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CPU core GPU FPGA ASIC
Programmable Software Software Yes No
TTM(1) (months) [45] <2 <2 2 30
NRE(2) cost ($) [45] 0 0 0 350K-1000K
Unit cost ($)(3) 110 8000 4000 3000

(1)Time-To-Market (TTM). (2)Non-Recurrent-Engineering (NRE). (3) Intel Xeon 6240R CPU,
NVIDIA V100 GPU, Intel PAC N3000 FPGA, and Intel ACC100 ASIC, as observed in Dec. 2022.

Table 1: Comparison of processors for 5G LDCP workload.

ABSTRACT

Open and virtualized Radio Access Networks (vRANs) are
breeding a new market with unprecedented opportunities.
However, carrier-grade vRANs today are expensive and energy-
hungry, as they rely on hardware accelerators (HAs) that
are dedicated to individual distributed units (DUs). In this
paper, we argue that sharing pools of heterogeneous pro-
cessors among DUs leads to more cost- and energy-e�cient
vRANs. We then design CloudRIC, a system that, powered
by lightweight data-driven models, meets speci�c reliability
targets while (8) coordinating access between DUs and het-
erogeneous computing infrastructure; and (88) assisting DUs
with compute-aware radio scheduling procedures. Experi-
ments on a GPU-accelerated O-Cloud show that CloudRIC
can achieve, respectively, 3x and 15x mean gains in energy-
and cost-e�ciency under real RAN workloads while ensur-
ing 99.999% reliability even in dense scenarios.
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1 INTRODUCTION
Virtualized Radio Access Networks (vRANs) enable base-
band processing on commercial o�-the-shelf servers. This
approach has many advantages over traditional hardwired
RANs, such as mitigating vendor lock-in, streamlining up-
grades, and enabling resource multiplexing [47]. Led by the
O-RAN Alliance [22], practically all the industry is building
vRANs [27, 59], breeding a new market with unprecedented
business opportunities in an ossi�ed RAN ecosystem [11].
Analysts project that open vRANs may outgrow the tradi-
tional RAN market by 2028, with $29B in revenue [4].
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Figure 1: Mean (line) and max-min range (shaded area) la-

tency and energy consumption to decode an LDPC-encoded

transport block. Intel FlexRAN LDPC library [30] on an In-

tel Xeon Gold 6240R CPU core @ 2.40GHz; and commercial

driver on an NVIDIA V100 GPU. Details in §3.

As later detailed in §2, a key component of O-RAN 5G
base stations is the distributed unit (DU) that performs phys-
ical layer (PHY) tasks including forward error correction
(FEC) [22]. DU functions must ful�ll strict compute time
guarantees since the signal processing pipeline they con-
tribute to has hard deadlines in the 1-3 ms range [3, 19, 21];
also, these deadlines must be met with 99.999% (5-nines) prob-
ability to provide reliability [19], and avoid that users lose
synchronization and drop connectivity (see [21]).

These settingsmake conventional virtualization approaches,
which rely on software running in general-purpose CPUs,
insu�cient for industry-grade DUs: for instance, Fig. 1 (left)
shows that a state-of-the-art FEC LDPC decoding library in a
CPU can take over 1-3 ms to process a large transport block
(TB) compromising the latency budget.

The industry today: DU-dedicated HAs. To address
this, vRANs on themarket today resort to o�oading compute-
intensive FEC tasks to dedicated hardware accelerators (HAs)
that are co-located with every DU [20, 39]. HAs are ASICs [62],
FPGAs [31], or GPUs [63] that, using in-line or look-aside
models (see §2.2), can provide >10× latency gains over CPUs
when processing large TBs, as shown in Fig. 1 (left).

However, HAs are expensive, as exempli�ed in Table 1, and
are energy-hungry, as shown in Fig. 1 (right) for a GPU-based
HA. More broadly, an Intel ACC100 ASIC and an NVIDIA
V100 GPU consume up to 52W and 250W respectively [48,
62], i.e., 20-82% of the overall consumption of a commodity
server [33]. In fact, the economic and energy costs of DU-
dedicated HAs are so high that they have cast doubts in the
industry about this approach, as implied by top �gures of,
e.g., Nokia [60], Ericsson [61] or Mavenir [38].
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Our proposal: HA andCPUpooling.We present a more
e�cient solution, which combines the next two approaches.
1○ Opportunistic HA of�oading. CPUs may handle some 5G
PHY workloads without the assistance of HAs by exploiting
SIMD programming and other optimizations [12, 24]. How-
ever, CPUs alone cannot ensure 5-nines reliability for all
workloads, as we illustrate in §3 and, consequently, they are
usually shunned for this job in industry-grade RANs [20].
Instead, we prove in §3 that they can be a valuable comple-
ment to HAs in those tasks, and propose to balancing DU

workloads between CPUs and HAs as a way to substantially
improve the cost- and energy-e�ciency of vRANs.

The rationale is that minimizing processing latency brings
no bene�t as long as deadlines are met, hence CPUs may be
occasionally exploited to alleviate the HAs’ energy toll. As
an example, Fig. 1 (left) shows that a CPU core can decode
within 1 ms TBs below 100 Kb (which correspond to a large
portion of today’s real-world TBs, see §3) consuming ∼5.7×
less energy than a GPU-based HA (right plot).
2○ Processor pooling. HAs co-located with (and thus exclu-
sively used by) individual DUs su�er from low usage under
real workloads, as we show in §3. We seize this opportu-
nity to share HAs among multiple DUs, so as to amortize the
cost of these expensive resources, and provide the needed
acceleration at an a�ordable cost per DU.
The concept of RAN pooling is not new. Indeed, 71% of

US operators intend to realize RAN pooling solutions by
2025 [28], and some already implement it [13], but the tradi-
tional RAN centralization approaches only exploit long-term
tra�c variations, such as day-night ones [9, 46], which is
insu�cient for cost-e�cient RAN virtualization.
Contributions. Designing the above solution is tech-

nically challenging as pooling heterogeneous computing
resources e�ciently requires: (8) harnessing real-time multi-
plexing opportunities at sub-millisecond timescales where
both PHY processing latencies and user loads �uctuate [19];
and (88) anticipatory operation that e�ectively copes with
�uctuations in the future user demand. Note that, because
resources are no longer over-dimensioned, rare peak loads
risk violating deadlines, which compromises reliability.
Moreover, the solution to these challenges goes well be-

yond the current capabilities of O-RAN. Although O-RAN
provides convenient abstractions for heterogeneous proces-
sors, it falls short to support (8) real-time coordination among
DUs and (88) radio scheduling policies that are compute-aware,
two requirements that, as shown in §3, are essential to attain
multiplexing gains reliably. In this paper, we realize the above
solution, making three main contributions in the process.
• In §3, we study CPU- and GPU-based 5G PHY processors
using real-world mobile tra�c data over an implemen-
tation of the standard-de�ned O-RAN Acceleration Ab-
straction Layer (AAL). Our dataset is publicly available.

We opt for GPUs as they represent a new and still little
understood 5G HA, with features like AI-on-5G and pro-
grammability [36] that are attractive for operators [35].
To our knowledge, this is the �rst in-depth analysis of this
emerging resource for 5G. We �nd that:
– Dedicating HAs to individual DUs results in dramatic

under-utilization of expensive resources with real-world
workloads, which supports our strategy of HA pooling;

– SIMD-capable CPUs can handle 5G FEC workloads reli-
ably in a wide range of contexts, which motivates our
opportunistic HA o�oading model; and

– Central coordination of shared CPU/HA resources and
their joint control with radio scheduling are key to attain
multiplexing gains while ensuring reliability.

• Motivated by our empirical analysis, in §4 we present
CloudRIC, a brokering system that jointly controls access
to shared resources of heterogeneous processors and op-
timizes radio scheduling policies across multiple DUs in
real-time. CloudRIC seamlessly integrates into O-RAN,
and comprises two key elements:
- An AAL Broker that maximizes e�ciency by exploiting
CPUs and performing HA o�oading opportunistically.

- A Real-Time RAN Intelligent Controller (RT-RIC) that
provides compute-aware radio policies to ensure relia-
bility with our AAL Broker solution in shared platforms.

• In §5, we present a prototype of CloudRIC based onDPDK’s
Environment Abstraction Layer (EAL) and ONNX, which
we then comprehensively evaluate in §6 with realistic
mobile tra�c demands. Results demonstrate that:
- CloudRIC incurs low overhead, <10 `s to process sched-
uling grants and <50 `s to route PHY processing tasks;

- CloudRIC meets the targeted 99.999% processing relia-
bility even in severely congested scenarios; and

- CloudRIC achieves average gains equal to 3x and 15x in
energy and cost e�ciency, respectively, over the indus-
try standard approach with real-world RAN workloads.

2 BACKGROUND

Our work builds on 5G New Radio and its data processing
pipeline, the O-RAN architecture and its AAL, and current
hardware acceleration strategies, which are introduced next.

2.1 5G New Radio
5G base stations comprise a radio unit (RU), which performs
basic radio operations such as signal sampling; a central unit
(CU), which processes the highest layers; and a DU, which
processes the PHY, MAC, and radio link control layers [49].

New Radio (NR) is 5G’s PHY/MAC interface. Our focus is
on sub-6GHz bands, which allow up to 100 MHz per carrier
and have �exible numerology `= {0,1,2} [10]. The basic spec-
trum unit is the resource block (RB), which encompasses 12
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Figure 2: O-RAN DU data processing pipeline.

subcarriers with 15·2`-KHz spacing. Time is divided into 1-
ms subframes, each carrying 2` slots with, usually, 14 OFDM
symbols lasting 66.7 ·2−` `s. Every Transmission Time In-
terval (TTI), often one slot, the DU’s MAC schedules one
TB for/from every active User Equipment (UE), which are
signalled to UEs by grants. The TB size depends on the nu-
merology, the amount of bu�ered data, the DU’s RB sched-
uling policy, and the modulation and coding scheme (MCS),
selected based on the signal-to-noise ratio (SNR). Uplink TBs
must be sent within  2 slots of receiving the grant [1].
Fig. 2 shows the pipeline of DU operations required to

process a TB. At the transmitter side, TBs are divided into
code blocks (CBs) with individual CRC �elds. Filler bits adapt
the CB size to the requirements of the LDPC encoder used
for FEC, which produces a codeword with parity bits. Finally,
the codeword is aligned to the capacity of the allocated RBs
(which depends on their MCS) via rate matching, by applying
puncturing or repetition. At the receiver side, a soft-output
detector computes the reliability of the data as log-likelihood
ratios (LLR) called soft bits. Then, an LDPC decoder maps
soft bits into hard bits through an iterative belief propaga-
tion algorithm. The algorithm terminates after a maximum
number of iterations (usually 10), or earlier if CRC validates
the codeword. The TB is reconstructed once all of its CBs
are successfully decoded. More details can be found in [8].

To adhere to 3GPP and O-RAN requirements [3, 49], pro-
cessing the heavier LDCP tasks has a deadline� = {1, . . . , 3}ms,
depending on the base station, which must be met with
99.999% probability to reach the industry’s 5-nines reliability
target [19]. This is achieved today with DU-dedicated HAs.

2.2 Hardware Acceleration

There are two hardware acceleration models, typically im-
plemented with ASICs, FPGAs or GPUs [20]: in-line, which
processes the pipeline of Fig. 2 as wireless symbols arrive,
without software intervention; and look-aside, which oper-
ates on data managed by a software controller to perform
selected tasks like LDPC decoding.
Traditionally, in-line HAs o�er lower latency than look-

aside HAs because the former does not require software
mediation. However, in-line HAs tie the complete pipeline
of Fig. 2 to the choice of HA, thus limiting the advantages of
virtualization. Moreover, the performance gap between the
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Figure 5: UE demand pro�les used for evaluation.

twomodels is quickly closing [32], suggesting that look-aside
HAs may become predominant.

2.3 O-RAN

The O-RAN Alliance is a major carrier-led e�ort to de�ne an
open RAN architecture [22], depicted in Fig. 3. The control
plane includes two components, the Non-Real-Time RAN In-
telligent Controller (Non-RT RIC) and the Near-RT RIC, that
use A1 and E2 interfaces to manage network functions (NFs)
such as DUs at, respectively, >1 s and >100 ms timescales.
The data plane has the O-Cloud, which provides com-

puting resources, including CPUs and HAs, to NFs through
an Acceleration Abstraction Layer (AAL) [51]. The AAL ab-
stracts O-Cloud resources as Logical Processing Units (LPUs).
As shown in Fig. 4, each LPU is dedicated to one NF via
individual FIFO queues. Consequently, though a physical
processor (CPU or HA) can be shared among NFs, the state
of each LPU (e.g., its queue occupancy) is not shared.
The O-Cloud is governed by the Service & Management

Orchestrator (SMO) through theO2 interface, but operates on
several-second timescales. Moreover, the Near-RT RIC lacks
O-Cloud visibility, hindering real-time compute-aware radio
policies and DU coordination — both crucial for achieving
e�ciency gains reliably as shown in §3. While CloudRIC is
O-RAN compliant to facilitate its adoption, it provides key
extensions, presented in §4, to address these limitations.

3 ANALYSIS

Using Falcon [18] and 5GSni�er [42], we tracked the work-
load dynamics experienced by several (sub)urban cells in
Madrid, Spain (Vodafone, April 2021), in Frankfurt, Germany



L. Lo Schiavo et al

0.00
0.25
0.50
0.75
1.00

5 10 15 20

Number of concurrent
UEs per TTI

E
C

D
F

DE ESP US

Figure 6: UEs concurrently
active at TTI timescales.

0 2500 5000 7500 10000
0

50
100
150
200

2200 2300 2400 2500
0

50
100
150
200

Time (ms)

In
s
ta

n
ta

n
e

o
u

s
lo

a
d

 (
K

b
/m

s
)

Figure 7: Instantaneous

load �uctuations in a cell.

(DT, Dec. 2022), and in Boston, US (T-Mobile, May 2023). Our
goal is to use this data to emulate the behavior of real UEs.

Consistent with previous studies [19, 55], we observe that
the individual loads and the number of concurrently active
UEs are low at the TTI scale. The “x1” curves in Fig. 5, which
characterize each UE’s bu�er (left), inter-arrival time (mid-
dle), and SNR (right) at the TTI level, show amedian and 99th
percentile UE bu�er of 2 Kb and 78 Kb, respectively. More-
over, Fig. 6 indicates that the median and 99th percentile of
active UEs in one TTI is only 1 and 6, respectively.
To emulate higher network demands, we generated ad-

ditional pro�les by amplifying our traces by factors of 4, 8,
and so forth, denoted as "x4", "x8", etc. in Fig. 5. With the
mobile tra�c CAGR pegged between 25-30% [16], these mul-
tipliers enable us to project expected workloads up to 2030,
all the while preserving the genuine dynamics of real users.
The additional "Max" pro�le, where the UE is consistently
backlogged, let us analyze worst-case scenarios too.

These traces also show remarkable burstiness at TTI level.
For instance, Fig. 7 shows a 10-second cell tra�c snapshot
that reveals wide �uctuations within milliseconds. This ob-
servation, which is also in line with the literature [19, 55],
suggests that, to harness pooling opportunities in real-world

cells while meeting the 5-nines reliability target, it is crucial

to develop e�ective real-time control schemes that can react

appropriately upon quick yet infrequent load peaks.

3.1 Reliability of legacy CPUs and HAs

The industry today favors in-line or look-aside HAs (ASIC,
FPGA, or GPUs) for 5G FECworkloads due to concerns about
CPU reliability [39]. Indeed, there exist fundamental limi-
tations to parallelizing individual decoding request across
CPU cores [17], hence state-of-the-art LDPC libraries such
as FlexRAN [30] and others [23, 26] just exploit data paral-
lelization using SIMD programming and task parallelization
over concurrent decoding tasks [12, 24]. Yet, those strategies
cannot bound the latency of individual tasks, which prevents
CPUs from guaranteeing reliability for all workloads alone.
To precisely quantify the reliability that CPU- and HA-

based processors may achieve, we measure in Fig. 8 the ratio
of TBs processed within a deadline � (reliability) for two
solutions. The �rst one uses FlexRAN, a de-facto standard
library [12, 19, 24], with the above optimizations on a pool
of Intel Xeon Gold 6240R CPU cores. The second one uses a
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Figure 8: Reliability performance as a function of the DU

load for a CPU-only processor and a HA-only processor.

commercial NVIDIA V100 GPU decoder, which represents a
new and still little understood HA with compelling features
like CUDA, CPU-like time-to-market, and AI-on-5G [36].

We evaluate both processors for di�erent loads by varying
the pro�le of the active UEs as explained before (“x1”, “x2”,
and so on). Every TTI, a number of UEs become active fol-
lowing the distribution shown in Fig. 6, each receiving a fair
amount of the radio resources from a 100-MHz DU. Then,
these UEs generate TBs following the corresponding pro�le
and radio allocation by executing the downlink pipeline of
Fig. 2. To emulate the wireless channel, we add AWGN noise
with zero mean and the appropriate variance to obtain the
target SNR across all OFDM symbols received by the DU.

To ground our tests on realistic settings, we implemented
O-RAN’s AAL using DPDK’s Wireless Baseband Device Li-
brary (BBDev) [15], which provides abstractions for wireless
processing tasks that can be used to implement the LPUs
for both processors [50] (∼1K lines of C code). The signals
demodulated by the DU are encoded as soft bits, as shown
in the uplink pipeline of Fig. 2, stored in a memory pool
(mempool), and then allocated to the corresponding LPU.

As shown in Fig. 8, the GPU (dotted black line), just like
any look-aside or inline HA, can sustain 100% reliability
regardless the load. Conversely, the CPU-only approach can
only meet the 99.999% reliability target for small loads. This
is naturally worse for smaller CPU pools as queuing e�ects
cause additional delays but reliability drops regardless the
pool size because higher loads carry larger TBs—which can
exceed deadlines on CPUs—with higher probability.

These results illustrate the underlying reasons why CPUs
are ignored by the industry for 5G FEC. In contrast, we show

next that CPUs can be a valuable complement to HAs as long

as radio and computing resources are jointly controlled.

3.2 Complementarity of CPUs and HAs

We next experimentally investigate the performance of both
categories of 5G FEC processors, unveiling their complemen-
tarities. For the CPU solution, we set the pool to 16 cores
which our earlier results proved to be su�cient (see Fig. 8).
For each test, we select an MCS < ∈ M := {0, 1, . . . , 27}

(see [2, Table 5.1.3.1-2]), an SNR B ∈ S := {1, 2, . . . , 30} dB,
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and a bandwidth 1 ∈ B := {1, 2, . . . , 250} RBs to generate 10
random TBs as indicated before, adding up to ∼2M samples1.

3.2.1 Latency. Using a colored gradient, Fig. 9 shows the
median latency of the CPU running FlexRAN (top) and of
the GPU-based HA (bottom) for all combinations from S and
M and for subset of 1∈{50, 100, 150, 200}⊂B. The blank cells
indicate contexts that cannot be decoded within 10 iterations.

The HA provides roughly an order of magnitude improve-
ment in latency, as expected. More interestingly, Fig. 9 un-
veils for the �rst time key properties of the latency achieved
by a GPU-based 5G HA, such as its invariance to the TB size
or complex relationship with MCS and SNR combinations.
Yet, our CPU solution can decode TBs within common 1-3 ms

deadlines [19, 21] in a wide range of contexts, those below the
grey line in the �gure. In fact, 100% of the TBs observed in
the “x1” UE pro�le fall within this range.

The plot also explains the high variance depicted in Fig. 1,
as di�erent combinations of MCS, SNR and TB size require a
di�erent number of decoding iterations. Our dataset includes
experiments with alternative libraries [23, 26] showing that
di�erent decoding algorithms and implementations also have
a remarkable impact on latency. Therefore, there exists a com-

plex relationship between TB context (MCS, SNR, number of

RBs), the processor, the decoder implementation, and perfor-

mance, which suggests data-driven models for proper control.

3.2.2 Energy consumption. Fig. 10 shows the energy con-
sumed by the CPU and the HA processors. For the less de-
manding bandwidth setting, the HA consumes more than
28× the energy required by the CPU. Yet, for the most exact-
ing bandwidth con�guration, the HA consumes only around
71% more than the CPU. The latency provided by CPUs pre-
cludes their use in speci�c contexts; however, the remarkable

advantages in terms of capital (see Table 1) and operating (i.e.,

energy) costs still make CPUs appealing to process less-stringent

TBs, which are rather frequent as discussed before.

3.3 HA multiplexing opportunities

1The dataset is publicly available at https://doi.org/10.5281/zenodo.10691661
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with CPU and HA processors. Log-scale z-axis.

Let us now explore HA sharing opportunities as a means to
improve cost-e�ciency. Fig. 11 depicts the relative busy time
of the GPU-based HA (y-axis) to process the workload of
a varying number of concurrently active UEs (x-axis) with
di�erent pro�les (colors) in a single 100-MHz 5G DU. For
“x1”-generated workloads, the HA utilization is below 12%

even with 10 concurrently active UEs. In fact, 10 “Max” UEs
concurrently active every TTI—or 85 “x4” UEs, though not
shown in the �gure—would be required to saturate the HA.
In conclusion, modern HAs are largely underutilized by indi-

vidual DUs when handling real-world workloads, which creates

clear opportunities for sharing, even in a relatively far future.
A legitimate ensuing question is whether HA sharing

among multiple DUs can be sustained by the fronthaul net-
work (FH) [64] that connects them to their corresponding
RUs as shown in Fig. 3. O-RAN uses a 7-2x DU-RU split with
an open FH interface based on eCPRI that has a latency toler-
ance of 100 `s [52]. Assuming a 5-`s/Km propagation delay
and a 2D Manhattan tessellation model, the area of RUs that
can be connected to a single location is up to 400 Km2 [49].
Moreover, assuming PCIe v3.0+ bus and 100-GbE FH inter-
faces, we could aggregate up to 3.8 GHz of radio spectrum
per server [54]. Hence, it is technically feasible to aggregate

the workload of multiple DUs and multiplex the resources of

high-performing HAs in centralized edge clouds.

3.4 O-RAN AAL policies

The insights above promote a real-time sharing of both high-
performance HAs and low-consuming CPUs across DUs.
To inform our solution design, we next explore the space
of possible policies that can balance DU workloads among
shared heterogeneous processors at sub-ms timescales.
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Our experiments involve a varying number of 100-MHz
5GDUs, with 5 active “x4” UE each, that aggregate workloads
between 85 Mb/s and 5 Gb/s. We also set � = 3 ms (for the
moment), and discard overdue TBs. We consider the same
two processors used before. In this case, each DU locally sub-
scribes to two LPUs, each handling one shared processor. As
explained in §2.3, each DU maintains exclusive local access
(with its own queues, as depicted in Fig. 4). Then, for every
TB, the corresponding DU selects an LPU following a policy.

With this setup, we study conceptual policies of increasing
complexity, several of which are not viable in practice as
they assume perfect knowledge of the future or functions
not supported by O-RAN today. Yet, our goal now is studying
potential gains; we will present a practical solution in §4.

3.4.1 Coordination. The �rst policy, “O-Greedy”, follows a
simple heuristic: given a TB, the DU selects the faster HA,
as long as its local LPU queue is not full; otherwise, it falls
back to CPU. Fig. 12 (left) shows the system reliability (i.e.,
the fraction of TBs processed within �) as a function of the
aggregated network demand. Reliability quickly drops when
the demand exceeds 200 Mb/s as the local LPU queues, spe-
ci�c to each DU, grow toomuchwith respect to the capability
of the HA to handle the demand of all DUs, which results in
TBs frequently missing the deadline � . When all the LPU
queues saturate, all TBs miss � and reliability drops to 0%.

Inspired by [40], in “O-MWT” (O-RAN Minimum Waiting
Time) DUs compute the completion time at each LPU by

looking at the occupancy of its LPU queues for every TB, and
then select the fastest one. We model the performance of
both LPUs using the dataset in §3.2, and let DUs have perfect
knowledge of the exact processing latency of each new TB
a priori to make optimal LPU choices. Though not realistic
in practice, this policy illustrates the potential gains from
exploiting queuing information, which in Fig. 12 amount to
18% higher reliability and 10% lower energy-per-bit cost on
average. Yet, given su�ciently high workloads, “O-MWT”
also drops to 0% reliability at loads of 2 Gb/s or higher.
Under “C-MWT” (Coordinated MWT), the DUs consider

each other’s LPU queues to calculate the actual completion
time of new TBs based on the system-wide load. This ap-
proach further increases reliability by 15% and reduces the
energy cost by 19% on average over O-MWT; however, it
requires shared knowledge of LPU states across DUs, which
is currently not supported by O-RAN, as explained in §2.3.
Moreover, it still cannot avoid reliability loss.

3.4.2 Deadline awareness. Minimizing processing latency,
as done by C-MWT, tends to overuse the HA, which incurs an
energy toll, and neglect CPUs; moreover, when TBs are even-
tually allocated to the CPUs, it is done ignoring whether they
can process those TBs within their deadline, which causes
unreliability. Hence, we test a policy “C-DA” (Coordinated
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Figure 12: Performance of a heterogeneous O-Cloud with a

varying number of DUs hosting “x4” UEs. Deadline D = 3 ms.

Deadline-Aware) that aims at exploiting CPUs as much as
possible. Under C-DA, given a TB, the DU calculates whether
the TB can be processed within � by the CPU pool, and only
o�oads the TB to the HA otherwise. Thus, in addition to
coordination, the policy requires deadline awareness. Fig. 12
shows that C-DA boosts reliability and enables opportunistic
o�oading to high-performance HAs that save up to 80% of
the energy cost for low-loaded scenarios.

3.4.3 Joint radio and computing control. All previous poli-
cies fall short of achieving the 5-nines reliability target, even
under mild average workloads. This is due to the burstiness
inherent to real workloads, discussed in §3, which occasion-
ally introduces peaks that exceed the computing capacity.

The problem cannot be solved via LPU queue dimension-
ing: as the decoding latency of a single TB does not depend
solely on its size but also on the associated SNR and MCS
(see §3.2), bounding the amount of bits (or TBs) allowed
in a queue cannot deterministically bound the processing
time and, hence, does not yield guarantees to meet dead-
lines. Instead, we argue that a better approach is to adapt
the workload to the processing capacity proactively, through
compute-aware radio policies that guarantee reliability.
We thus experiment with “C-R-DA” (Coordinated Radio-

controlling Deadline-Aware), a policy that extends C-DA by
throttling down radio grants when required to ensure that
every TB can be processed in time afterwards. Note that, to
explore the maximum gain of such a compute-aware radio

scheduling strategy, C-R-DA has access to perfect knowledge
of the future requests, which is clearly not possible in prac-
tice. However, C-R-DA shows how to e�ciently trade o�
radio resources—wasted by the other policies anyway—for
reliability when the O-Cloud gets congested and how it ad-
dresses the CPU reliability concern of §3.1. Indeed, Fig. 12
shows that C-R-DA consistently meets the 5-nines reliability
target with a 18% lower energy cost than C-DA on average.

4 CLOUDRIC SYSTEM DESIGN

The analysis in §3 sets a roadmap for more cost- and energy-
e�cient vRANs, which builds on (8) centralized allocation of
processing tasks to shared HAs and CPUs, and (88) a policing
of radio schedulers that is sensitive to congestion in a shared
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O-Cloud, which, though no longer over-dimensioned, it must
e�ectively accommodate sporadic peak demands.
We propose CloudRIC, an O-RAN compliant model that

implements the complete design above with a three-fold
goal, ordered by priority: (8) processing the DUs workload
within a prede�ned deadline � with 99.999% probability; (88)
maximizing network throughput; and (888) minimizing en-
ergy consumption. A high-level view of a CloudRIC-powered
O-Cloud is depicted in Fig. 13. Our solution integrates seam-
lessly into the standard O-RAN architecture, to which it adds
two key enhancements, highlighted in red in Fig. 13:
• A “Real-Time RIC (RT-RIC)”, which audits radio grants
issued by DUs so as to guarantee that all the scheduled
TBs can be processed by the O-Cloud on time. Di�erent
from the existing O-RAN RICs, our RT-RIC assists DUs
with compute-aware radio policies in real time.
• An “AAL Broker (AAL-B)”, which presents DUswith a sin-

gle abstraction of the O-Cloud, and enables a centralized
coordination of its processors, via two sub-components:
– “AAL-B User Plane” (AAL-B-UP) acts as a proxy be-

tween O-RAN NFs (DUs, in our case) and O-RAN AAL.
From the NFs’ viewpoint, the AAL-B-UP behaves as
a virtual LPU that abstracts all the resources in the
O-Cloud. From the perspective of the AAL, the AAL-B-
UP appears as a virtual DU that is associated with the
actual LPUs. Its job is routing arriving TBs from UEs
to an LPU that is assigned by the AAL-B-CP.

– “AAL-B Control Plane” (AAL-B-CP) schedules granted
TBs to LPUs in a way to guarantee that PHY processing
deadlines are met at minimum energy cost.

Given the real-time nature of the system, we expect DUs,
RT-RIC and AAL-B to be deployed in the same physical in-
frastructure (e.g., an edge data center), and to be connected
via a new E3 real-time interface that may be implemented us-
ing shared memory or low-latency tools such as Zenoh [41].
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Component Operations Time budget (`s) Validation
RT RIC 1○ - 4○ TTI ∈ {250, 500, 1000} §5.2
AAL-B-CP 5○ ∼200 §5.2
AAL-B-UP 6○ � (1000 - 3000, see §2.1) §5.1, §6

Table 2: Time budget for CloudRIC operations, with pointers

to the sections where we demonstrate budget compliance.

Our approach achieves three key results:
(1) By centralizing the allocation of computing resources

with AAL-B, we can e�ciently police the load from mul-
tiple DUs across heterogeneous processors, as per §3.4.1;

(2) By controlling the grants of DUs, the RT-RIC can throttle
radio resources when LPU Queues are congested and
ensure that deadlines are met, as per §3.4.2 and §3.4.3.

(3) By decoupling AAL-B-CP and AAL-B-UP, we can mini-
mize data-plane overhead as we show in §4.1 and §5.1.

4.1 Detailed design & Work�ow

Fig. 14 details the design of CloudRIC for uplink operation,
which is the most challenging in a vRAN. The work�ow
follows steps 1○– 6○, whose time budget is shown in Table 2.

1○Temporary grants. Each radio grant 6̄ (8 ) , 8 ∈ {1, 2, . . . }
generated by the DUs becomes a temporary grant. Prior to
being allocated, it is sent to the RT-RIC, as a tuple containing
the bandwidth 1̄ (8 ) (number of RBs), selected MCS< (8 ) , UE’s
SNR B (8 ) , and corresponding TB size (bits) C̄ (8 ) , i.e.,

6̄ (8 ) := [B (8 ) ,< (8 ) , 1̄ (8 ) , C̄ (8 ) ] .

We use the top bar ·̄ to indicate that element · is temporary.
2○ Latency estimation. The RT-RIC gets fromAAL-B-CP

estimates of the waiting time F̂ (8 ) := [F̂
(8 )
1 , . . . , F̂

(8 )
"
] at each

LPU queue&
(8 )
= , for all LPUs = ∈ L := {!1, . . . , !" } exposed

by O-RAN AAL. The top hat ·̂ indicates that · is a prediction.

Queue time estimators in AAL-B-CP produce F̂
(8 )
= by keep-

ing track of the time foreseen to serve all grants already

queued in each &
(8 )
= , ∀= ∈ L. These estimators perform sim-

ple calculations that rely on the (expected) LPU processing

time 3̂
(: )
= of each grant6 (: ) in&

(8 )
= , and on (real) time elapsed
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Algorithm 1 Greedy LPU allocation

Require: �, C (8 ) , F̂
(8 )
= , 3̂

(8 )
= , 4̂

(8 )
= , ∀= ∈ L

L1 = L2 = ∅

for = ∈ L do

if Available Space in&= > C (8 ) then L1 ← L1 ∪ =

for = ∈ L1 do

if F̂
(8 )
= + 3̂

(8 )
= < � − X then L2 ← L2 ∪ =

if L2 ≠ ∅ then ! ← argmin
:∈L2

4̂
(8 )

:

else ! ← argmin
:∈L2

F̂
(8 )

:
+ 3̂
(8 )

:

return !

since the head-of-line grant started to be served. Step 5○ ex-

plains how we derive 3̂
(8 )
= ,∀8, =.

3○ Radio policy. The RT-RIC state processor consolidates

all the above information into a single feature vector G (8 ) ,

G (8 ) := [B (8 ) ,< (8 ) , C̄ (8 ) , F̂ (8 ) ] .

Given G (8 ) , a radio policy agent d computes a radio allocation
policy A (8 ) := d (G (8 ) ) ∈ R0≤A (8 ) ≤1, where 1

(8 ) := A (8 ) · 1̄ (8 ) is

the bandwidth (RB count) allowed for the �nal grant (1 (8 ) ≤
1̄ (8 ) ). The design of d is in §4.2.

4○ Final grant. Policy A (8 ) determines a �nal grant

6 (8 ) := [B (8 ) ,< (8 ) , 1 (8 ) , C (8 ) ]

for the UE, where its TB size C (8 ) is computed as per 3GPP
specs [2]. Importantly, the grant must be compiled within
the granularity of a TTI, as shown in §2.1 and in Table 2
for the time budget of operations 1○– 4○. Then, as shown in
Fig. 14, 6 (8 ) is communicated to both the corresponding DU
and the AAL-B-CP through interface E3. The DU can now
notify 6 (8 ) to the UE as speci�ed by 3GPP.

5○ LPU allocation. The AAL-B-CP also receives 6 (8 ) ,
which is used to allocate the computing resources necessary
to process the grant. To this end, LPU models {a=, `=} of each

LPU = ∈ L are used to estimate the latency a= (6
(8 ) ) := 3̂

(8 )
= ,

without queuing, and energy `= (6
(8 ) ) := 4̂

(8 )
= required by LPU

= to process the TB associated with grant 6 (8 ) . As they are
stateless models, {a=, `=} can be built with neural networks
trained o�ine for each LPU. We present their design in §4.3.

Informed by the output of all LPU models (3̂
(8 )
= , 4̂

(8 )
= ) and

queue time estimators (F̂
(8 )
= from 2○), the LPU allocation

function uses the greedy Algorithm 1 to pre-assign one LPU

to TB 6 (8 ) . Algorithm 1 �rst prunes those LPUs that do not
have queuing room, which yields L1 ⊆ L. Then, using the

waiting F̂
(8 )
= and processing time estimates 3̂

(8 )
= , it removes

from L1 all LPUs for which F̂
(8 )
= + 3̂

(8 )
= falls outside a guard

period X of the deadline� , which yieldsL2 ⊆ L1. Finally, the
LPU : ∈ L2 that can process the TB with the least amount of

expected energy 4̂
(8 )

:
is selected. The result is communicated

to the AAL-B-UP (to route the grant) and to the relevant
queue time estimator (to update its estimate).

As explained in §2.1, UEs must send the granted TBs
within  2 slots, which sets a worst-case deadline of ∼200 `s
for this step (numerology ` = 2 and  2 = 0). While simple,
Algorithm 1 proves both e�cient and extremely fast.

6○ LPU processing. After  2 slots, the UE transmits the

granted TB 6 (8 ) . Once received, the DU forwards the TB to
the AAL-B-UP’s dispatcher, which routes the TB to the pre-
assigned LPU queue for processing. Once decoded, the TB
data is sent to the DU and the corresponding queue time
estimator in the AAL-B-CP is updated. As explained in §2.1,
this step must be completed within � .

4.2 Radio policy agent

CloudRIC’s radio policy agent shall produce grants that are
conscious of the current pressure on the LPUs and of the
added load brought by the new requests. In turn, these prop-
erties depend on the speci�c hardware and software settings
of the network environment (e.g., the number, type, and de-
tailed speci�cations of the LPUs, which substantially a�ect
the performance as we saw in §3.2), and are stateful (i.e., are
contingent on the utilization of LPUs at the moment of the
radio scheduling decision). Hence, they are hard to model
in advance, and require a solution that automatically adapts
itself to the target O-RAN system upon deployment.
In light of this consideration, we resort to a data-driven

model that can learn the tangled relationships above at run-
time. We implement the radio policy agent as a soft actor-
critic deep reinforcement learning (RL) algorithm, under a
twofold rationale: (8) the RL paradigm allows training the
model online from system observations directly; and (88) in-
ference is achieved with a simple neural network (the actor)
that involves trivial arithmetic operations to minimize infer-
ence latency, as later proven in §5. Among many actor-critic
instances, we opted for a soft version that maximizes the
reward while acting as randomly as possible to explore the
solution space during training; this model achieves state-of-
the-art performance in tasks similar to the one we tackle [25].

The instantaneous reward function used by the critic is

' (8 ) =

{

C (8 )/C̄ (8 ) ifF
(8 )
= + 3

(8 )
= < � − X

−V · otherwise.
(1)

Two cases are possible. If TB 6 (8 ) is processed within a guard
period X to the deadline � , the decision is assigned a positive
reward proportional to the granted fraction of the requested
TB (C (8 )/C̄ (8 ) ). Otherwise, penalty V is assigned. For additional
details on soft actor-critic models, we refer the reader to [25].

4.3 Logical Processing Units (LPU) models

The purpose of the LPU models {a=, `=} is to estimate the
processing latency, without queuing delays, and the energy
consumption of each processor in the pool, for a given grant
6 (8 ) . This is a stateless task, hence the LPU models can be
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Figure 15: A CloudRIC-powered O-Cloud prototype.

easily built o�ine with data collected in a pre-calibration
phase. Indeed, we take this approach in our implementation
of CloudRIC, employing the measurement data presented in
§3.2 to train LPU models for the speci�c LDPC drivers and
GPU/CPU LPUs considered there.

We realize the LPU models as simple feed-forward neural
networks, which are accurate and e�cient universal function
approximators. An important remark concerns the loss func-
tion used to train the models. For the energy estimator `= ,
we use a legacy mean absolute error (MAE) loss to minimize
the absolute error. However, the loss for the processing la-
tency estimator a= has a dedicated design that stems from the

following consideration. Underestimating 3̂
(8 )
= risks violat-

ing deadlines, which incurs signi�cant throughput loss and

poor spectrum usage; conversely, overestimating 3̂
(8 )
= only

implies far less disruptive radio resource under-allocations.
Therefore, it is critical that the LPU model never underesti-
mates latency, while still trying to minimize overestimation.
Hence, we train a= with an asymmetric loss function that we
call worst-case estimation time (WCET) loss. Let the latency

prediction error for grant 6 (8 ) be n
(8 )
= := 3̂

(8 )
= − 3

(8 )
= , ∀= ∈ L;

the WCET loss is then expressed as

!(n
(8 )
= ) =

{

−_ · n
(8 )
= if n

(8 )
= ≤ 0

n
(8 )
= if n

(8 )
= > 0,

(2)

where _ > 1 allows avoiding optimistic predictions.

5 IMPLEMENTATION

Fig. 15 illustrates our CloudRIC implementation in a multi-
DU server, on top of the O-RAN AAL introduced in §3.4 with
heterogeneous GPU and SIMD-capable 16-core CPU proces-
sors. As mentioned in §3.3, a server with a conventional PCIe
v3.0+ bus and a 100-GbE fronthaul interface can aggregate
up to 3.8 GHz of spectrum, supporting dense small-cell net-
works [54]. RUs and UEs are simulated following the bursty
demand pro�les presented in §3, which generate realistic
workload �uctuations with varied levels of stress on our O-
Cloud platform. To this end, we encode, modulate, add noise
and demodulate signals locally.
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of LPU models in AAL-B.

5.1 User Plane: AAL Broker

Our implementation of CloudRIC’s AAL-B-UP (∼2K lines
of C++) follows Fig. 14, and builds on top of the O-RAN
AAL we developed in §3.4. We use the DPDK Environment
Abstraction Layer (EAL) to abstract the complexity of thread
and memory management of four main threads.

The 1st thread runs the AAL-B-UP, as well as its interfaces
with the AAL-B-CP and the DUs using shared memory to
reduce latency overhead. Upon each TB arrival, the AAL-
B-UP routes its data to an LPU queue pre-assigned by the
AAL-B-CP, as shown in Fig. 14. The 2nd and 3rd threads
execute the CPU and GPU LPUs, respectively: they (8) gather
bursts of TBs from the associated LPU queue; (88) enqueue
bursts in the LPU; (888) execute the corresponding driver or
library; and (8E) enqueue the decoded bits into an output
queue. The last thread handles performance metrics.
Validation. To validate our implementation, we use all

the pro�les presented in §3.3 with a random LPU allocation,
and measure the latency overhead introduced by our AAL-
B-UP operations. Fig. 16 (blue line) shows the distribution
of the overheads, with a median latency of 2 `s and a 99th
percentile of 46 `s, which is negligible compared to the 1-
3 ms time budget available for the LPU processing of each
TB according to the summary in Table 2.

5.2 Control Plane: AAL-B-CP and RT-RIC

The AAL-B-CP and the RT-RIC are implemented in C++
(∼1.5K lines) using DPDK for e�cient inter-process com-
munication, and ONNX Runtime (ORT) for neural network
acceleration [65] The AAL-B-CP uses four threads imple-
menting, respectively, the main pipeline of §4.1, the mana-
gement of queue state updates received from the AAL, the
queue time estimator logic, and the LPU models. The RT-RIC
uses a single thread to implement the radio policy agent.
The policy selects an action A (8 ) ∈ {0, 0.1, . . . , 0.9, 1.0}

for every TB 8 . Both actor and critic are neural networks
with (5x140, 140x140, 140x11) and (16x140, 140x140, 140x11)
layers, respectively, that are jointly trained using eq. (1) as
reward, parameterized with X = 10% of the deadline D and
V = 10, which proved to work well in all experimental sce-
narios considered in the study. For the target soft Q-function
of the critic [25], we set a discount factor equal to 0.99.

The LPU models’ neural networks are composed of three
dense layers (3x128, 128x128, 128x1) andWCET loss in eq. (2)
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is parametrized with _ = 10. To illustrate the advantage of
training the latency model a= with our WCET approach, we
used the dataset presented in §3.2 to show the distribution

of the model’s relative errors n
(8 )
= with solid lines in Fig. 17.

As a benchmark, we also plot with dashed lines the relative
error of an identical neural network trained to minimize the
standard mean absolute error (MAE). What is relevant to
CloudRIC operations is the fraction of overly optimistic esti-

mates (n
(8 )
= < 0) that lead to overrating the O-Cloud capacity

and to queuing TBs that will later violate their deadline. Only
1.5% of the errors are optimistic for our method in contrast
to the 53% of a MAE loss. Note that percent errors are higher

for GPU than CPU, because the GPU latencies3
(8 )
= are consid-

erably smaller, hence harder to estimate: the absolute error
in `s is however comparable for the two processors.
Validation. As explained in §4, the overhead of the RT-

RIC, which runs the the radio policy agent, and the AAL-B-
CP, which runs the LPU models, have latency constraints
indicated in Table 2. To assess that timing requirements are
ful�lled by our implementation, we run CloudRIC for all
the UE demand pro�les presented in §3 and measure the
overhead introduced by both modules. The distribution of
the resulting latencies is depicted in Fig. 16. The RT-RIC’s
radio agent (green line) has a median and a 99th percentile
latency of 5 `s and 9 `s, respectively. The LPU model neural
networks incur instead into a median and a 99th percentile
latency of 42 `s and 62 `s, respectively (red line). Both meet
their budgets and validate CloudRIC’s real-time operation.

6 EVALUATION

We next perform a thorough experimental campaign. First,
we quantify the training overhead of CloudRIC (§6.1). Next,
we validate that CloudRIC meets the design goals set in §4 in
terms of reliability, throughput, and energy (§6.2). Lastly, we
juxtapose CloudRIC against several benchmarks, scrutiniz-
ing aspects of reliability, energy- and cost-e�ciency (§6.3).

6.1 Training time

CloudRIC hinges on data-driven approaches to realize the
LPU models and radio policy agent. As explained in §4.1,
the LPU models are stateless and can be pre-trained, e.g.,
using the dataset introduced in §3.2 in our case. Instead, the
radio agent is trained online upon deployment in the target
system, and the training time it requires to learn e�ective
radio policing decisions is an important metric.
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Figure 19: Processing latency distribution for di�erent dead-

lines D = {1, 2, 3} ms (shaded area).

Deadline (�) x1 x4 x8 x16 x32 x64 x128 Max
3 ms 0.79 2.84 2.99 2.81 2.82 2.84 2.99 2.79
2 ms 0.80 1.85 1.88 1.92 1.90 1.95 1.99 1.97
1 ms 0.73 0.99 0.96 0.99 0.96 0.97 0.97 0.98

Table 3: 99.999th latency percentile (ms) achieved by

CloudRIC for di�erent deadlines � and demand pro�les.

To analyze its training cost, we initialize RT-RIC’s radio
agent with random weights and study the evolution of its
performance as it learns to schedule the tra�c of 150 UEs
distributed among thirty 100-MHz DUs. Fig. 18 presents
the mean normalized reward achieved by CloudRIC after
it has observed an increasing number of TBs across three
processing deadlines � = {1, 2, 3} ms commonly used in
the literature [19, 21]. We present results for “x4”, “x32”,
and “Max” UEs, as introduced in §3, to assess low, medium,
and high workloads. CloudRIC reaches maximum reward
almost instantaneously for small workloads (“x4”): the radio
agent readily learns that it does not need to constrain the
allocation of radio resources to guarantee deadlines in this
case.Withmore demanding “x32” and “Max” users, CloudRIC
takes up to 50K TBs to converge, and achieves 90% of that
reward with 10 times less TBs. It shall be noted that 50K
TBs correspond to less than 4 s in real-time with “x32” users,
which demonstrates that the radio agent can learn good
policies with minimal service degradation upon deployment.

6.2 CloudRIC validation

As introduced in §4, CloudRIC has three goals, prioritized as:
(8) achieving 5-nines reliability, (88) maximizing throughput,
and (888) minimizing energy use, which we evaluate next.

6.2.1 Reliability. Compliance with the processing deadline
during the inference phase directly controls the reliability of
CloudRIC. We now better substantiate the dependability of
our solution for real-time operation after the (very quick, as
shown above) online training phase.

Fig. 19 shows the empirical distribution of the processing
latency for all scenarios in §6.1. The shaded areas highlight
deadline violations: by bounding all distributions to the left
of those regions, CloudRIC meets the reliability target in all
cases. More precisely, Table 3 depicts the latency’s 99.999th

percentiles, showing that CloudRIC consistently grants 5-
nines reliability, which validates the �rst design goal. To
achieve this, with growing loads and (to a minor extent) with
more stringent deadlines, CloudRIC increases the average
use of both CPU and HA as shown Fig. 20 (top).
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Figure 20: Mean resource utilization (top), radio allocation

(middle), andworkload allocation (bottom) for di�erent dead-

lines D = {1, 2, 3} ms and demand pro�les.

However, when LPUs are under pressure, CloudRIC must
bound the allocation of radio resources as depicted in Fig. 20
(middle). That is, in response to workloads that increasingly
exceed the O-Cloud’s capacity, the radio policy agent throt-
tles down a progressively higher fraction of radio resources
that otherwise would be wasted. Despite this, CloudRIC at-
tains on average 98.7% of the achievable throughput (i.e.,
that of an o�ine exhaustive search with perfect knowledge).
It is worth noting that the results in Fig. 20 above are

averages, while the UE tra�c at the ms timescale is inher-
ently bursty (as exempli�ed in Fig. 7). Therefore, CloudRIC
must manage sudden upswings of requests (which saturate
the LPUs and force radio grant limiting) alternating to low-
demand periods (where all grants can be accommodated but
resource utilization remains low). This explains why LPU
usage in�ation is fairly linear in the face of exponentially
surging demands of “x1” through “Max” UEs, and why 100%
radio allocations are not feasible even when the LPUs are
not fully used, with “x8” through “x128” UEs.

6.2.2 Throughput and energy. Having assessed reliability,
we now focus on the last design goals, i.e., exploiting com-
puting heterogeneity to maximize throughput and energy
e�ciency. To that end, CloudRIC’s LPU allocation function,
informed by the LPU models, prioritizes energy-prudent pro-
cessors as long as they meet deadlines but resorts to more
powerful HAs when strictly required to maximize through-
put. This yields a �exible load balancing, as shown in Fig. 20
(bottom): for instance, 100% of the workload is assigned to
the CPU pool to save energy in the case of “x1” UEs, but
around 40% is allotted to the HA to protect reliability in
higher-loaded scenarios with “x32” through “Max” UEs.

To study this, we deploy CloudRIC on di�erent AAL plat-
forms: a CPU-only, a HA-only, and a heterogeneous platform
combining CPUs and HAs. To provide a fair comparison
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Figure 21: 99.999th latency percentile, throughput and en-

ergy consumption of CloudRIC on three di�erent platforms.
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Figure 22: Energy savings of CloudRIC when using a CPU

pool opportunistically relative to only using the HA.

across platforms, we sized each platform (number of CPU
cores, HAs, etc.) such that additional computing resources
of any type could not improve performance any further. We
then emulate �ve DUs on each platform and vary the load
as we did in §3.1 for � = {1, 2, 3} ms.

In contrast to §3.1’s results, Fig. 21 proves that CloudRIC
meets the 99.999% reliability target in all cases. More im-
portantly, the throughput (relative to the load) and energy
performance �gures illustrate the advantages of a heteroge-
neous platform: there, CloudRIC matches the throughput of
an HA-only platform at a similar energy cost to that of a CPU-
only system. In contrast, CloudRIC must sacri�ce 15-75% of
throughput in a CPU-only platform to ensure reliability, and
consumes 3-14× more energy per bit in an HA-only system.

Indeed, the ability of CloudRIC to exploit CPUs opportunis-
tically provides substantial gains in energy consumption. We
analyze this in more detail in Fig. 22. The �gure shows the en-
ergy cost savings achieved by CloudRIC on a heterogeneous
platform with respect to the cost of exclusively relying upon
a HA. The results refer to CPU pools of varied size, under
all UE pro�les. Remarkably, CloudRIC provides over 50%
energy cost savings with just a single CPU core in presence
of low-load “x1” UEs. Increasing the CPU pool size provides
more savings, but with diminishing returns as many cores
remain unused. For higher workloads, the energy cost sav-
ings are understandably lower as the LPU allocation function
prioritizes network throughput and reliability over energy
consumption. For instance, a single-core CPU pool provides
practically no gain for the case of “Max” users but a 16-core
pool attains 37% savings for the same scenario.

6.3 Comparison with other approaches

CloudRIC improves reliability and sustainability of vRANs
over both best practices that the operators currently adopt
in their deployments, as well as advanced benchmarks that
only partially implement our design guidelines.
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Figure 23: Reliability (top), energy-e�ciency (middle), and

cost-e�ciency (bottom) for di�erent policies on di�erent

scenarios with with “x4” (left) and “Max” (right) users.

6.3.1 Di�erent benchmarks. We �rst demonstrate this by
juxtaposing CloudRIC to the following baselines.

“Industry-std” uses a dedicated in-line HA co-located with
every DU, which is the conventional approach in the industry

today. To test this approach fairly, we simulate as many in-
line HAs as DUs, each with the same performance of our
NVIDIA V100 GPU, using the dataset presented in §3.2 and
ignoring the look-aside overhead shown in Fig. 16 (blue line).

The other benchmarks are the policies introduced in §3.4:
“O-Greedy”, “O-MWT”, “C-MWT”, and “C-DA”, which are
not simulated anymore but implemented in our shared and
heterogeneous AAL platform, like CloudRIC. In §3.4, sev-
eral of these approaches relied on future knowledge, which
is not feasible for real-time operation. To enable real-time
operation, we use LPU models trained with a MAE loss (as
explained in §4.3) to predict the information they require.

We run comparative experiments with a varying number
of 100-MHz DUs aggregating 50 to 350 UEs in a single server.
Fig. 23 depicts reliability (top), expressed as the percentage
of TBs processed within � , energy e�ciency (middle), calcu-
lated as the amount of data bits processed successfully per
unit of energy), and cost e�ciency (bottom), measured as
the mean network throughput achieved per unit of capital
investment2. Results are for � = {1, 2, 3} ms and a variable
number of “x4” (left) and “Max” (right) UEs, hence DUs.

The �rst key remark is that only CloudRIC and “Industry-
std” provide high reliability across all scenarios. Precise �g-
ures on this critical aspect for industry-grade vRANs are
presented in Table 3: the 99.999th percentile of the processing
latency con�rms that “Industry-std” is the only benchmark
to achieve the same 5-nine reliability of CloudRIC.

2To calculate energy- and cost-e�ciency, we ignore the baseline energy and

�nancial cost of the servers, and use the representative market prices of

Table 1, i.e., $110 per CPU core, and $3,000 per HA, making each HA-only

“Industry-std” server 37% cheaper than the shared heterogeneous server.

UEs pro�le Deadline (�) Clo
udR

IC

Ind
ust

ry-
std

O-G
ree

dy

O-M
WT

C-M
WT

C-D
A

“x4”
3 ms 2.94 0.20 28.5 10.9 6.73 6.59
2 ms 1.95 0.20 23.4 9.83 7.51 4.72
1 ms 0.99 0.29 13.9 9.26 9.06 2.92

“Max”
3 ms 2.95 0.29 35.4 35.5 35.4 6.15
2 ms 1.99 0.29 24.1 24.1 24.1 4.22
1 ms 0.99 0.29 12.9 12.9 13.0 2.40

Table 4: Comparison of the 99.999th latency percentile (ms)

of di�erent approaches for the scenarios presented in Fig. 23.

However, “Industry-std” matches the dependability of
CloudRIC by largely over-dimensioning the computing ca-
pacity, which yields the worst cost-e�ciency performance.
Fig. 23 demonstrates how CloudRIC makes the best use of a
much smaller, shared, and heterogeneous O-Cloud to achieve
15x higher cost e�ciency and 3x higher energy e�ciency,
on average, than the legacy industry practice.
The capital cost of all the other benchmarks is the same

as CloudRIC’s so its cost-e�ciency gains are solely due to
network throughput gains. Because “C-DA” uses CloudRIC’s
AAL-B, it achieves similar performance to CloudRIC for small
workloads; however, the absence of the RT-RIC causes “C-
DA” to waste radio and computing resources on TBs that
miss their deadlines during heavier workloads, which results
in 34% and 31% lower energy e�ciency and throughput, re-
spectively. “O-Greedy”, “O-MWT”, and “C-MWT” all con�rm
the poor reliability observed in §3.4 on a real-world platform,
with throughput dropping to 0% for “Max” UEs.

6.3.2 Di�erent Hardware Accelerators. Finally, we analyze
the impact of di�erent HAs on the performance gains of
CloudRIC over “Industry-std”, i.e., the only two approaches
that meet the reliability target of 99.999% at all times.

To this end, we scale the latency and the power consump-
tion measurements of the NVIDIA V100 GPU by factors
0.2≤Ulat ≤ 1 and 0.2≤ Upwr ≤ 1, respectively. Thus, di�erent
combinations of Ulat and Upwr simulate diverse and future
HAs. For instance, based on publicly available information,
we roughly estimate that the look-aside Intel ACC100 HA
may be modeled with 0.5 ≲ Upwr ≲ 0.7, and the look-aside
Intel ACC200 (integrated into the new Sapphire processors)
or the in-line Qualcomm X100 HA with 0.6 ≲Ulat≲ 0.8.
To study di�erent scenarios, we generate various work-

loads by emulating di�erent numbers of DUs, each with �ve
“x4” or “Max” UEs. Like before, one heterogeneous platform
is shared among all the DUs in the case of CloudRIC, while
we simulate a HA-only server per DU for “Industry-std”.

On the one hand, Fig. 24 depicts the energy e�ciency
of CloudRIC relative to that of “Industry-std”. For small-
medium workloads (aggregating <500 “x4” UEs), the hetero-
geneous platform enables CloudRIC to achieve substantial
energy e�ciency gains—up to 6× the e�ciency of “Industry-
std”—when the HA satis�es Upwr + Ulat ≥ 1. As mentioned
above, cutting-edge HAs today are well within this range.
When Upwr + Ulat < 1, perhaps achievable by future HA tech-
nology, the HA’s latency and energy consumption is so low
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Figure 24: CloudRIC’s energy-e�ciency with respect to

Industry-std’s for di�erent HAs characterized by parame-

ters Ulat and Upwr, which scale the power consumption and

latency performance, respectively, of an NVIDIA GPU V100.

compared to today’s CPUs that using the latter becomes inef-
�cient. This occurs in a larger (Upwr, Ulat) area for very large
workloads (>750 “x4” or >10 “Max” UEs), where CloudRIC
must throttle down radio resources to preserve reliability.
Note that, in such extreme cases, CloudRIC may share more
HAs (instead of CPUs) to boost energy e�ciency.
On the other hand, Fig. 25 presents the cost e�ciency of

CloudRIC relative to that of “Industry-std”. Since CloudRIC
aggregates all the workload into a single server, its cost-
e�ciency gain over “Industry-std” grows linearly with the
number of DUs. This is depicted in Fig. 25 for di�erent work-
loads, generated in the same way as before, and for di�erent
Ulat values (note that cost-e�ciency is independent of Upwr as
it does not impact on throughput). The growth rate degrades
when the computing resources available in CloudRIC’s server
are maxed out and CloudRIC has to sacri�ce throughput to
preserve reliability (e.g., >310 “x4” or >50 “Max” UEs). This is
more severe for higher Ulat because reducing Ulat essentially
increases the HA’s computing capacity. Moreover, since cost-
e�ciency also depends on the number of DUs per server,
high-loaded DUs with “Max” UEs incur lower gains as large
workloads are generated with fewer DUs.

7 RELATED WORK

Most task scheduling frameworks [37, 57, 58] operate at
coarse time granularity, which is not suitable for vRAN
workloads. Shinjuku [34], Shenango [53], and Snap [43] can
provide `s-level tail latencies; however they are generic ap-
proaches alien to the speci�cs of radio scheduling operations
and hence cannot be used for sharing heterogeneous HAs
while providing many-9s reliability in dense vRAN platforms.

Agora [12] is a 5G data channel processor built on top of
FlexRAN’s publicly available libraries for many-core general-
purpose CPU platforms, and does not require other HAs such
as ASICs, FPGAs or GPUs. However, Agora is not suitable
for shared computing platforms as it relies upon dedicated
CPU cores to provide deterministic computing latency. More
recently, Concordia [19] proposed a CPU scheduler to jointly
execute 5G processing tasks and other latency-elastic applica-
tions. However, Concordia (8) does not police radio resources,
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Figure 25: CloudRIC’s cost-e�ciency with respect to

Industry-std’s for di�erent HAs characterized by Ulat.

and hence cannot ensure reliability in platforms shared by
multiple DUs, and (88) cannot manage heterogeneous pools of
HAs and CPUs. Nuberu [21] is a DU that trades-o� network
latency for reliability in shared computing platforms. While
the use of reliable DUs is important, Nuberu neither coor-
dinates multiple concurrent DUs nor optimizes the use of
computing resources. Additional related works are GPF [29],
an extremely fast (∼100`s) GPU-accelerated radio resource
scheduler, and [44], an approach to share RU front-ends. Nei-
ther addresses the speci�c problem we pose in this paper of
joint control of computing and radio resources.

Orthogonal yet related to our work is the work on O-RAN
orchestration, e.g., [5–7] use machine learning to optimize
the system in long timescales. ColO-RAN [56] is a large-scale
testbed with software-de�ned radios-in-the-loop to evaluate
O-RAN RIC algorithms. Finally, OrchestRAN [14] orches-
trates data-driven models to provide intent-based control
operations for mobile operators. However, as shown in §3
real-world workloads are bursty at small timescales. There-
fore, orchestration solutions, which operate at second- or
minute-timescales, cannot attain CloudRIC’s multiplexing
gains while concurrently meeting hard reliability constraints.

8 CONCLUSIONS

In this paper, we introduce CloudRIC, a system that addresses
the limitations of current vRANs that rely on expensive,
energy-intensive Hardware Accelerators (HAs) co-located
with each Distributed Unit (DU) to meet stringent reliabil-
ity requirements. Extending O-RAN’s cloud architecture,
CloudRIC enables the sharing of HAs across multiple DUs
to reduce costs and utilizes low-cost CPUs to reduce energy
consumption, without compromising reliability. Our imple-
mentation, based on DPDK’s BBDev framework and light
data-driven models, shows that CloudRIC incurs low over-
head and delivers, on average, 3x and 15x gains in energy-
and cost-e�ciency, respectively, compared to the industry
standard approach in real-world and worst-case scenarios.
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