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Summary 

One of the main objectives of the McSAFER project is to estimate the added benefit of using beyond 
the state-of-the-art high-fidelity methods for reactor core physics compared to state-of-the-art 
reduced order methods. This will be achieved by modeling the same small modular reactor (SMR) 
transients using high fidelity and reduced order methods. 

Serpent 2 continuous energy Monte Carlo particle transport code within the Kraken framework 
constitutes part of the two steps Serpent-Ants calculation chain that aims to provide full core 
reduced-order neutronics solution via Ants nodal diffusion solver based on the pre-calculated (micro-
group constants) data from Serpent, as well as high-fidelity, reference, solution by itself. 

The availability of an advanced thermal energy deposition model in the time-dependent calculations 
to be conducted in the project is a must to produce accurate power distributions in transient or 
accident scenarios and design-basis parameters definition. 

A group-based decay heat curve-fitting methodology is proposed within the future needs of Serpent 
calculations simulations to be conducted in Task 3.4 of the McSAFER project. 
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1. Introduction 

Serpent 2 continuous energy Monte Carlo particle transport code [1] within the Kraken framework 
[2] constitutes part of the two steps Serpent-Ants calculation chain that aims to provide full core 
reduced-order neutronics solution via Ants nodal diffusion solver [3] based on the pre-calculated 
(micro-group constants) data from Serpent, as well as high-fidelity, reference, solution by itself. 

In this study, Serpent will be applied as a state-of-the-art high fidelity neutronics solver to provide 
detailed level results for the NuScale SMR core transients in WPs 3 and 5 of the McSAFER project.  

For such simulations, an advanced thermal energy deposition model in time-dependent calculations 
is a must to produce accurate power distributions in transient or accident scenarios and design-basis 
parameters definition.  

 

2. Thermal energy deposition models in nuclear reactors: background 

 

2.1. Energy deposition rates: overview 

 

The total energy released by a fission event has several prompt and delayed energy contributors [4]. 
Although, primarily, the recoverable energy is released instantaneously as kinetic energy from fission 
products and fission neutrons, prompt gamma rays or energy, from the subsequent neutron capture. 
Only a part of it is emitted after as, radioactive decay of fission products and radioactive nuclei due 
to neutron capture as delayed beta and gamma rays. After a period of steady power history, of the 
order of magnitude of days, its equilibrium is reached. Consequently, its time dependence is no 
longer represented in reactor core solvers aside from the decay heat production during reactor 
shutdown or post-accident scenarios. Some transient scenarios, i.e., a slow transient due to core 
depletion and a fast transient, such as a reactivity-initiated accident (RIA), might question such 
simplification.  

 

2.2. Decay heat model: overview 

 

The decay heat is the thermal energy released through the radioactive decay of fission products and 
nuclides produced by the neutron capture in fission products and actinides produced by the neutron 
capture in heavy metals. It constitutes the second-largest source of thermal power within the reactor, 
and thus, it should be accurately modelled at any time of the reactor operation. It plays an important 
role, not only in the analysis of transient/accident scenarios, e.g., loss of coolant, main steam line 
break, etc., but also as a safety design parameter, e.g., spent fuel storage, final disposal sites, etc.  

 

Table 1: Energy deposition contributors [4] 
 

a)  Fission 
a) Kinetic energy of Fission Products 
b) Prompt and Decay Beta Particle Energy 
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b)  Neutron Capture 
a) Kinetic Energy of Charged Particles 
b) Decay Beta Particle Energy 
c) Nuclear Recoil 

c)  Neutron Scattering 
a) Nuclear Recoil Following Elastic Scattering Interactions 
b) Nuclear Recoil Following Inelastic Scattering and Subsequent Nuclear De-

Excitation 
d)  Photon Sources 

a) Prompt Fission 
b) Fission Product Decay 
c) Neutron Capture 
d) Inelastic Scatter De-Excitation 
e) Transmutation Product Decay 
f) Positron Annihilation 
g) Bremsstrahlung 
h) Atomic De-Excitation 

e)  Photon Transport 
f)  Photon Interactions 

a) Photoelectric Absorption 
b) Compton Scattering 
c) Pair Production 
d) Photonuclear Reactions 

 

From Table 1 can be foreseen the complexity of evaluating the heat production in nuclear reactors, 
due to the multiple inherent parts that constitute the phenomenon. Mainly, the following four groups: 
a) fission heat released, b) heat released from neutron capture, scattering, etc., c) heat released 
from the decay of fission products, d) heat released from the decay of activation products. Table 2 
shows a quantitative example of the different components of the heat released after a fission event. 

Table 2: Quantitative example of the different components of the heat released after a fission event 
 

Daughter nuclei 169.13 MeV
Prompt neutrons 4.838 MeV
Delayed neutrons 0.0074 MeV
Prompt gammas 6.6 MeV
Delayed gammas 6.33 MeV
Delayed betas 6.5 MeV
Neutrinos 8.75 MeV
Total 202.16 MeV
Total minus neutrinos 193.4 MeV

 

2.3. Time-dependent thermal energy deposition modeling: overview 

 

The traditional evaluation of the thermal power [5] either in steady-state or time-dependent 
calculations accepts equilibrium delayed power, forsaking the time-dependence of the decay power 
from the precursors. 

The power at time ݐ due to the energy released from neutron fission and capture rates, and is 
normalized to produce the true thermal power of the reactor, 



McSAFER – D3.7 – version 1 – issued on 25/02/2022 
 

Page 8/23 

 

ܲሺݐሻ ൌ ሻ෍ݐሺܨ ௝ܸ

௝

ቌ෍ݍ௙,௜ ௜ܰሺݐሻ
௜

෍ߪ௙,௚,௜,௝߶௚,௝ሺݐሻ
௚

൅෍ݍ௖,௜ ௜ܰ,௝ሺݐሻ
௜

෍ߪ௖,௚,௜,௝߶௚,௝ሺݐሻ
௚

ቍ (1) 

 

where: 

 ሻ flux normalization factorݐሺܨ

 ݅ ௙,௜ direct fission energy release for isotopeݍ

 ݅ ௖,௜ recoverable energy per neutron capture for isotopeݍ

௝ܸ volume of material region ݆ 

௜ܰ,௝ number density of isotope ݅ in material region ݆ 

߶௚,௝ neutron flux of energy group ݃ in region ݆ 

  ௙,௚,௜,௝ microscopic fission cross sectionߪ

௔,௚,௜,௝ߪ ௖,௚,௜,௝ߪ െ  ௙,௚,௜,௝, microscopic capture cross sectionߪ

 ௔,௚,௜,௝ microscopic absorption cross sectionߪ

ܲሺݐሻ thermal power of the reactor 

 
** Approximately 7% of the total recoverable fission energy constitutes the delayed term. 

 

The general formulation of the reactor thermal power, ܲሺݐሻ, can be written as the sum of a prompt 
component ௣ܲሺݐሻ, and a delayed component ௗܲሺݐሻ. 

 

ܲሺݐሻ ൌ ௣ܲሺݐሻ ൅ ௗܲሺݐሻ (2) 

 

For an isotope, ݅ ௜ߛ the fraction ,݋ݏ
௙ and ߛ௜

௖	correspond, respectively, to the fission and capture energy 
release some time after the fission or capture event. This way, the prompt thermal power, ௣ܲሺݐሻ, can 
be written as, 

 

௣ܲሺݐሻ ൌ ሻ෍ݐሺܨ ௝ܸ

௝

෍ ෍ ሺ1 െ ௜ߛ
௫ሻݍ௫,௜ ௜ܰ,௝ሺݐሻ ൈ෍ߪ௫,௚,௜,௝߶௚,௝ሺݐሻ

௚௫ୀ௙,௖௜

 (3) 

 

To determine the delayed thermal power, ௗܲሺݐሻ, two main approaches can be followed. A general 
approach is to lump the numerous components of the delayed heat source into a relatively small 
number of “groups” (group-based methodology). On the other hand, a rigorous calculation based on 
a detailed fuel inventory for each time step, where each contributor is explicitly represented (explicit 
methodology), tracks independently all the nuclides involved within the calculation. The fidelity and 
the computational cost and memory demand are proportional. 
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Following the group-based methodology is described as it is the most common approach within 
(reduced order) neutronics solvers, and its extension to the explicit representation does not involve 
major changes besides the number of independent nuclides or “groups”. 

The group-based approach is similar to the treatment of delayed neutron precursors. The 
characterization of each “group” is based on the half-lives of the delayed heat groups. Defining ܥ௠,௜,௝

௫  

as the concentration of the delayed heat group ݉ of isotope ݅ at region ݆ for the induced reaction ݔ 
and, being the balance equation that ܦ௠,௜,௝

௫  satisfies given by, 

 

௠,௜,௝ܥ݀
௫ ሺݐሻ

ݐ݀
ൌ ሻݐሺܨ ௝ܸߛ௠,௜

௫ ௫,௜ݍ ௜ܰሺݐሻ෍ߪ௫,௚,௜,௝߶௚,௝ሺ݃ሻ
௚

െ ௠,௜ߣ
௫ ௠,௜,௝ܥ

௫ ሺݐሻ (4) 

 

where ߛ௠,௜
௫  and ߣ௠,௜

௫  are the yield and decay constants of the delayed heat group ݉. Thus, ∑ ௠,௜ߛ
௫

௠  

represents  ߛ௜
௫ in Eq. ((3). Giving ܥ௠,௜,௝

௫ , the delayed power is defined as, 

 

ௗܲሺݐሻ ൌ෍෍ ෍ ෍ߣ௠,௜
௫

௠

௠,௜,௝ܥ
௫ ሺݐሻ

௫ୀ௙,௖௜௝

 (5) 

 

Eq. (1) should be substituted by Eqs. (2)-Error! Reference source not found. to solve for the time 
dependence of delayed energy. Let’s note that Eq. Error! Reference source not found. has the 
same form as the delayed neutron precursor equation. The analytical solution, assuming a constant 
delayed heat source ܵ௠,௜,௝

௫ ൌ ܨ ௝ܸߛ௠,௜,
௫ ௫,௜ݍ ௜ܰ,௝ ∑ ௫,௚,௜,௝߶௚,௝௚ߪ  within a standard burnup time step or sub-

step ሺݐଵ,  ,ଶሻ, results intoݐ

 

௠,௜,௝ܥ
௫ ሺݐሻ ൌ ௠,௜,௝ܥ

௫ ሺݐଵሻexp ቀെߣ௠,௜
௫ ሺݐ െ ଵሻቁݐ ൅

ܵ௠,௜,௝
௫

௠,௜ߣ
௫ ቂ1 െ exp ቀെߣ௠,௜

௫ ሺݐ െ ଵሻቁቃݐ , ଵݐ ൑ ݐ ൑  ଶ (6)ݐ

 

The predictor-corrector time integrator relaxes the previously assumed hypothesis referred to the 
delayed heat source ܵ௠,௜,௝

௫ . 

The definition of the average ܥ௠,௜,௝
௫  over a time step ∆ݐ used for the flux normalization is given as, 

 

௠̅,௜,௝ܥ
௫ ൌ

1

௠,௜ߣݐ∆
௫ ଶ ൫ൣܵ௠,௜,௝

௫ െ ௠,௜ߣ
௫ ௠,௜,௝ܥ

௫ ሺݐଵሻ൧exp൫െߣ௠,௜
௪ ൯ݐ∆ ൅ ௠,௜ߣ

௫ ௠,௜,௝ܥ
௫ ሺݐଵሻ ൅ ௠,௜ߣ

௫ ܵ௠,௜,௝
௫ ݐ∆ െ ܵ௠,௜,௝

௫ ൯ (7) 

 

Consequently, the flux normalization factor is described as, 

 

ሻݐሺܨ ൌ
ܲሺݐሻ െ ∑ ∑ ∑ ∑ ௠,௜ߣ

௫ ௠̅,௜,௝ܥ
௫

௠௫ୀ௙,௖௜௝

∑ ௝ܸ ∑ ∑ ൫1 െ ௜ߛ
௫൯ݍ௫,௜ ௜ܰ,௝ሺݐሻ ∑ ሻ௚௫ୀ௙,௖௜௝ݐ௫,௚,௜,௝߶௚,௝ሺߪ

 (8) 
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The coupled system defined by Eq. (8) and Eq. (4) is iterated to solve for ܨሺݐሻ and ܥ௠,௜,௝
௫ ሺݐሻ. The 

converged normalization factor ܨ is used within the depletion calculation in the current step. 

The methodology considers two approximations: (i) Eq. (6) assumes that the delayed energy source 
ܵ௠,௜,௝
௫  is a constant within a time step under the framework of a predictor-corrector depletion 

calculation; (ii) Eq. (8) uses a time-averaged ܥ௠̅,௜,௝
௫  to estimate the average delayed power over a 

time step. 

The normalization factor ܨ is derived from the steady-state calculation, being constant throughout 
the transient. However, at each time-step, the thermal power is updated. Eqs. (2)-(6) model the 
delayed power explicitly, leading to a constant ܵ௠,௜,௝

௫  within the time-step. Finally, the flux at the end 

of the time step is used to compute the new ܵ௠,௜,௝
௫ . 

 

3. Serpent 2: current status, challenges and limitations 
 

3.1. Heat deposition modeling: current status (steady-state) 

 

The most traditional way in which Serpent models heat production and deposition is based on the 
very simple concept of computing all components as one: 202.27 MeV deposited per single fission 
event of 235U, covering all heating, prompt and delayed (note that fissions of other nuclides compute 
other values). 

Depletion calculations have a more accurate evaluation of decay heat based on the nuclide specific 
activity and the energy release per single decay. 

Recently, new models for advanced heat deposition methods [6] for neutron and photon reactions 
have been included in Serpent 2. However, delayed gamma and beta components that follow the 
changes in fission rate with a delay are not accurately accounted for. 

 

3.2. Time-dependent challenges and limitations 

 

In general terms, there are three key points to consider when evaluating transients and heat 
deposition modeling: a) the computational cost burden associated with Monte Carlo time-dependent 
calculations, b) the significance of the time-dependence of the heat release, and c) the multi-
component aspect of the heat deposition. Those components are the following: a) prompt energy 
release by fissions and other neutrons (and photon reactions), b) energy released from the decay of 
nuclides existing at the start of the transient, and c) energy release from radioactive nuclides 
produced during the transient. 

Figure 1 show some transient heat release scenarios from which some challenges and limitations 
for each of the current (and previously mentioned) heat deposition modeling are foreseen: a) the 
single-component approach has no time-dependence: limited physical background, b) depletion 
calculations require tracking hundreds or thousands of nuclides and evaluating transmutations cross 
sections, with the computation cost associated: potentially suited for evaluating “Decay of pre-
existing”, and c) the advanced heat deposition models for neutron and photon reactions: well suited 
for evaluating “Prompt energy release”. Therefore, there would be still a missing component: “Decay 



McSAFER – D3.7 – version 1 – issued on 25/02/2022 
 

Page 11/23 

of newly created”. Nonetheless, it is aimed to develop a general and common approach to handle 
both decay components, “pre-existing” and “newly created”. 

 

 

1) Transient heat release in a simulation of 
constant power operation transient (Simplified 
model). 

 

2) Transient heat release in a simulation of 
constant power operation followed of SCRAM 
transient (Simplified model). 

 

3a) Transient heat release in a simulation of a 
power pulse, RIA scenario, transient (Simplified 
model) 

 

3b) Transient release in a simulation of a power 
pulse, RIA scenario, transient (Detailed model) 

 
Figure 1: Transient heat release scenarios 

 

4. Potential approaches for decay heat evaluation for Serpent 2 
 

Next, three potential approaches are outlined, giving a brief overview of the methodology and 
highlighting the major anticipated challenges of the modeling and implementation. 

 

 Approach 1: explicit depletion 
 Approach 2: transient analog material compositions 
 Approach 3: group-based decay heat fitting 
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4.1. Approach 1: explicit depletion  

 

The explicit methodology for delayed energy thermal deposition allows an accurate prediction of the 
decay heat evolution for any reactor system, e.g., thermal and fast, and fuel type, without the 
imposed assumptions, e.g., derived from the semi-empirical correlations defined over a limited range 
of burnup and fuel types characterizing the group-based methodology. 

This approach is based on an explicit evaluation of the transmutation reaction rates followed by the 
solution of the coupled non-linear depletion system. 

Serpent accounts for the spatial nuclide composition at a local operational history during burnup, at 
the end of each time step ∆ݐ, by solving the full set of Bateman equations, Eq.(9). It computes the 
matrix exponential using a built-in depletion solver based on the Chebyshev Rational Approximation 
Method, CRAM [7] (for ۼ ൌ ൣ ௝ܰ൧ the local (݆-region) nuclide composition vector and, ۯ the 
transmutation matrix, including neutron-induced and decay reactions). 

 

ݐሺۼ ൅ ሻݐ∆ ൌ expሺݐ∆ۯሻۼሺݐሻ (9) 

 

The number of tracked nuclides and transmutation chains derive from the nuclear data, and it is 
subject of adjustments via Serpent input. By evaluating the contribution of the full set of nuclides 
during all depletion and decay steps, Serpent allows an explicit calculation of the local (݆-region) 
nuclide decay heat ۾ௗ௛ ൌ ൣ ௗܲ௛,௝൧ as, 

 

ሻݐௗ௛ሺ۾ ൌ෍ۼ௜ሺݐሻߣ௜ݍ௜
௜

 (10)

 

where:  

 ݐ ሻ local decay heat rate vector at timeݐௗ௛ሺ۾

 ݐ ሻ local isotope ݅ concentration vector at timeݐ௜ሺۼ

 ݅ ௜ decay constant for isotopeߣ

 ݅ ௜ energy release per decay for isotopeݍ

 

The decay constants and the energy released per decay for each nuclide are obtained from the 
radioactive decay data file based on a given nuclear data evaluation. Serpent calculates the local 
fuel nuclide compositions on the run using the actual local fluxes and the pre-calculated microscopic 
cross sections, dependent on the local operational parameters. 

Besides of the computational burden derived from the depletion calculation, a clear challenge arises 
from the fact that Serpent tracks nuclides in time-dependent calculations in a continuous manner, 
while, by definition, burnup calculations would represent fixed time-intervals. 
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4.2. Approach 2: transient analog material compositions 

 

The transient analog approach could be considered a mid-point between the explicit methodology 
and the group-based methodology. It is based on knowledge of the initial compositions and the 
evolution over time-intervals pre-calculated radioactive decay dependent compositions, decay heat 
release and delayed photon emission. 

During the time-dependent calculation, removal of neutron absorbing nuclides and addition of 
reaction production(s) are evaluated in an analog manner, with the associated difficulties in getting 
a proper sampling. 

The main challenges inferred from this approach lie in the fact that the changes in material 
compositions over time due to decay would affect the cross sections, with the implication of 
recalculating majorants, etc. Furthermore, the non-negligible assumption of constant material 
composition during the time interval should be made to track the nuclides in the given interval. The 
computational cost would be increased due to not only involve simply decay single nuclides, but also 
the whole chain decay. 

 

4.3. Approach 3: group-based decay heat 

 

The group-based methodology is inspired by the delayed neutron group precursors approach, and 
widely implemented in deterministic solvers, where instead of tracking concentrations of hundreds 
or thousands of exponentially decaying individual nuclides, concentrations of (10-20) decay “groups” 
are tracked. 

The constants for the group-based delayed heat data, analogously to the associated data to the 
delayed neutron precursors, can be obtained by fitting the energy release as a function the emission 
time. The delayed heat data can be derived from, e.g., the ANS-5.1 decay heat standard for LWRs 
[8], which provides either tabular data at discrete cooling times or exponential fit of the tabular data. 

The standard relies on the direct fission of four fissile isotopes (235U, 238U, 239Pu, 241Pu). There is no 
independent data from the neutron capture absorber, only for the overall fission products. In such 
scenario, it could be assumed the capture energy is prompt, i.e., ߛ௜

௖ ൌ 0. 

 

ௗܲ௛ሺݐሻ ൌ ෍ ௠ߙ

ெୀଶଷ

௠ୀଵ

expሺെߣ௠ݐሻ (11)

 

Eq. (11) represents the decay heat power at ݐ seconds after a fission pulse from a fissionable 
isotope. The solution of integrating Eq. (11) over time is the total delayed heat release after a fission 
pulse. 

 

ௗ௛ܧ ൌ න ௗܲ௛ሺݐሻ݀ݐ ൌ ෍
௠ߙ
௠ߣ

ெୀଶଷ

௠ୀଵ

ஶ

଴
 (12)
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Based on the previously described delayed heat model and the total direct fission energy release for 
fissionable isotope ݍ௠, the delayed yield ߛ௠ is defined as, 

 

௠ߛ ൌ
௠ߙ
௠ݍ௠ߣ

 (13)

 

Other standards, such DIN Norm 25463 [9] or group-based curve-fitting methodologies, e.g. Dunn’s 
approach [10], implemented in reactor core simulators, produce similar overall decay heat estimate 
depending on the assumption consider in the formulation. 

The most direct challenge associated with the group-based methodology lies on the nature of data, 
meaning, how good that limited, general and predefined data fits into a high-fidelity Monte Carlo 
calculation.  

 

5. Generic derivation of a decay heat group-based model 
 

Alternatively of using the ANS-5.1 standard 23 group-wise exponential parameters, a “best” group 
structure fitting methodology is presented based on the Levenberg-Marquardt optimization algorithm 
[11] for the problem-dependent data pre-calculated from Serpent, and the underlying ENDF neutron-
induced fission yields and decay data. 

 

The methodology is described in two stages: 

 Before transient: 
The initial material compositions are transformed into the so-called “decay heat groups” by 
fitting the decay heat from the initial compositions into the group structure. The first step 
allows modeling the so-called “Decay of pre-existing”.  
The fitting is based on the actual decay heat solution from Serpent for the full depletion 
system, and the accuracy of the given fitting is user-defined. 

 

 During transient: 
The decay of the group-wise concentrations is calculated during the time intervals, and the 
group concentrations are modified/added based on fission (and activation rates). The second 
step allows modeling the so-called “Decay of newly created”. 
The production of decay heat concentrations from fission (and activation) reactions has to be 
otherwise solved. 

Note: from now on, all results shown in this report are calculated with Python (KrakenTools) based 
on micro-depletion, fission yield, decay, and reaction data from Serpent. 

 

5.1. Fitting a “best” group structure to a decay heat curve 

 

The Levenberg-Marquardt optimization algorithm [12] solves a non-linear least squares curve fitting 
problem, which in this context means the minimization of the sum of the squares of the differences 
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between the decay heat function pre-calculated by Serpent and the multi-exponential fit being 
optimized. 

The formulation of the optimization problem is 

 

ሻ࢖ሺܨ ൌ෍ቀ݂ሺݐሻ 	െ	 መ݂ሺݐ, ሻቁ࢖
ଶ
ൌ 	 ቀࢌ	 െ	ࢌ෡ሺ࢖ሻቁ ൫ࢌ െ ࢌ ሺ࢖ሻ൯

்
 (14)

 

where the goal is to find the set of parameters ࢖ minimizing the cost function. The local minimum will 
be reached when, via an iterative process, a given perturbation ࢾ no longer contributes to reduging 
the cost function. 

The algorithm combines two non-linear least-squares methods: Gauss-Newton and gradient 
descendent. The Gauss-Newton method locally approximates the least-squares function as a 
quadratic function and solves for the minimum of this function. The gradient descent method 
calculates the steepest-descend, updating the parameters searching for a smaller sum of squared 
errors. 

The gradient descendent method calculates the direction of the steepest descendent starting from 
the current parameter values, by evaluating the gradient of the cost function with respect to the 
parameters and taking a step in the opposite direction. The gradient can be written as follows 

 

߲
࢖߲

ሻ࢖ሺܨ ൌ 2൭
߲
࢖߲

ቀࢌ	 െ	ࢌ෠ሺ࢖ሻቁ൱ ቀࢌ	 െ	ࢌ෠ሺ࢖ሻቁ
்
ൌ െ2

ሻ࢖෠ሺࢌ߲

࢖߲
ቀࢌ െ ሻቁ࢖෠ሺࢌ

்
 (15)

 

where ܬ	 ൌ ሻ்࢖෠ሺࢌ߲	 ⁄ሻ࢖෠ሺࢌ߲  is the Jacobian, and therefore, the perturbation ࢾ ൌ 		ࢌ൫ܬ	ࢻ െ ሻ൯࢖ሺ	ࢌ	
்
 

being ߙ a positive value. 

The Gauss-Newton method search for a quadratic function with respect to the parameters in the 
vicinity of the optimal solution. This assumption holds for smooth functions. Any errors derived from 
the given assumption will be corrected through the iterative convergence process. 

The function, approximated by a first-order expansion, is written as  

 

࢖෠ሺࢌ ൅ ሻࢾ 	ൎ ሻ࢖෠ሺࢌ	 	൅	
ሻ࢖෠ሺࢌࣔ

࢖߲
	ࢾ ൎ ሻ࢖෠ሺࢌ	 ൅ ࢀܬ (16) ࢾ

 

Now, the gradient of the cost function with respect to the perturbed step is given by 

 

߲
࢖߲

࢖ሺܨ ൅ ሻࢾ ൎ െ2	ܬ	 ቀࢌ	 െ	ࢌ෠ሺ࢖ሻቁ
்
൅ ܬ	2	 ࢀܬ (17) ࢾ

 

Solving for an unbounded perturbation, meaning ߲ܨሺ࢖ ൅ ሻࢾ ⁄࢖߲ ൌ 0, then ࢾ ൌ
૚

	௃	௃ࢀ
ܬ	 ቀࢌ	 െ	ࢌ෠ሺ࢖ሻቁ

்
. 
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Given the similarities between the optimal step produced by the Gauss-Newton and gradient 
descendent methods, Levenberg proposed a combination of both methods by using the step defined 
as 

 

ࢾ ൌ ൬
૚
ࢀܬ	ܬ	

൅ ൰ܫ݀	 ܬ	 ቀࢌ	 െ ሻቁ࢖෠ሺࢌ
்
→ ࢾ	 ൌ ቆ

૚
ܬ ࢀܬ

൅ ݀ ݀݅ܽ݃൫ܬ ࢀܬ ൯ቇ ܬ ቀࢌ െ ሻቁ࢖෠ሺࢌ
்
 (18)

 

where ݀ represents a damping parameter [13].  

Notes: small values of ݀ compared to the elements in ܬ	ࢀܬ correspond to the Gauss-Newton method, 
while large values shift the algorithm towards the gradient descendent method 

The second representation, replacing the identity matrix by the diagonal elements of ܬ	ࢀܬ infers 
normalization of the damping parameter ݀ with respect to each of the elements of diagonal. 

The iterative process searches a minimization of the cost function ܨሺ࢖ሻ for a given step ࢾሺ࢖ሻ where 
the stopping criteria [14] for each new step ࢾ is calculated as 

 

ߩ ൌ
ሻ࢖ሺܨ 	െ ࢖ሺܨ ൅ 	ሻࢾ

்ࢾ ൬݀	݀݅ܽ݃ሺܬ	ࢀܬሻ	ࢾ ൅ ܬ ቀࢌ	 െ	ࢌ෠ሺ࢖ሻቁ
்
൰
 

(19)

 

where the numerator represents the difference in the cost function given by the step ࢾ and the 
denominator is Taylor’s expansion approximation of the cost function.  

The iterative scheme is described as follows:  

 ߩ	 ൐ 	0: implies a reduction of the cost function ܨሺ࢖ሻ.  
a) if ߩ	 ൐ 	߳ (threshold) the step is accepted. Simultaneously, decreasing the damping 

parameter ݀ will bring it closer to the Gauss-Newton method, which shows good 
performance in the vicinity of the optimal ࢖ ∗.  

b) if ߩ	 ൏ 	߳ can be discarded and recomputed with a larger damping parameter ݀ which will 
bring it closer to the gradient descendent method (and decrease the step size) 

 
 ߩ	 ൏ 	0: indicates an increase in the cost function ܨሺ࢖ሻ and therefore, the step is rejected. 

The proposed iterative algorithm is defined with the following performance criteria, for ߳ ൌ 10ିସ 

 if ߩ	 ൐ 	߳ 
 ࢖	 ← ࢖ ൅  ࢾ

 ݀ ← ቂ݀ݔܽ݉ 2ൗ , 10ି଻ቃ 

 else 
 ݀ ← ݉݅݊ሾ2݀, 10଻ሿ 

when the step is accepted the parameters ࢖ are updated and the Jacobian and the cost function are 
recalculated accordingly. 

The curve-fitting iterative algorithm requires a starting point for the calculations, aka an initial guess 
for the fit. From Eq. (11), each exponential function requires two parameters: ߙ and ߣ. 
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Note:  

At the beginning of the decay heat calculation (ݐ ൌ 0), the sum of the exponential functions of the 
form መ݂ሺݐሻ ൌ  s (group-wise yields). The initial guesses for’ߙ ሻ is described by the sum ofݐߣሺെ݌ݔ݁	ߙ
the ߙ’s are formed by equidistant points (number of exponential functions, e.g., ݊	 ൌ 	23) starting 
from the total decay heat at ݐ ൌ 0 and ending with the smallest contributor to the decay heat which 

are normalized by the total decay heat at ݐ ൌ 0.  ሾߙଵ,… , ௡ሿߙ ൌ ቂ݉ݑݏ ቀ ௗܲ௛,௜ , … ,݉݅݊൫ ௗܲ௛,௜൯ቁቃ 

The initial guesses for the ߣ’s (group-wise half-lives) are described by equidistant points too, starting 
from the decay constant that a single exponential would have to correspond with the decay heat 
function provided by Serpent at the end points of the curve fitting and ending with the largest decay 

constant included in the calculation.  ሾߣଵ, … , ௡ሿߣ ൌ ൤ ଵ
ି்
݈݊ ൬

௉ሺ்ሻ

௦௨௠൫௉೏೓,೔,൯
൰ , …  ௜ሻ൨ߣሺݔܽ݉,

 

5.2. Ensuring positivity of decay constants and concentrations 

 

The previous proposed curve-fitting methodology does not limit the ߙ’s (group-wise yields) and ߣ’s 
(group-wise half-lives) to positive values keeping a physical meaning.  

For such a purpose the exponential function can be redefined as follows: 

 

መ݂ሺݐሻ ൌ ሻݐሻ መ݂ሺݐߣሺെ݌ݔ݁	ߙ ൌ ଶߙ ሻݐሻ መ݂ሺݐߣሺെ݌ݔ݁ ൌ ଶߙ ሻ (20)ݐଶߣሺെ݌ݔ݁

 

which, consequently, have an impact in the definition of the Jacobians. 

 

5.3. Targeting minimum of absolute or relative difference 

 

The cost function ܨሺ࢖ሻ, originally described by the absolute difference between the trial fit and the 
target function can be represented instead by the relative difference, to balance the difference and 
the actual value. 

 

ሻ࢖ሺܨ ൌ ቀࢌ	 െ	ࢌ	෡ሺ࢖ሻቁ ൫ࢌ		 െ ሻ൯࢖ሺ	ࢌ	
்
ሻ࢖ሺܨ  ൌ ቆ

ࢌ

ሻ࢖෡ሺࢌ
െ 1ቇቆ

ࢌ

ሻ࢖෡ሺࢌ
െ 1ቇ

்

 (21) 

 

which, consequently, have an impact in the definition of the Jacobians.  

 

5.4. Converting existing material compositions to group concentrations. 

 

The transformation of the initial material composition to decay heat groups takes place by fitting the 
decay heat from initial compositions into the group structure. The fit is based on the actual decay 
heat solution from Serpent for the full depletion system. 
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The fitting corresponds with the ߙ’s of the known group structures, for pre-defined ߣ’s (fixed, ANS 
standard-based) to find the “fixed” set of ߙ’s for the given group-structure or the “best” set of ߙ’s and 
 .s when both parameters are targets of the fitting’ߣ

Figure 2 shows the difference between a “fixed” fitting vs a “best” fitting in terms of the decay heat 
curve representation and the absolute and relative error between the target and the trial functions. 
Clearly a “tailored” approach results in a better fitting option ܴଶ ൌ 	0.95 → ܴଶ ൌ 1.0.  

Figure 3 outputs the difference between the “fixed” and “best” values of the ߣ’s for the given group 
structure. 

 

  

 

Figure 2: Decay heat production after 90 days of operation (LWR assembly) 
 

 

 

Figure 3: Half-lives of the 23 decay heat groups „Decay of pre-existing“ 
 

5.5. Converting fission yields to group yields. 

 

The contribution to each group yield, which will define the evolution of the group concentrations 
during the transient due to fission, is evaluated by fitting the ߙ’s of the known group structure to the 
decay heat curve obtained from the depletion of fission yield distribution.  
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Figure 4 and Figure 5 represent, respectively, such contribution to the decay heat groups and the 
associated half-lives for a fitting with ܴଶ ൌ 0.95. 

 

  

 

Figure 4: Decay heat after a 239Pu fission pulse and contribution to the decay heat groups 
 

 

 

Figure 5: Half-lives of the 23 decay heat groups „Decay of newly created“ 
 

5.6. Convergence studies for fitting 

 

A semi-realistic test case is based on a Serpent calculation with dozen(s) of material zone divisions 
described by a PWR-like fuel assembly: McSAFER-NuScale C02 assembly with burnable absorbers. 
The depletion history sequence goes up to 40 MWd/kgU to evaluate the fitting at different burnup 
state points, e.g., 0, 5, 20 and 40 MWd/kgU. 

 

Highlights: 

 The adaptation of the damping parameter and how the fitting methodology is shifted towards 
the Gauss-Newton method or the gradient descendent method in each iteration and whether 
to accept a proposed step seems to be the most important iterative decision 
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 The initial guess might have a significant effect at the beginning of the fitting process that 
might be corrected with an appropriated convergence criteria via threshold(s) and damping 
parameters. However, finding a reasonable guess defines the course of the iteration. E.g., 
by coarsely gridding the parameter space or random search on the objective function finding 
a combination that results in a minimum value. 

Both, the adaptation of the damping parameter and the initial guess are the two main contributors to 
the convergence process. Other factors are: 

 Imposing 0 < ߙ and ߣ	 ൐ 	0, and therefore redefining the exponential functions seems to not 
have a significant effect on the iteration process, fading away with other elements. 

 Representing the cost function via relative/absolute difference has a larger impact for states 
where the absolute values are rather small. 

Other aspects to consider would be the time-scale and the group structures (including the number 
of groups), fuel-type, etc. 

 

5.7. Limitations and open questions 

 

The proposed group-based methodology for decay heat curve-fitting modelling is still under 
development and some open question and potential limitations have to be studied in detail. Some of 
them are listed above, 

 

 The geometrical entity carrying out the tracking of the concentration lies in mapping the 
depleted material zone divisions in correspondence with a generic mesh or detector bin 
structure. This underlying bottleneck is a known issue in Serpent.  

 While the current approach accounts for decay heat released by activation products 
(including actinides) that are present in the beginning of the transient, any new activation 
products that are created during the transient simulation are not included in the decay heat 
evaluation. The implications of this simplification will require further studies; it is uncertain the 
contribution of those activation products newly created during the transient is in any way 
significant for the decay heat evaluation. 

 Conversely, the group formalism does not account for radioactive nuclide removal due to 
neutron reactions during the transient, only production from fission reactions. 

 This methodology, analogously to the advanced energy deposition methods recently 
implemented in Serpent does not account for the delayed gamma and beta emission 
components that follow the changes in fission rate with a delay. 

 The group-based approach analyzed through KrakenTools seems to be robust and well 
suited to be implemented in Serpent. However, a more realistic case scenario and the whole 
Monte Carlo transient system will require further analysis of the methodology to ensure its 
readiness.  

 

6. Required implementations in Serpent 2 
 

To outline the current (Serpent 2.1.32) and the proposed transient calculation scheme, Table 3 and 
Table 4, respectively, present in a nutshell the different steps that constitute the transient simulation. 
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With a brief description of each stage, it is aimed to provide a flavor of the requirements of the 
proposed decay heat model implementation in Serpent 2. 

 

Table 3: Current transient calculation scheme, Serpent 2.1.32 
 

(Step 1) Source generation: neutron transport criticality calculation 

(Step 2) Transient external source simulation with constant decay heat 

 

Table 4: Proposed transient calculation scheme 
 

(Step 0) Depletion of the whole model at the given initial burnup state point of the transient 

(Step 1) Source generation: neutron transport criticality calculation 

 Generation of initial data for the fitting and transient simulation: 
 

1. Material compositions 
 

2. Mapping: material compositions vs. mesh-based/detector-based 
 

3. ENDF data: neutron-induced fission yields and decay data 

(Step 2) “Predictive” depletion/decay calculation 

 Decay heat curve generation: 
 

1. Global system decay heat curve (seconds to minutes) 
 Used for fitting lambdas 
 

2. Decay heat curves for each material (seconds to minutes) 
 Used for converting the initial material nuclide concentrations to 
initial material group concentrations. 
 

3. Decay heat curves for each fission yield distribution (seconds to 
minutes) 
 Used for producing group fission yield distributions 

(Step 3) Fitting 

 Proposed methodology 

(Step 4) Transient simulation 

 At the beginning of each time interval:  
Calculate decay of group concentrations for each material 
 

1. Evaluation of energy release 
 

2. Update of end of time-interval concentrations 
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 During neutron tracking:  
Calculate the production of decay heat precursors 
 

1. Analog/implicit evaluation of the decay heat precursors following 
delayed neutron precursors approach 
 

2. Based on the fission group yields, estimation of the group production 
per single interaction. Part of which will decay before the end of the 
time-interval, released as heat, and the remaining part will be added 
to the decay concentrations. 

** The remaining question is how to score the energy release at the different stages. 

(Step 5) New (restart) independent calculation  

 

7. Summary 
 

A method was needed for evaluating decay heat in Serpent 2 continuous energy Monte Carlo 
transport particle code in order to produce accurate power distributions in transient or accident 
scenarios and design-basis parameter definitions. 

After considering various options the so-called group-based approach was chosen as the first step 
in upgrading the energy deposition modeling in time-dependent calculations for its simplicity in the 
implementation, the ability to stage the transient calculation, and, overall, not adding computational 
burden to an already costly simulation.  

The process of fitting generic group structures was described and its applicability to this problem 
was demonstrated with KrakenTool using Serpent-based data. 

The required modifications to the normal Serpent transient calculation scheme were described and 
the implementation of the methodology in Serpent will take place during the remaining period of the 
McSAFER project. 
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