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ABSTRACT

Color constancy is the ability of human vision to recognize a stable color in objects under varying
lighting conditions. When it comes to computer vision, color constancy is not as accurate as in
human vision. Computer vision aims at “seeing” and “understanding” visual data in order to
provide decision-support for many applications. It is a multi-disciplinary approach which seeks
to get closer to human visual perception and understanding in order to automate tasks that the
human visual system can do. In this quest, colour constancy is a prevalent issue in every
discipline associated with computer vision. The results of computer vision models deeply depend
on the point of view and lighting conditions. The task of computational color constancy is to
estimate the scene illumination and then perform the chromatic adaptation in order to remove the
influence of the illumination and the camera sensor on the colors of the objects in the scene.
Removing the influence of the illuminants, of the camera sensor, and of the optical effects is of
primordial importance in computer vision to make sense of digital videos and images. This is
how, for example, most digital cameras use color constancy methods in their camera Image
Signal Processing (ISP) Pipeline. In this paper we will survey the most recent models/methods
dealing with color constancy and will discuss the following research questions: - how might we
make computer vision more robust against complex illumination/viewing conditions? - how to
make materials/colors appearance, optical/photonics models consistent with human perception
when using new image sensors (e.g. multispectral sensors) and display devices (e.g. AR/XR)? -
how might we improve the deployment of smartphones and low-cost sensors in professional
uses? We will also discuss some areas of improvements using machine learning methods.
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INTRODUCTION

Color constancy is the ability of human vision to recognize a stable color in objects under varying
lighting conditions. Usually, when we look at some objects the Human Visual System (HVS) [1,
2] unconsciously removes the influence of the lightning, then the color of the objects is perceived
as if they were illuminated by a neutral white light. In computer vision, we can mimic this
complex human system with different approaches that try to solve these under-constrained
challenges related to the color constancy problem, and the solutions can be used in multiple fields
like object recognition, tracking, color calibration, pattern recognition, etc.

Generally this problem is solved with a function p(x,y) depending on three important factors
[3]: illuminant distribution I(x, y, 1), surface reflectance R(x, y, A), and the camera sensitivity
S(A), where (X, y) is the pixel position and A is the wavelength. See Figure 1. We can express this
function for each RGB channel as, i.e., (Eq. 1):

ploy] = [\ I(z, 9, ) R(z, 3, )S(A)dA )

If we assume that the scene is illuminated by a single light source and that the lighting
field is uniform on the surface of the object, and that the surface is Lambertian and flat (i.e. R(X)
is constant whatever the pixel location), then the goal of color constancy is to estimate the light
source color I(A) independently of the pixel position. See Figure 2. In real world the lighting
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conditions are various, especially in indoor environment, so conventional approaches based on
single illumination assumption cannot apply, see Figure 3.

Objeet Hluminant

Geometry \ i)
[ ] A Vel |—p [

2 appearance B
Material / ?

Receptor
{eye. camera. etc.)

Reflected Light

properties
1(2) SRA) =5(2)

Viewpoint
Camera

Figure 1: Visual appearance depends on geometry, materials reflectance, lights

Statistic Methods /
Physics-Based Methods
/ Learning-Based Diagonal 3x3

V Transformation
I Lighy G it
L ol
_ 's REm o vay

‘Chromaticity Coordinates:
R G

F=R6+B B Reg+m

_I_.-"' Input Image

Output Image

Grey patch

Figure 2: White balance of a scene lighted by a single illuminant based on the average
grey computation. One solution consists to extract a grey patch, next to perform white
balance from the color of this patch. Another solution consists to use a color chart, next to
perform white balance from the colors of this chart.
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Figure 3: Example of scene lighted by various light sources (direct & indirect
illumination). Six color charts are located in different areas (depths, orientations).

SHORT SURVEY OF THE STATE OF THE ART

Color constancy methods are generally classified into three main categories [3]: statistic-based,
physics-based, and learning-based methods. The first group of solutions uses different low-level
image statistics and empirical assumptions to achieve the color estimation, all of them can be
unified with the framework proposed by van de Weijer et al. [4] as i.e., (Eq. 2):
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where: n is the parameter (the order of the image structure) determining if the method is a Grey-
World or a Grey-Edge algorithm; p (the Minkowski norm) determines the relative weights of the
multiple measurements from which the final illuminant color is estimated. A high Minkowski
norm emphasizes larger measurements whereas a low Minkowski norm equally distributes
weights among the measurements; ¢ determines the scale of the local measurements. For first or
higher order estimation, this local scale is combined with the differentiation operation computed
with the Gaussian derivative.

Most of the grey patch -based methods do the assumption that to estimate the scene
illumination, it is only required to extract one grey patch from the surface reference. However,
in [5] it was proven that the prediction of a set of 19 patches (18 color and 1 grey among the 6
grey-level patches of the MacBeth color checker) from a reference surface is much more accurate
in terms of light estimation and color correction. Considering that the illumination fields are not
equally distributed in a scene (as example see Figure 4) and that they depend on multiple factors,
we suggest to predict locally the color of these 19 patches in the scene using a deep learning -
based approach, as if the color checker would have been there during the acquisition. Predicting
multiple color checkers captured in the same image would enable to train a model able to predict
illumination conditions, and to insert a synthetic color checker at any image location in order to
prove that color pixel values change when we change color chart position.

Figure 4: Examples of indoor images captured with the same Canon camera, taken under
multi-illuminant conditions. In each image six color charts were put in various positions.

The second group of solutions exploits the dichromatic reflections principle and they
require to detect grey surfaces, specularities, or segments from the image. As example, a
segmentation-based method for mixed-illuminant scene images was proposed in [6]. On the other
hand, a dichromatic reflection -based method for multiple illumination estimation was proposed
in [7]. This method is based on a grayness index.

Lastly, the third group of solutions focuses on learning algorithm methods based on gamut
mapping, patch-based approaches, or deep learning frameworks to model illumination estimation
and related problems. One of the first paper addressing the problem of multiple illumination
estimation was proposed in [8]. This paper is based on the concept of exemplar-based learning.
It consists, first to apply a mean-shift segmentation of the input image (with unknown illuminant),
next to generate surface models for each surface, then to find the nearest neighbour surface model
in training surface models (from a dataset of images with known illuminants), and lastly for each
nearest neighbour surface model to estimate the illuminant. Until recently most of state-of-the-
art methods rely on single illuminant, complex features, and have long evaluation and training
times. However, the paper proposed in [9] suggests a learning-based method based on four simple
color features (average color chromaticity, brightness color chromaticity, dominant color
chromaticity, and palette chromaticity mode), and an ensemble of regression trees (based on basic
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decision rules) to estimate the illumination. This method only works for a single illuminant but
was extended to two illuminants in [10]. On the other hand, the CNN-based estimator, followed
by a local-to-global regressor, approach proposed in [11] works for multiple illuminants. A
multiple illuminant detector is used to determine whether or not the local estimates of the network
must be aggregated into a single estimate. The GAN-based approach proposed in [12]
incorporates a discriminator loss and a conventional color constancy loss. This method requires
ground truth illumination data which may not be available in a common case. It does not need to
estimate an illumination color map, as it is based on an image-to-image transformation. Another
GAN-based approach was proposed in [13]. Using an image-to-image domain translation
(domain transfer) learning approach this method estimates a multi-illumination probability map.
The most relevant illumination estimation methods are based on pixel-wise approaches. Very
recently, several pixel-wise / patch-by-patch approaches have been proposed in the literature,
such as [14, 15, 16, 17]. Pixel-wise approaches are more efficient than patch-based methods to
estimate illuminant conditions when multiple light sources illuminate the scene.

Another approach consists to “colorize” color images, as in [18], or to “white balance”
color images, as in [19]. The colorization method proposed in [18] is based on training a deep
neural network to learn the connection between the colors in an “improperly balanced” image
and those in a “properly balanced” one. This method does not explicitly estimate the chromaticity
of the illumination, however it handles spatially varying illumination conditions. The Automatic
White Balance (AWB) method proposed in [19] is based on a camera imaging pipeline dealing
with a small set of predefined white-balance settings. Given a set of rendered images, this method
learns to estimate weighting maps to generate the final corrected image. This method does not
require illuminant estimation. It generates spatially varying weighting maps that allows to correct
for mixed lighting conditions in the captured scene.

To evaluate the accuracy of a color constancy method various standard metrics may be
used [20, 21]: the Misclassification Rate, the Average or Median Angular Error (MAE), the Peak-
Signal-to-Noise-Ratio (PSNR), the Root Mean Square Error (RMSE), etc.

ILLUMINATION ESTIMATION IN THE FIELD OF VR/AR/XR

Very few papers investigated chromatic characterization issues in VR, and color reproduction
and calibration issues with VR. The first experiment done with a VR head mounted display
(HMD), reported in [22, 23], consists of an indoor scene (office environment) rendered by the
Unreal Engine (a gaming engine software). The office room contains matte and glossy objects,
and two light sources: one on the ceiling, and a dimmer one at the back of the room. This study
demonstrated that colour constancy performance in an immersive realistic VR environment is
similar to what is reported for natural scenes. More investigations are necessary to extend the
promising results obtained in the color vision domain with VR to the computer vision domain (to
more realistic real-world scenarios) with AR and XR (as example see [24]).

Very recently, few image editing solutions based on Neural Rendering and Relighting
(NeRF) have been proposed in the literature to estimate light sources and their direction in each
pixel using implicit radiance fields, as for example in [25, 26, 27, 28]. With these solutions, it is
now possible to insert virtual objects in an indoor or outdoor scene from a single color image and
also to add or remove light sources. To the best on our knowledge till now none of these papers
used explicitly these solutions for color constancy, but this would make sense.

COLOR CONSTANCY IN SPECTRAL IMAGING

Very few papers investigated the influence of camera spectral sensitivities (with varying spectral
resolutions) and number of channels on color constancy. Some promising results were obtained
in [29, 30]; in [30] the authors claimed that the spectral dimension is more important than the
spatial dimension for estimating the illuminant white points. However, to the best on our
knowledge, till now, spectral color constancy models were only developed for single illuminant
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SHORT SURVEY OF COLOR CONSTANCY DATASETS

Very few real-world images datasets with multiple light sources have been proposed in the state
of the art. One of the first datasets with real world images was introduced in [20]. It only contains
68 images (59 were taken in laboratory environments and 9 were real-world images) but it also
contains their corresponding illuminations. The one proposed in [31] contains 197 images of
faces taken with a varying number of color charts (most of images contains only one color chart)
and captured with 4 different cameras. The MIMO public dataset introduced in [32] contains 58
indoor images (10 scenes, with complex scenes with multiple reflectances and specularities,
lighted by 2 lights) and 20 outdoor images (with shadow, sun light, and in some cases with
additional direct light); it provides pixel-level illumination images (for each light the illumination
map is provided; images are taken with and without a color chart). This dataset was extended in
[33] with high-resolution multi-view images (5 scenes acquired with 6 cameras) of complex
multi-illuminant scenes (4 single-illuminant, 11 multi-illuminant, and 5 specular multi-
illuminant) with precise reflectance and shading ground-truth. However, these data sets are both
small and mainly consist of images of quite constrained single-object scenes [34].

The Cube++ illumination estimation dataset contains 4890 real world images (indoor and
outdoor) with known illumination colors as well as with additional semantic data [35]. A Spyder
cube color target (with white faces, grey faces, black patch and chrome ball) provides for every
image two ground-truth illumination records covering different directions. In the dataset
proposed in [36], the illumination for each scene was determined at once at many different points
using a flying drone (carrying a grey ball); it contains multiple images (indoor and outdoor) taken
from multi-view taken during the flight (150 images per scene, 30 scenes). According the authors
“expanding the dataset further to include many more scenes would make it more useful for
training machine learning methods; the range of illumination chromaticities could also be
increased by recording scenes at sunrise/sunset, during different seasons, and different parts of
the world”. The two equipment used to build these datasets are less convenient than the use of
color charts; the use of only one Spyder cube can be insufficient to estimate complex illumination
fields; the use of a flying drone can be too low to estimate rapid illumination changes.

The large-scale multi-illuminant (LMSI) dataset is the biggest dataset publicly available;
it contains 7,486 raw format images of realistic scenes, captured with three different cameras (on
more than 2,700 scenes), captured under two or three illuminants (natural light, indoor light) [37].
It provides the ground truth illumination map from multiple images of the same scene taken under
different combination of the lights. For each scene, 3 Macbeth color charts were arranged in
places that are well affected by each light source in the scene. Even though the LSMI dataset
contains a variety of images with various lighting settings, the diversity is still limited compared
to real-world lighting conditions. To evaluate the relevance of a deep learning architecture trained
and tested, we suggest to use the LMSI dataset (as it is the biggest one) and to train the network
from a subset of images (e.g. images acquired with the Sony camera) and to test the network
from another subset of images (e.g. images acquired with the Samsung Galaxy camera),
independently from the training step; we also suggest to use 3-fold cross-validation separating
both training and testing sets by the number of unique scenes that we have in total.

The NUS-8 dataset contains 1736 outdoor and indoor images taken with 8 different high-
end consumer cameras (approximately 250 images per camera) [38]. For each image, the
coordinates of the color-checker put inside the image are provided, as well as small region masks
for every color patch. The ground truth illuminants provided were obtained from the difference
of the two brightest achromatic patches. Despite having only one color checker in the scene, this
dataset can be used to compare the performance of illumination estimation methods with past
approaches for predicting one single color estimation per scene. As with the LMSI dataset, we
suggest to train single illuminant estimation networks from a subset of images (acquired with
only one camera) and to test the network from another subset of images (acquired with another
camera), independently from the training step; we also suggest to use 3-fold cross-validation
separating both training and testing sets.
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CONCLUSION

Traditional color constancy algorithms consist of two steps: light color estimation and color
correction. Till recently, most of papers in the state-of-the-art proposed solutions to estimate the
lightning condition under a single illuminant. Since few years, several papers (mainly based on
machine learning methods) proposed solutions to face multi-lighting conditions. Some of these
methods outperform others, but there is still a room for improvement. Firstly, the training process
should be improved from a large and well-balanced images dataset. Secondly, a good trade-off
should be found between the efficiency of a method and its computational cost (e.g. if we want
to embark it on a camera ISP hardware). Lastly, a good trade-off should be found between the
efficiency and the relevance of a global/local estimation method and a pixel-wise estimation
method; this could be managed using additional loss functions.

There is still a lack of relevant color constancy datasets with pixel-wise ground-truth.
Datasets with more realistic scenarios (including linear mixtures of light sources; shadows and
specularities; mixing ambient, direct light and natural light; no fully controlled lighting
conditions) and a higher number of images (including multi-view of the same scene, multi-
images from various cameras, multi-illuminant) are still needed to train and test color constancy
methods. More reliable ground-truth (i.e. accurate estimation of the illumination map, not a
estimation from a grey sphere, color chart, chrome ball, uniform diffuse grey spray paint) is still
needed, for outdoor images taken under daylight condition only, for images of indoor scenes
captured under multi-illuminant, for outdoor images combining natural light and light sources.
We assume that using several color charts could improve the local illumination estimation
(depending on their location in a scene); it could also improve grey-patch -based methods and
single color chart -based methods when dealing with multi-illuminant. The first experiments we
did confirmed this assumption; we created a new dataset satisfying the conditions above (as
examples see images shown in Figures 4 and 5) in order to perform our evaluations. As future
work, we will increase the number of real-world images (of acquisitions from various cameras
and viewing directions) in this dataset before making it publicly available.

Figure 5: Outdoor images captured with the same Canon camera, taken under multi-
illuminant conditions (eg. shadows, daylight shifts, etc.). In each image six color charts
were put in various positions and distances to the camera.

In computer vision, in some study cases, color changes induced by shadows and
illumination fields (as illustration see Figure 6) can impact object detection and tracking in
videos, 3D scene analysis and understanding, 3D pose trajectories estimation of moving objects,
etc. However, thanks to the progress made in the computer vision domain after the start of the
deep learning area, many computer vision tasks (such as human body pose detection in complex
lighting environments) are nowadays robust to illumination changes, shadows, object’s
reflectance, etc. Color constancy and illumination estimation are nowadays less problematic for
computer vision tasks, up to complex situations involving multi-views and multi-illuminations.
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Figure 6: (top images) Indoor images of the same scene captured from various points of
view using a set of GoPro cameras, (bottom images) Indoor images of the same scene
captured from the same point of view. From left to right different light sources have been
used to make the multi-illumination estimation (resp. object detection) more challenging.
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