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Abstract—Addressee Estimation is the ability to understand
to whom a person is talking, a skill essential for social robots
to interact smoothly with humans. In this sense, it is one of the
problems that must be tackled to develop effective conversational
agents in multi-party and unstructured scenarios. As humans,
one of the channels that mainly lead us to such estimation is
the non-verbal behavior of speakers: first of all, their gaze and
body pose. Inspired by human perceptual skills, in the present
work, a deep-learning model for Addressee Estimation relying on
these two non-verbal features is designed, trained, and deployed
on an iCub robot. The study presents the procedure of such
implementation and the performance of the model deployed in
real-time human-robot interaction compared to previous tests on
the dataset used for the training.

Index Terms—Social Robots, Human-Robot Interaction, Deep
Learning, Conversational Agents, Human Activity Recognition

I. INTRODUCTION

For artificial agents to be effective and smooth during
conversational scenarios, multiple problems must be tackled.
Focusing on the perceptual domain, i.e., a passive agent
listening to humans, the artificial agents must be able to
detect voices (Sound Detection and Voice Recognition), rec-
ognize who is talking (Speaker Recognition and Speaker
Localization), and what they are saying (Natural Language
Understanding). But even considering optimal performances in
all these tasks, an artificial agent endowed with such abilities
would hardly be able to cope with real-life environments. User
Experiences with Conversational Agents are typically designed
as one-to-one interactions. Even when groups are considered,
interactions are conceived as agent-centered, as if artificial
agents were always the intended interlocutors of speakers.
But quite often, this is not the case of what happens outside
laboratories.

Addressee Estimation (AE) is the ability to understand to
whom the speaker is talking [1]. It represents an additional
task, crucial for robots to interact with humans in unstructured
environments. Thanks to this ability, robots can be enabled to
1) know if and when others address them, 2) understand social
dynamics of communication (e.g., relations, roles, engagement
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of people, inclusion and exclusion processes, etc.), 3) contex-
tualize the message communicated by the speaker based on its
addressee.

Humans can understand the addressee of an utterance via
multiple channels. Verbal information provides some cues and
context, but it has been demonstrated that non-verbal (and
para-verbal) signals are crucial to achieving a correct esti-
mation [1]–[3]. Adopting a human-inspired approach, visual
information about the speakers’ gaze, pose, and motion should
be considered key inputs to developing AE models for robots
and conversational agents. Previous works often focused on
datasets without considering the implementation of models on
artificial agents [4]–[9]. The ones deploying their model on
an interactive agent mainly designed binary models to allow
artificial agents only to estimate whether or not they were
being addressed [10]–[14] or relied on structured scenarios
[15].

Aiming at implementing AE skills in robots to let them
interact in unstructured scenarios, this paper 1) describes the
development of an AE deep-learning model trained on human-
robot interaction (HRI) dataset, as already described in [16], 2)
illustrates its first deployment on the humanoid robot iCub, and
3) reports the results of an HRI pilot experiment to evaluate
the performance of the model deployed on the iCub compared
to previous tests made on the training dataset.

II. METHODS

This study tackles AE in multi-party HRI. The approach
followed consists of developing and deploying a deep neural
network (DNN) to solve the problem as addressee localiza-
tion, more specifically, as a classification task based on the
speakers’ face and body pose. The design and training of
the DNN are briefly described in Section II-A, summarizing
[16]. Thereafter, the architecture for deploying the model on
the iCub robot and the pilot test of the deployed model are
illustrated in Section II-B.

A. Design and training of the AE model

Gaze and body pose represent two fundamental sources for
AE. For this reason, we relied on them to design a model
extracting such information from visual input, processing them
in temporal sequences, and eventually providing a 3-class
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classification in terms of addressee localization. From the first-
person perspective of the robot looking at the speaker, our
model is designed to output the position of the addressee in
three ways: the addressee is either at the robot’s left, at the
right, or the addressee is the robot.

A DNN was developed to solve this task. It consists of
a convolutional part to extract visual information from the
speaker’s face and body pose separately. Then, after combining
the two modalities together, LSTM cells are meant to process
temporal information. A last LogSoftMax layer provides the
final classifaction and the confidence of the estimation (see
[16]).

Collecting visual inputs with a frame rate of 12.5 Hz, the
model is fed with input sequences of 10 frames, each sequence
lasting 0.8 s, to balance fast with reliable estimations. In this
way, the model provides a first estimate less than 1 second after
the speaker starts to talk, granting rapid response for real-time
interactions. Moreover, since utterances may be composed of
several sequences, estimates of sequences belonging to the
same utterance are balanced to provide a final estimate of the
utterance’s addressee.

To gain ecological validity to the model, we chose the
Vernissage Corpus [17] for the training. Jayagopy et al.
collected this dataset using a multi-party HRI scenario, with
visual information recorded from a Nao robot’s cameras.
Conversations were designed so that each participant talked to
the robot or another person in the room. The dataset creators
had manually labeled the addressee of each utterance. As a
plus point, the scenario was designed so that the speaker often
talked to the addressee about objects in the environment, a
typical feature of social communication called ’triadic inter-
action.’ In this way, as it happens outside a lab, people not
only look at each other during the conversation, but their gaze
and body pose are affected by the target object [1]–[3]. For
more information about the training procedure, see [16].

B. Deploying the AE model on the iCub robot

The above-mentioned procedure has been adopted for the
model to be deployed on a real robot. Once the model had
been trained on the whole Corpus, it was ported on an iCub
robot to endow it with real-time AE skills.

The robot’s architecture designed for the model to work
in real-time consisted of 1) a visual sensory module to take
in input information from one of the robot’s cameras, 2) a
controller for the robot’s gaze, steering the iCub’s neck and
eyes 3) a face detector and an object tracker module to let
the robot track who speak in case they move around, 4) a
feature extractor, to compute the speakers’ body pose (using a
lightweight model [18] optimizing OpenPose [19]), crop their
face from the whole image, and create the sequences needed
as input of the AE model. As a final step, the AE model
classifies the addressee’s location from the robot’s first-person
perspective 1.

1the code is available at the following link
https://gitlab.iit.it/cognitiveInteraction/addressee estimation irim2023.git

Although the architecture developed so far fully complies
with the pipeline of the model and works in real-time,
presently, it does not grant an autonomous AE skill to the robot
involved in multi-party conversational scenarios. It partially
requires the intervention of the programmer to select the
speaker and trigger the model at the start of the utterance.
Such a Wizard-of-Oz method may offer some advantages for
the testing phase of the AE model, as is the case of the
present study, or for collecting new data to improve the model
performance. In any case, these two abilities, voice detection
and voice localization, have already been developed on our
iCub robot [20]. As a future step, they will be included in the
architecture to achieve a fully autonomous HRI social skill.

To test the model performance in real-time HRI, a pilot
experiment was carried out with 6 volunteer participants (3
females and 3 males) interacting with the robot in pairs. Partic-
ipants gave their written informed consent before participating,
and the regional ethical committee approved the study (Comi-
tato Etico Regione Liguria). The position of participants was
set to match the one adopted in the Vernissage Corpus [17].
Participants were asked to talk freely to the other human or
the robot and to comment on some objects in the environment
at least twice to test the model on triadic interactions.

III. RESULTS

Tests of the AE model on the Vernissage Corpus [17] have
been conducted using a 10-fold cross-validation technique.
The model performance in terms of F1-score is, on average,
75.01%, if computed on sequences, 76.48% when aggregating
sequences belonging to the same utterance, and 74.15% if
considering only the estimate of the first sequence of each
utterance.

This work aims to compare the model performance on the
dataset with the performance of the model deployed on the
iCub for real-time HRI. Figure 1 compares the AE model
performance on the Venissage Corpus and the iCub. In this

Fig. 1. Bar plot comparing the performance of the AE model tested on the
Vernissage Corpus with the one deployed on the iCub robot. The orange bars
on the left represent the average F1-score from testing the Vernissage Corpus
model with a 10-fold cross-validation technique (error bar represent SD). The
green bars on the right represent the F1-score measured by testing the model
in real-time on the iCub robot.
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Fig. 2. Confusion Matrix resulting from the real-time test of the AE model
deployed on the iCub. The matrix reports the performance of the model tested
on sequences.

last case, considering the same tests conducted on the dataset,
the AE model exhibits an F1-score of 75.84% on sequences,
74.76% on sequences belonging to the same utterance, and
74.98% at the first sequence of each utterance.

The confusion matrix in Figure 2 displays more in detail
the performance of the model deployed on the iCub for each
class: ’robot’, ’left’, and ’right’. Moreover, with the same focus
on classes, Figure 3 provides a comparison with the previous
test on the dataset. Whereas the weighted F1-score computed
on the dataset amounts respectively to 67.52%, 78.61%, and
81.75% for the ’robot’, ’left’, and ’right’ classes. The F1-score

Fig. 3. Spider plot comparing the performance of the AE model tested on the
Vernissage Corpus with the one deployed on the iCub robot with a focus on
each class. The plot reports the performance of the model tested on sequences.

of the model deployed on the iCub was 71.73%, 82.14%, and
76.33% for the same classes.

IV. DISCUSSION

Addressee Estimation is the ability to understand to whom
a person is talking. This work aims to develop this skill on the
humanoid robot iCub to make it interact smoothly and in real-
time in multi-party scenarios. To achieve this, a deep-learning
model has been designed and trained [16] on the Vernissage
Corpus [17] and implemented afterward on an iCub robot.

Results from a pilot experiment replicating some features of
the Vernissage Corpus scenario revealed that the performance
in real-time HRI with iCub is in line with the one assessed on
the dataset (see Fig. 1). Such results may be partially explained
by the fact that the two scenarios were somehow similar, with
people standing in front of the robot at a distance ranging
between 1.5 to 2.5 meters. Nevertheless, one could expect
a lower performance for the model deployed on the iCub
because of several differences between the two conditions,
such as the robot employed (Nao – iCub), the experimental
room, and the brightness. From this pilot experiment, it seems,
therefore, that the model developed by [16] has a decent
degree of generalizability, allowing its exploitation in real-time
interaction.

The focus on classes provides additional proof of the
model’s performance (see Fig. 3). From this pilot test, it
appears that on the iCub, the model gains a higher score when
the speaker addresses the robot but loses some points when
the addressee is at the right of the robot. However, more tests
are needed to establish this pattern.

Although the deployment of the model delivers a per-
formance more satisfactory than expected, the analysis of
the confusion matrix in Fig. 2 suggests an improvement, in
particular regarding the estimation of the ’robot’ class. To
achieve this, future works will concern the collection of data,
specific to the iCub, to enhance the performance with transfer
learning techniques and make its deployment more effective.

Addressee Estimation is a core ability to make robots able
to communicate smoothly with humans in multi-party and
unstructured scenarios. Its implementation is required for con-
versational agents, which need non-verbal skills such as AE to
support verbal abilities like Natural Language Understanding.
But more generally, AE is essential for every robot interacting
with humans. Features like the reception of even simple
verbal or non-verbal commands, the correct interpretation of
a human-populated environment, and the social interaction
with every kind of human require robots to be aware of other
agents’ communicative intentions.
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