28, 31].

EOSC-SCMet-09: Modularity: Maintainability, Functional suitability.

• Degree to which a system or computer program is composed of discrete components such
that a change to one component has minimal impact on other components. Also the number
of modules [10, 28, 32, 31, 9].

32

EOSC-SCMet-10: Number of comments: Modifiability.

• Number of lines corresponding to comments for the whole software or per modules/components
/ classes / functions / methods [30, 28, 31].

EOSC-SCMet-11: Maintainability Index (MI): Maintainability.

• Degree of effectiveness and efficiency with which a product or system can be modified
by the intended maintainers. The Maintainability Index (MI) calculates an index value
between 0 and 100 that represents the relative ease of maintaining the code. A high value
means better maintainability. Colour coded ratings can be used to quickly identify trouble
spots in the code. A green rating is between 20 and 100 and indicates that the code has
good maintainability. A yellow rating is between 10 and 19 and indicates that the code is
moderately maintainable. A red rating is a rating between 0 and 9 [10, 28].

EOSC-SCMet-12: Internal cohesion: Maintainability.

• Cohesion describes how related the functions within a single module are. Low cohesion
implies that a given module performs tasks which are not very related to each other and
hence can create problems as the module becomes large [11, 28].

EOSC-SCMet-13: Test class to source class ratio: Reliability.

• Control measure to counter the confounding effect of class size. The coefficient is calculated
by NOTC/NOSC (NOTC = number of test classes, NOSC = number of source classes)
[29].

EOSC-SCMet-14: Coupling Between Objects (CBO) ratio: Maintainability.

• Ratio between the CBO in the tests and in the whole source code. The higher the inter-
object class coupling, the more rigorous the testing should be [29].

EOSC-SCMet-15: Depth of inheritance Tree (DIT) ratio: Maintainability.

• Ratio between the DIT of the tests and the DIT of the source code. A higher DIT indicates
desirable reuse but adds to the complexity of the code because a change or a failure in a
super class propagates down the inheritance tree [29].

EOSC-SCMet-16: Weighted Methods per Class (WMC) ratio: Maintainability.

• Ratio between the WMC of the tests with respect to the WMC of the whole source code.
This measure serves to compare the testing effort on a method basis. WMC is an indicator
of fault-proneness [29].

EOSC-SCMet-17: Source lines of code (SLOC) ratio: Maintainability.

• SLOC of the whole project with respect to the minimum SLOC of its components [29].

A.2 Time and Performance Metrics: EOSC-TMet

EOSC-TMet-01: Effort required for changes: Reliability, Supportability.

• Time and resources dedicated to resolve an issue [28].

EOSC-TMet-02: # Resolved bugs: Supportability.

• Number of resolved bugs per period of time [28].

EOSC-TMet-03: # Open bugs: Supportability.

33

• Number of open bugs/issues per period of time [28].

EOSC-TMet-04: Defect rates: Maintainability.

• The number of outstanding defects in a product per period of time [33].

EOSC-TMet-05: Integrity: Integrity, Maintainability.

• Resource cost expended to solve problems caused by inconsistencies within the system. This
may be measured in terms of staff time employed to fix problems and user time wasted.
Also, degree to which a system, product or component prevents unauthorised access to, or
modification of, computer programs or data [10, 34].

EOSC-TMet-06: Maintainability: Maintainability.

• Measured by the resources spent in terms of time and cost in keeping a system up and
running over a period of time [34, 35].

EOSC-TMet-07: Adaptability: Reusability. Adaptability.

• Degree to which a product or system can effectively and efficiently be adapted for different
or evolving hardware, software or other operational or usage environments [10, 34, 35].

EOSC-TMet-08: # Registered users: Operability.

• The metric Number of registered users is to be collected [7].

EOSC-TMet-09: # Active users: Operability.

• The metric Number of active users over a given period of time may be collected [7].

EOSC-TMet-10: Amount of computing resources: Operability, Performance Efficiency.

• The metric amount of computing resources per user or group of users is collected. An
example is CPU x hours, resource utilisation [10, 7].

EOSC-TMet-11: Amount of storage resources: Operability, Performance Efficiency.

• The metric amount of storage resources per user or group of users is collected. An example
is GByte x hours. Resource utilisation and capacity [10, 7].

A.3 Qualitative Attributes: EOSC-Qual

EOSC-Qual-01: Complexity of diagrams: Maintainability. Reusability.

• Complexity of diagrams (UML) for the whole software or modules/components [28].

EOSC-Qual-02: Complexity of architecture: Maintainability. Reusability.

• Architecture showing modules and interactions [28, 36].

EOSC-Qual-03: Complexity of a use case: Maintainability. Reusability. Usability.

• Complexity of use case diagrams (UML) [28].

EOSC-Qual-04: Sustainable community: Supportability.

• An active community is behind the software product [32].

EOSC-Qual-05: User satisfaction: Attractiveness.

34

• Degree to which a user interface enables pleasing and satisfying interaction for the user [10,
36].

EOSC-Qual-06: Usability: Usability.

• Measured using user surveys. However, it may also be assessed in terms of calls upon
support staff, e.g. number of requests for help or support staff time expended. Also,
degree to which a product or system can be used by specified users to achieve specific goals
with effectiveness, efficiency and satisfaction in a specified context of use [10, 36, 34, 35].

EOSC-Qual-07: Reliability: Reliability.

• The reliability of systems from the user’s point of view is concerned with three things:
(1) How often does it go wrong? (2) How long is it unavailable? (3) Is any information
lost at recovery? Also, degree to which a system, product or component performs specific
functions under specified conditions for a specified period of time [10, 34, 35].

EOSC-Qual-08: Timeliness: Supportability.

• Assessed in terms of the costs of non-delivery. These will possibly include staff time and
lost sales. It may also be assessed in terms of the number of days departure from the date
agreed with client [34].

EOSC-Qual-09: Cost-Benefit efficiency: Maintainability.

• Measured in simple financial terms. The costs of installing and maintaining the system are
weighed against the assessment of business benefits [34].

EOSC-Qual-10: Accessibility: Technical accessibility.

• Degree to which a product or system can be used by people with the widest range of
characteristics and capabilities to achieve a specified goal in a specified context of use [10,
35].

EOSC-Qual-11: Accountability: Performance, Resource utilisation.

• Degree to which the actions of an entity can be traced uniquely to the entity. Its usage
can be measured; critical segments of code can be instrumented with probes to measure
timing, whether specified branches are exercised, etc. [10, 35].

EOSC-Qual-12: Accuracy: Performance, Functional suitability.

• Code outputs are sufficiently precise to satisfy their intended use [35].

EOSC-Qual-13: Communicativeness: Ease of use.

• Metric which facilitates the specification of inputs and provides outputs whose form and
content are easy to assimilate and useful [35, 8].

EOSC-Qual-14: Completeness: Supportability, Manageability.

• All software parts are present and each part is fully developed [10, 35].

EOSC-Qual-15: Conciseness: Supportability, Resource utilisation.

• Redundant information about the software code is not present [35].

EOSC-Qual-16: Consistency: Maintainability, Interoperability, Compatibility.

• Source code contains uniform notation, terminology and symbology within itself [35, 8].

35

EOSC-Qual-17: Legibility: Supportability, Maintainability.

• Software function is easily discerned by reading the code [35].

EOSC-Qual-18: Modifiability: Modifiability.

• Degree to which a product or system can be effectively and efficiently modified without
introducing defects or degrading existing product quality [10, 35].

EOSC-Qual-19: Robustness: Safety.

• Software can continue to perform despite some violation of the assumptions in its specifi-
cation [35].

EOSC-Qual-20: Self-containedness: Supportability.

• Software performs all its explicit and implicit functions within itself [35].

EOSC-Qual-21: Self-descriptiveness: Supportability, Ease of use.

• Software contains enough information for a reader to determine or verify its objectives,
assumptions, constraints, inputs, outputs, components, and revision status [35].

EOSC-Qual-22: Structuredness: Modifiability, Reusability.

• Software possesses a definite pattern of organisation of its interdependent parts [35].

EOSC-Qual-23: Understandability: Supportability.

• Software purpose is clear to the inspector [35].

EOSC-Qual-24: Intellectual Property: Supportability, Reusability.

• There are multiple statements embedded into the software product describing unrestricted
rights and any conditions for use, including commercial and non-commercial use, and the
recommended citation. The list of developers is embedded in the source code of the prod-
uct, in the documentation, and in the expression of the software upon execution. The
intellectual property rights statements are expressed in legal language, machine-readable
code, and in concise statements in language that can be understood by laypersons, such as
a pre-written, recognisable licence [9].

EOSC-Qual-25: Extensibility: Attractiveness, Modifiability.

• There is evidence that the software project has been extended externally by users outside
of the original development group using existing documentation only. There is a clear
approach for modifying and extending features across and in multiple scenarios, with spe-
cific documentation and features to allow the building of extensions which are used across
a range of domains by multiple user groups. There may be a library available of user-
generated content for extensions and user generated documentation on extension is also
available [9].

EOSC-Qual-26: Standards compliance: Functional suitability.

• Compliance with open or internationally recognised standards for the software and soft-
ware development process, is evident and documented, and verified through testing of all
components. Ideally independent verification is documented through regular testing and
certification from an independent group [9].

EOSC-Qual-27: Internationalisation and localisation: Usability.

36

• Demonstrable usability: Software has been tested with multiple pseudo or genuine trans-
lations [9].

A.4 DevOps-SWRelease and Management Attributes: EOSC-SWRelMan

EOSC-SWRelMan-01: Open source : Supportability, Maintainability, Availability, Reusabil-
ity.

• Following the open-source model, the source code being produced is open and publicly
available to promote the adoption and augment the visibility of the software developments
[6, 8].

EOSC-SWRelMan-02: Version Control System (VCS): Supportability, Maintainability.

• Source code uses a Version Control System (VCS). All software components delivered by
the same project agree on a common VCS [6].

EOSC-SWRelMan-03: Source code hosting: Supportability, Maintainability.

• Source code produced within the scope of a broader development project resides in a
common organisation of a version control repository hosting service [6].

EOSC-SWRelMan-04: Working state version: Maintainability.

• The main branch in the source code repository maintains a working state version of the
software component. Main branch is protected to disallow force pushing, thus preventing
untested and unreviewed source code from entering the production-ready version. New
features are merged in the main branch whenever the agreed upon SQA criteria is fulfilled
[6].

EOSC-SWRelMan-05: Changes branches: Maintainability.

• New changes in the source code are placed in individual branches. Branches follow a
common nomenclature, usually by prefixing, to differentiate change types (e.g. feature,
release, fix) [6].

EOSC-SWRelMan-06: Good patching practice: Maintainability.

• Secondary long-term branch that contains the changes for the next software release exists.
Next release changes come from the individual branches. Once ready for release, changes in
the secondary long-term branch are merged into the main branch and versioned. At that
point in time, main and secondary branches are aligned. This step marks a production
release [6, 8].

EOSC-SWRelMan-07: Support: Maintainability, Operability.

• Existence of an issue tracking system or helpdesk, facilitates structured software develop-
ment. Leveraging issues to track down both new enhancements and defects (bugs, docu-
mentation typos). Applies as well to services to report operational and user issues [30, 9,
6, 7].

EOSC-SWRelMan-08: Code review: Maintainability.

• Code reviews are done in the agreed peer review tool within the project, with the following
functionality: (a) Allows general and specific comments on the line or lines that need to be
reviewed. (b) Shows the results of the required change-based test executions. (c) Allows to
prevent merges of the candidate change whenever not all the required tests are successful.

37

Exceptions to this rule cover the third-party or upstream contributions which MAY use
the existing mechanisms or tools for code review provided by the target software project.
This exception is only allowed whenever the external revision life cycle does not interfere
with the project deadlines [30, 32, 36, 6].

EOSC-SWRelMan-09: Semantic Versioning : Maintainability.

• Semantic Versioning specification is followed for tagging the production releases [6, 8].

EOSC-SWRelMan-10: Open-source licence: Supportability, Maintainability, Reusability.

• As open-source software, source code adheres to an open-source licence to be freely used,
modified and distributed by others. Non-licensed software is exclusive copyright by default
[6, 8].

EOSC-SWRelMan-11: Metadata: Supportability, Maintainability, Availability.

• A metadata file (such as Codemeta or Citation File Format) exists alongside the code,
under its VCS. The metadata file is updated when needed, as is the case of a new version
[6].

EOSC-SWRelMan-12: Packaging: Installability.

• Production-ready code is built as an artefact that can be installed on a system [9, 6, 8].

EOSC-SWRelMan-13: Register/publish artefact: Installability.

• The built artefact is uploaded and registered into a public repository of such artefacts [6].

EOSC-SWRelMan-14: Notification upon registration: Installability.

• Upon success of the package delivery process, a notification is sent to predefined parties
such as the main developer or team [6].

EOSC-SWRelMan-15: Code deployment: Installability.

• Production-ready code is deployed as a workable system with the minimal user or system
administrator interaction leveraging software configuration management (SCM) tools [6].

EOSC-SWRelMan-16: Software Configuration Management (SCM) as code: Installability.

• A software configuration management (SCM) module is treated as code. Version controlled,
it resides in a different repository than the source code to facilitate the distribution [6].

EOSC-SWRelMan-17: SCM tool: Installability.

• All software components delivered by the same project agree on a common SCM tool. How-
ever, software products are not restricted to provide a unique solution for the automated
deployment [6].

EOSC-SWRelMan-18: SCM code changes: Installability.

• Any change affecting the applications deployment or operation is subsequently reflected in
the relevant SCM modules [6].

EOSC-SWRelMan-19: SCM official repositories: Installability.

• Official repositories provided by the manufacturer are used to host the SCM modules, thus
augmenting the visibility and promote external collaboration [6].

38

EOSC-SWRelMan-20: Installability: Installability.

• Degree of effectiveness and efficiency with which a product or system can be successfully
installed and/or uninstalled in a specified environment. Also, a production-ready SW or
service is deployed as a workable system with the minimal user or system administrator
interaction leveraging Infrastructure as Code templates [10, 7].

EOSC-SWRelMan-21: Preserve immutable infrastructures: Installability.

• Any future change to a deployed Service is done in the form of a new deployment, in order
to preserve immutable infrastructures [7].

EOSC-SWRelMan-22: Infrastructure as Code (IaC) validation: Installability.

• IaC is validated by specific (unit) testing frameworks for every change being done [7].

EOSC-SWRelMan-23: Packaging of tarballs: Installability.

• Tarballs are not included in the distribution directory. Packaged tarballs are not extracted
in the distribution directory [8].

EOSC-SWRelMan-24: Design for upgradability: Compatibility.

• Installation layout supports different versions and code releases [8].

EOSC-SWRelMan-25: Provide checksums: Maintainability.

• Code releases provide checksums with each binary (tarballs, RPMs, etc.) [8].

EOSC-SWRelMan-26: Documentation version controlled: Supportability.

• Documentation is version controlled. [7].

EOSC-SWRelMan-27: Documentation as code: Supportability, Maintainability, Reusability.

• Documentation is treated as code and resides in the same repository where the source code
lies [6].

EOSC-SWRelMan-28: Documentation formats: Supportability, Maintainability, Reusability.

• Documentation uses plain text format using a markup language, such as Markdown or re-
StructuredText. All software components delivered by the same project agree on a common
markup language [6, 8].

EOSC-SWRelMan-29: Documentation online: Supportability, Availability.

• Documentation is online available in a documentation repository. Documentation is ren-
dered automatically [6, 7].

EOSC-SWRelMan-30: Documentation updates: Supportability, Maintainability, Reusability.

• Documentation is updated on new software or service versions involving any substantial or
minimal change in the behaviour of the application [6, 7, 8].

EOSC-SWRelMan-31: Documentation updates if inaccurate/unclear: Supportability, Main-
tainability, Reusability.

• Documentation is updated whenever reported as inaccurate or unclear [6, 7].

EOSC-SWRelMan-32: Documentation production: Supportability, Maintainability, Reusabil-
ity.

39

• Documentation is produced according to the target audience, varying according to the
software component specification. The identified types of documentation and their con-
tent are README file(one-paragraph description of the application, a ”Getting Started”
step-by-step description on how to get a development environment running, automated test
execution how-to, links to external documentation below, contributing code of conduct, ver-
sioning specification, author list and contacts, licence information and acknowledgements),
Developer documentations (Private API documentation, structure and interfaces and build
documentation), Deployment and Administration documentations (Installation and config-
uration guides, service reference card, FAQs and troubleshooting) and user documentations
(Public API documentation and command-line reference) [32, 9, 6, 7, 8].

EOSC-SWRelMan-33: Documentation PID: Supportability.

• Documentation has a Persistent Identifier (PID) [7].

EOSC-SWRelMan-34: Documentation licence: Supportability.

• Documentation has a non-software licence [7].

A.5 DevOps - Testing Attributes: EOSC-SWTest

EOSC-SWTest-01: Code style: Maintainability, Testability.

• Each individual software complies with a de-facto code style standard for all the program-
ming languages used in the codebase. Multiple standard style compliance is possible [6,
8].

EOSC-SWTest-02: Unit tests: Maintainability, Testability.

• Minimum acceptable code coverage threshold is 70%. Unit testing coverage is higher for
those sections of the code identified as critical by the developers, such as units part of a
security module. Unit testing coverage may be lower for external libraries or pieces of code
not maintained within the product’s code base [32, 29, 35, 9, 6, 8].

EOSC-SWTest-03: Test doubles: Functional suitability, Testability.

• When working on automated testing, Test Doubles (i.e., objects or procedures that look
and behave like their release-intended counterparts, but are actually simplified versions
that reduce the complexity and facilitate testing) are used to mimic a simplistic behaviour
of objects and procedures [6, 7].

EOSC-SWTest-04: Test-Driven Development (TDD): Functional suitability, Maintainability,
Testability.

• Software requirements are converted to test cases, and these test cases are checked au-
tomatically. Also, degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to determine
whether those criteria have been met [10, 33, 36, 6].

EOSC-SWTest-05: API testing: Functional suitability, Testability.

• API testing MUST cover the validation of the features outlined in the specification (aka
contract testing) [7].

EOSC-SWTest-06: Integration testing: Functional suitability, Testability, Interoperability.

40

• Whenever a new functionality is involved, integration testing guarantees the operation of
any previously-working interaction with external services [10, 7].

EOSC-SWTest-07: Functional testing: Functional suitability, Testability.

• Functional testing covers the full scope -e.g. positive, negative, edge cases- for the set of
functionality that the software or service claims to provide [10, 7].

EOSC-SWTest-08: Performance testing: Functional suitability, Testability.

• Performance testing is carried out to check the Software Application performance under
varying loads [10, 7].

EOSC-SWTest-09: Stress testing: Functional suitability, Testability.

• Stress testing is carried out to check the Service to determine the behavioural limits under
sudden increased load [7].

EOSC-SWTest-10: Scalability testing: Functional suitability, Testability.

• Scalability testing is carried out to check the Service ability to scale up and/or scale out
when its load reaches the limits [7].

EOSC-SWTest-11: Elasticity testing: Functional suitability, Testability.

• Elasticity testing is carried out to check the Service ability to scale out or scale in, depending
on its demand or workload [7].

EOSC-SWTest-12: Open Web Application Security Project (OWASP): Security.

• Application is compliant with Open Web Application Security Project (OWASP) secure
coding guidelines [6].

EOSC-SWTest-13: Static Application Security Testing (SAST): Security.

• Source code uses automated linter tools to perform static application security testing
(SAST) that flag common suspicious constructs that may cause a bug or lead to a se-
curity risk (e.g. inconsistent data structure sizes or unused resources) [6].

EOSC-SWTest-14: Security code reviews: Security.

• Security code reviews for certain vulnerabilities is done as part of the identification of
potential security flaws in the code. Inputs come from automated linters and manual
penetration testing results [34, 9, 6].

EOSC-SWTest-15: No world-writable files or directories: Security.

• World-writable files or directories are not present in the product’s configuration or logging
locations [6].

EOSC-SWTest-16: Public endpoints and APIs encrypted: Security.

• The Service public endpoints and APIs are secured with data encryption [7].

EOSC-SWTest-17: Strong ciphers: Security.

• The Service uses strong ciphers for data encryption [7].

EOSC-SWTest-18: Authentication and Authorisation: Security, Technical accessibility.

41

• The Service has an authentication and authorisation mechanism. The Service validates the
credentials and signatures [9, 7].

EOSC-SWTest-19: API security assessment: Security.

• API testing includes the assessment of the security-related criteria [7].

EOSC-SWTest-20: Service compliance with data regulations (GDPR): Security.

• The Service handles personal data in compliance with the applicable regulations, such as
the General Data Protection Regulation (GDPR) within the European boundaries [7].

EOSC-SWTest-21: Dynamic Application Security Testing (DAST): Security.

• DAST checks are executed, through the use of ad-hoc tools, directly to an operational
Service in order to uncover runtime security vulnerabilities and any other environment-
related issues (e.g. SQL injection, cross-site scripting or DDOS). The latest release of
OWASP’s Web Security Testing Guide and the NIST’s Technical Guide to Information
Security Testing and Assessment are considered for carrying out comprehensive Service
security testing [7].

EOSC-SWTest-22: Interactive Application Security Testing (IAST): Security.

• Interactive Application Security Testing (IAST), analyses code for security vulnerabilities
while the app is run by an automated test. IAST is performed to a service in an operating
state [7].

EOSC-SWTest-23: Security penetration testing: Security.

• Penetration testing (manual or automated) is part of the application security verification
effort [7].

EOSC-SWTest-24: Security assessment: Security.

• The security assessment of the target system configuration is particularly important to
reduce the risk of security attacks. The benchmarks delivered by the Centre for Internet
Security (CIS) and the NIST’s Security Assurance Requirements for Linux Application
Container Deployments are considered for this task. Also, the degree to which a product
or system protects information and data so that persons or other products or systems have
the degree of data access appropriate to their types and levels of authorisation [10, 7].

EOSC-SWTest-25: Security as Code (SaC) Testing: Security.

• IaC testing covers the security auditing of the IaC templates (SaC) in order to assure
the deployment of secured Services. For all the third-party dependencies used in the IaC
templates (including all kinds of software artefacts, such as Linux packages or container-
based images) [7].

A.6 Service Operability Attributes: EOSC-SrvOps

EOSC-SrvOps-01: Acceptable Usage Policy (AUP): Supportability.

• An Acceptable Usage Policy (AUP) is declared. AUP Is a set of rules applied by the owner,
creator or administrator of a network, Service or system, that restrict the ways in which
the network, Service or system may be used and sets guidelines as to how it should be
used. The AUP can also be referred to as: Acceptable Use Policy or Fair Use Policy [7].

42

EOSC-SrvOps-02: Access Policy and Terms of Use: Supportability.

• An Access Policy or Terms of Use (APTU) is declared. APTU represents a binding legal
contract between the users (and/or customers), and the Provider of the Service. The Access
Policy mandates the users (and/or customers) access to and the use of the Provider’s Service
[7].

EOSC-SrvOps-03: Privacy policy: Supportability.

• A Privacy Policy is declared, with a data privacy statement informing the users (and/or
customers), about which personal data is collected and processed when they use and inter-
act with the Service. It states which rights the users (and/or customers) have regarding
the processing of their data [7].

EOSC-SrvOps-04: Operational Level Agreement (OLA): Supportability.

• The Service includes an Operational Level Agreement (OLA) with the infrastructure where
it is integrated [7].

EOSC-SrvOps-05: Service Level Agreement (SLA): Supportability.

• The Service includes Service Level Agreement (SLA) with user communities [7].

EOSC-SrvOps-06: Monitoring service public endpoints: Availability, Reliability.

• The Service public endpoints are monitored, such as probes measuring the http or https
response time [7].

EOSC-SrvOps-07: Monitoring service public APIs: Availability, Reliability.

• The Service public APIs are monitored through the use of functional tests [7].

EOSC-SrvOps-08: Monitoring service Web Interface: Availability, Reliability.

• The Service Web interface is monitored, this can be accomplished through the use of
automated and periodic functional tests [7].

EOSC-SrvOps-09: Monitoring security public endpoints and APIs: Availability, Reliability.

• The Service is monitored for public endpoints and APIs secured and strong ciphers for
encryption [7].

EOSC-SrvOps-10: Monitoring security DAST: Availability, Reliability.

• The Service is monitored with DAST security checks [7].

EOSC-SrvOps-11: Infrastructure monitoring: Availability, Reliability.

• The Service is monitored for infrastructure-related criteria [7].

EOSC-SrvOps-12: Monitoring with Unit tests: Availability, Reliability.

• IaC (unit) tests are reused as monitoring tests, thus avoiding duplication [7].

43

References

[1] Mario David et al. EOSC-SYNERGY. EU DELIVERABLE: D3.1 Software Maturity base-
line. EOSC-SYNERGY receives funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 857647., 2020. doi: 10.20350/
digitalCSIC/12607.

[2] Morane Gruenpeter et al. Defining Research Software: a controversial discussion. Zenodo,
Sept. 13, 2021. doi: 10.5281/zenodo.5504016. url: https://zenodo.org/record/
5504016 (visited on 01/28/2022).

[3] Guy Courbebaisse et al. Research Software Lifecycle. Sept. 2023.
[4] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std 610.12-

1990 (1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064.
[5] B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in

software engineering. 2007.
[6] Pablo Orviz et al. “A set of common software quality assurance baseline criteria for research

projects”. In: (2017). In collab. with Digital.CSIC and Digital.CSIC. doi: 10.20350/
DIGITALCSIC/12543. url: https://digital.csic.es/handle/10261/160086 (visited on
02/10/2022).

[7] Pablo Orviz Fernández et al. “EOSC-synergy: A set of Common Service Quality Assurance
Baseline Criteria for Research Projects”. In: (June 15, 2020). In collab. with Digital.CSIC
and Digital.CSIC. doi: 10.20350/DIGITALCSIC/12533. url: https://digital.csic.
es/handle/10261/214441 (visited on 02/10/2022).

[8] Eric Steven Raymond. Software Release Practice HOWTO. Jan. 14, 2013. url: https:
//tldp.org/HOWTO/Software-Release-Practice-HOWTO/.

[9] John Shepherdson. “CESSDA Software Maturity Levels”. In: (Mar. 29, 2019). doi: 10.
5281/zenodo.2614050. url: https://zenodo.org/record/2614050 (visited on 02/10/2022).

[10] ISO Central Secretary. Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models: ISO/IEC
25010:2011. ISO. 2017. url: https://www.iso.org/standard/35733.html (visited on
06/24/2022).

[11] “ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary”.
In: ISO/IEC/IEEE 24765:2017(E) (2017), pp. 1–541. doi: 10 . 1109 / IEEESTD . 2017 .
8016712.

[12] Microsoft. Design Fundamentals. 2010. url: https://learn.microsoft.com/en-us/
previous-versions/msp-n-p/ee658094(v=pandp.10) (visited on 2010).

[13] Gartner. Gartner Glossary: Scalability. 2023. url: https : / / www . gartner . com / en /
information-technology/glossary/scalability (visited on 2021).

[14] André B. Bondi. “Characteristics of Scalability and Their Impact on Performance”. In:
Proceedings of the 2nd International Workshop on Software and Performance. WOSP ’00.
Ottawa, Ontario, Canada: Association for Computing Machinery, 2000, pp. 195–203. isbn:
158113195X. doi: 10.1145/350391.350432. url: https://doi.org/10.1145/350391.
350432.

[15] Konrad Hinsen. “Dealing With Software Collapse”. In: Computing in Science and Engi-
neering 21.3 (2019), pp. 104–108. doi: 10.1109/MCSE.2019.2900945.

[16] Daniel Le Berre et al. Higher Education and Research Forges in France - Definition, uses,
limitations encountered and needs analysis. Tech. rep. Comité pour la science ouverte,
May 2023. doi: 10.52949/37. url: https://hal-lara.archives-ouvertes.fr/hal-
04208924.

44

https://doi.org/10.20350/digitalCSIC/12607
https://doi.org/10.20350/digitalCSIC/12607
https://doi.org/10.5281/zenodo.5504016
https://zenodo.org/record/5504016
https://zenodo.org/record/5504016
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.20350/DIGITALCSIC/12543
https://doi.org/10.20350/DIGITALCSIC/12543
https://digital.csic.es/handle/10261/160086
https://doi.org/10.20350/DIGITALCSIC/12533
https://digital.csic.es/handle/10261/214441
https://digital.csic.es/handle/10261/214441
https://tldp.org/HOWTO/Software-Release-Practice-HOWTO/
https://tldp.org/HOWTO/Software-Release-Practice-HOWTO/
https://doi.org/10.5281/zenodo.2614050
https://doi.org/10.5281/zenodo.2614050
https://zenodo.org/record/2614050
https://www.iso.org/standard/35733.html
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658094(v=pandp.10)
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ee658094(v=pandp.10)
https://www.gartner.com/en/information-technology/glossary/scalability
https://www.gartner.com/en/information-technology/glossary/scalability
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.52949/37
https://hal-lara.archives-ouvertes.fr/hal-04208924
https://hal-lara.archives-ouvertes.fr/hal-04208924

[17] Jeremy Cohen et al. “The Four Pillars of Research Software Engineering”. In: IEEE Soft-
ware 38.1 (2021), pp. 97–105. doi: 10.1109/MS.2020.2973362.

[18] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management
and stewardship”. In: Scientific Data 3.1 (Mar. 15, 2016), p. 160018. issn: 2052-4463. doi:
10.1038/sdata.2016.18. url: https://www.nature.com/articles/sdata201618
(visited on 06/02/2023).

[19] Yolanda Gil et al. “OntoSoft: A distributed semantic registry for scientific software”. In:
e-Science (e-Science), 2016 IEEE 12th International Conference on. IEEE. 2016, pp. 331–
336. doi: 10.1109/eScience.2016.7870916. url: https://dgarijo.com/papers/
ontoSoft2016.pdf.

[20] Aldo Gangemi et al. “Sweetening ontologies with DOLCE”. In: International conference
on knowledge engineering and knowledge management. Springer. 2002, pp. 166–181.

[21] Andrew D Spear, Werner Ceusters, and Barry Smith. “Functions in basic formal ontology”.
In: Applied Ontology 11.2 (2016), pp. 103–128.

[22] CodeMeta Project Crosswalk. https://codemeta.github.io/. 2017. url: https://
codemeta.github.io/.

[23] R. V. Guha, Dan Brickley, and Steve Macbeth. “Schema.Org: Evolution of Structured
Data on the Web”. In: Commun. ACM 59.2 (2016), pp. 44–51. issn: 0001-0782. doi:
10.1145/2844544. url: https://doi.org/10.1145/2844544.

[24] European Commission, Directorate-General for Research, and Innovation. Scholarly In-
frastructures for Research Software - Report from the EOSC Executive Board Working
Group (WG) Architecture Task Force (TF) SIRS. Publications Office, 2020. doi: https:
//doi.org/10.2777/28598.

[25] Daniel Garijo et al. “OKG-Soft: An open knowledge graph with machine readable scientific
software metadata”. In: 2019 15th International Conference on eScience (eScience). IEEE.
2019, pp. 349–358.

[26] Neil P. Chue Hong et al. FAIR Principles for Research Software (FAIR4RS Principles).
Version 1.0. May 2022. doi: 10.15497/RDA00068. url: https://doi.org/10.15497/
RDA00068.

[27] Robert Baggen et al. “Standardized code quality benchmarking for improving software
maintainability”. In: Software Quality Journal 20.2 (June 2012), pp. 287–307. issn: 0963-
9314, 1573-1367. doi: 10.1007/s11219-011-9144-9. url: http://link.springer.com/
10.1007/s11219-011-9144-9 (visited on 06/24/2022).

[28] Sonia Montagud, Silvia Abrahão, and Emilio Insfran. “A systematic review of quality at-
tributes and measures for software product lines”. In: Software Quality Journal 20.3 (Sept.
2012), pp. 425–486. issn: 0963-9314, 1573-1367. doi: 10.1007/s11219-011-9146-7. url:
http://link.springer.com/10.1007/s11219-011-9146-7 (visited on 06/24/2022).

[29] Nachiappan Nagappan et al. “Early estimation of software quality using in-process testing
metrics: a controlled case study”. In: Proceedings of the third workshop on Software quality
- 3-WoSQ. the third workshop. St. Louis, Missouri: ACM Press, 2005, p. 1. isbn: 978-1-
59593-122-1. doi: 10.1145/1083292.1083304. url: http://dl.acm.org/citation.cfm?
doid=1083292.1083304 (visited on 06/24/2022).

[30] Kamonphop Srisopha and Reem Alfayez. “Software quality through the eyes of the end-
user and static analysis tools: a study on Android OSS applications”. In: Proceedings of the
1st International Workshop on Software Qualities and Their Dependencies. ICSE ’18: 40th
International Conference on Software Engineering. Gothenburg Sweden: ACM, May 28,
2018, pp. 1–4. isbn: 978-1-4503-5737-1. doi: 10.1145/3194095.3194096. url: https:
//dl.acm.org/doi/10.1145/3194095.3194096 (visited on 06/24/2022).

45

https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618
https://doi.org/10.1109/eScience.2016.7870916
https://dgarijo.com/papers/ontoSoft2016.pdf
https://dgarijo.com/papers/ontoSoft2016.pdf
https://codemeta.github.io/
https://codemeta.github.io/
https://codemeta.github.io/
https://doi.org/10.1145/2844544
https://doi.org/10.1145/2844544
https://doi.org/https://doi.org/10.2777/28598
https://doi.org/https://doi.org/10.2777/28598
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.1007/s11219-011-9144-9
http://link.springer.com/10.1007/s11219-011-9144-9
http://link.springer.com/10.1007/s11219-011-9144-9
https://doi.org/10.1007/s11219-011-9146-7
http://link.springer.com/10.1007/s11219-011-9146-7
https://doi.org/10.1145/1083292.1083304
http://dl.acm.org/citation.cfm?doid=1083292.1083304
http://dl.acm.org/citation.cfm?doid=1083292.1083304
https://doi.org/10.1145/3194095.3194096
https://dl.acm.org/doi/10.1145/3194095.3194096
https://dl.acm.org/doi/10.1145/3194095.3194096

[31] H. Ogasawara, A. Yamada, and M. Kojo. “Experiences of software quality management us-
ing metrics through the life-cycle”. In: Proceedings of IEEE 18th International Conference
on Software Engineering. Berlin, Germany: IEEE Comput. Soc. Press, 1996, pp. 179–188.
isbn: 978-0-8186-7247-7. doi: 10.1109/ICSE.1996.493414. url: http://ieeexplore.
ieee.org/document/493414/ (visited on 07/28/2023).

[32] Mark Aberdour. “Achieving Quality in Open-Source Software”. In: IEEE Software 24.1
(Jan. 2007), pp. 58–64. issn: 0740-7459. doi: 10 . 1109 / MS . 2007 . 2. url: http : / /

ieeexplore.ieee.org/document/4052554/ (visited on 06/24/2022).
[33] Lisa Crispin. “Driving Software Quality: How Test-Driven Development Impacts Software

Quality”. In: IEEE Software 23.6 (Nov. 2006), pp. 70–71. issn: 0740-7459. doi: 10.1109/
MS.2006.157. url: http://ieeexplore.ieee.org/document/4012627/ (visited on
06/24/2022).

[34] Alan Gillies. “Modelling software quality in the commercial environment”. In: Software
Quality Journal 1.3 (Sept. 1992), pp. 175–191. issn: 0963-9314, 1573-1367. doi: 10 .

1007/BF01720924. url: http://link.springer.com/10.1007/BF01720924 (visited
on 06/24/2022).

[35] B.W. Boehm, J.R. Brown, and M. Lipow. “Quantitative evaluation of software quality”.
In: Proceedings - 2nd International Conference on Software Engineering, ICSE 1976. San
Francisco; United States, Oct. 13, 1976, pp. 592–605.

[36] Wolfgang Zuser, Stefan Heil, and Thomas Grechenig. “Software quality development and
assurance in RUP, MSF and XP: a comparative study”. In: Proceedings of the third work-
shop on Software quality - 3-WoSQ. the third workshop. St. Louis, Missouri: ACM Press,
2005, p. 1. isbn: 978-1-59593-122-1. doi: 10.1145/1083292.1083300. url: http://dl.
acm.org/citation.cfm?doid=1083292.1083300 (visited on 06/24/2022).

46

https://doi.org/10.1109/ICSE.1996.493414
http://ieeexplore.ieee.org/document/493414/
http://ieeexplore.ieee.org/document/493414/
https://doi.org/10.1109/MS.2007.2
http://ieeexplore.ieee.org/document/4052554/
http://ieeexplore.ieee.org/document/4052554/
https://doi.org/10.1109/MS.2006.157
https://doi.org/10.1109/MS.2006.157
http://ieeexplore.ieee.org/document/4012627/
https://doi.org/10.1007/BF01720924
https://doi.org/10.1007/BF01720924
http://link.springer.com/10.1007/BF01720924
https://doi.org/10.1145/1083292.1083300
http://dl.acm.org/citation.cfm?doid=1083292.1083300
http://dl.acm.org/citation.cfm?doid=1083292.1083300

	Introduction
	The Research Software lifecycle
	Document organization

	Classification of quality characteristics, attributes, and metrics
	Software Quality Models: survey
	Software Quality Characteristics
	Software Quality Attributes and Metrics

	Landscaping
	Definition and references of Research Software
	Research Software stack
	Examples for Research Software stack and types
	By Research Software type
	Layer by layer in the software stack

	Recommendations
	Quality Attributes recommendations
	Common recommendations
	User story: Individual development
	User story: Team Project
	User story: Team OSS
	User story: Team Service

	Example of tools, services and infrastructures
	About version control and software forges
	About Continuous Integration/Continuous Delivery - CI/CD
	About intellectual property and licensing
	About packaging
	About documentation
	About management bugs
	About tests
	About support
	About code analysis
	About security
	Transversal needs

	Perspectives
	Developers
	Users
	Service providers

	Metadata for quality software
	Metadata schemas for Software
	The FAIR principles for Research Software (FAIR4RS)
	Mapping Quality Attributes to FAIR4RS

	Summary and conclusions
	Quality Attributes
	Source Code Metrics: EOSC-SCMet
	Time and Performance Metrics: EOSC-TMet
	Qualitative Attributes: EOSC-Qual
	DevOps-SW Release and Management Attributes: EOSC-SWRelMan
	DevOps - Testing Attributes: EOSC-SWTest
	Service Operability Attributes: EOSC-SrvOps

