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A B S T R A C T

QoS forecasting for cellular vehicular communications allows cooperative, connected and automated mobility
applications to tailor their behavior to the expected communication conditions on the road. In a nutshell,
vehicles may, for example, execute cooperative maneuvers if the communication quality of service is only
above a certain quantitative level whereas if not they revert to the individual autonomous mode. In this
paper, we propose and show empirical methods for estimating packet-based QoS metrics obtained from 5G
network measurements with a direct application to vehicular applications. As many distributed vehicular
applications possess strict QoS requirements, we focus here on bounding packet-based statistical QoS quantiles,
specifically for latency and loss. Our approach is based on training regression neural networks in a federated
learning fashion and show that it can obtain predictions on par with centralized training without the vehicles
needing to transmit raw measurement data. In contrast to QoS prediction using physical layer information,
we briefly discuss the embedding of such much simpler application-level service within the 5G architecture.
We also validate our approach through recovering classical closed-form delay quantiles that are obtained from
analytical models of simple queueing systems. We show that our approach goes beyond these simple models
in that it provides quantile estimates for the complex scenario of cellular vehicle communications and under
different application traffic patterns including empirical data traffic traces as well as 5G testbed measurements.
1. Introduction

In Cooperative Adaptive Cruise Control (CACC) and similar dis-
tributed applications within the automotive domain, strict Quality of
Service (QoS) constraints on delay, throughput, and loss pose signifi-
cant challenges for the cellular network in addition to imposing high
expectations on the ability to predict network conditions. For exam-
ple, CACC employs Cooperative Perception Messages (CPM) to share
real-time information on the vehicle’s surroundings, and Maneuver
Coordination Messages (MCM) to enable vehicles to coordinate trajec-
tories. A critical prerequisite to the success of this coordination is the
reliability of the communication network. Therefore, before initiating
any cooperative maneuvering routine the vehicles should be capable
to estimate the network QoS offered to transmit all CPMs and MCMs
during the routine.

In this paper, we consider the problem of providing vehicles with
timely QoS metric predictions based on a federated learning approach.
In particular, we are interested in predicting tail quantiles of QoS
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conditions, not averages, due to the strict nature of the application con-
straints. We assume that raw measurement results are not transferred
from the vehicles to the edge for central processing but rather the model
parameters for federated learning iterations. To enable a robust QoS
forecasting method, we evaluate the applicability of quantile regression
neural networks (QRNN) [1,2]. Here, we develop QRNN to achieve
reliable estimates for packet delays or throughput for forecasting the
quantiles as 𝑃 [delay > 𝑥] ≤ 𝜀 and 𝑃 [throughput < 𝑥] ≤ 𝜀, whereas 𝜀 is
typically small, but depends on the application.

Our approach is related to adaptation schemes that derive the
transmission rate from system models such as the one used in TCP BBR
and congestion control algorithms for real-time communication [3–5].
These methods empirically estimate through probing the QoS operat-
ing point for the appropriate amount of data to transmit, however,
on a round-trip-time (RTT) based time scale. In contrast given the
Cooperative, connected and automated mobility (CCAM) scenario at
inference time, we directly perform regression on the desired QoS
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parameter locally in the vehicle on a much smaller time scale. Our
approach is also related but goes beyond methods that use asymptotic
models that describe the steady state of a network link of a path. For
example, analytical models describe the steady state behavior of link
or path metrics such as the sojourn and waiting times. Similar models
can be found in [6–9] to describe the available bandwidth. We use
such analytical models to verify that the QRNN data-driven approach
delivers congruent results, however, we go beyond such models to
obtain tail forecast values that are hard to obtain analytically.

In this work, we are bridging time-series prediction with the descrip-
tion of the forecast as a probabilistic bound. Essentially, we estimate
an upper bound for the probability that the delay of the 𝑛 + 𝑘th
packet overshoots a delay quantile 𝑊 𝜀

𝑅𝑇𝑇 (𝑛 + 𝑘) conditioned on prior
observed packet delays. Similarly, we estimate an upper bound for the
probability that the throughput associated with the 𝑛+ 𝑘th packet falls
below a throughput quantile 𝑊 𝜀

𝑇𝑃 (𝑛+𝑘) conditioned on prior observed
packet throughput. The use of QRNN for the prediction allows for a
non-parametric modeling, which drops assumptions on the statistical
distribution of packet arrivals, the wireless link service process as well
as on the error terms in a classical time series model. The model
further allows the evaluation of input features beyond the past metrics,
e.g., given a prediction of future packet transmission patterns by the
application or path information to improve the QoS prediction.

Both centralized and distributed machine learning approaches are
employed in this work to train the QRNN to predict network QoS
metrics. Our evaluation relies, first, on synthetic latency measurements
and MLAB [10] traffic traces to benchmark against well-known analyti-
cal performance bounds, before additionally, applying our approach to
training and prediction given real-world traffic collected through CCAM
vehicles at a 5G standalone test network spanning a south German city.

In contrast to an earlier version of this work [11], this article
extends on tail forecasting for Predictive QoS in cellular vehicular com-
munications. Additionally, we collect real-world traffic using connected
vehicles and train the QRNN in a federated fashion to enable PQoS in
this CCAM scenario.

The outline of the paper is as follows: Section 2 focuses on elu-
cidating the support for predictive QoS within the 5G architecture
while Section 3 delves into the problem statement and our strategy
for estimating QoS metric quantiles. We explore two machine learning
approaches used to train the neural network for quantile prediction,
supplemented by analytical connections to analytical but simple system
models. Section 4 presents the delay quantile predictions generated
by centrally trained neural networks, analyzing scenarios involving
synthetic data and MLAB traces for more complex systems. Section 5
encapsulates the results from federated machine learning (FML) train-
ing, encompassing predictions for both delay and throughput quantiles
in a 5G network setting. Section 6 reviews the related work. Section 7
concludes this paper with a discussion of strengths and limitations.

2. Predictive QoS for distributed automotive applications

In this section, we discuss how a 5G architecture can seamlessly
integrate Predictive QoS (PQoS) for scalable service deployment. 5G
represents a paradigm shift beyond conventional networks, offering not
only enhanced bandwidth and reduced latency, but also a cohesive
framework for service deployment. The extensive network of connected
nodes, such as on-board units (OBUs) and roadside units (RSUs) within
a 5G environment, paves the way for distributed machine learning
(federated machine learning, as applied in our context). This leverages
cooperative data collection, resulting in elevated statistical analysis.
Moreover, within the 5G architecture, components like the Policy
Control Function provide avenues for services like PQoS to manage
their dedicated network slices effectively.

Moreover, the 5G Service Based Architecture (SBA) includes an
elaborate framework for the support of network analytics services,
mainly through the operation of the Network Data Analytics Function
2

Fig. 1. Predictive QoS for 5G enabled distributed automotive applications.

(NWDAF) [12]. NWDAF encompasses both ML inference and training
functionality, including interfaces for the management of Federated
Learning training processes. Through these primitives the 5G SBA
supports the provisioning of a series of analytics services, including the
prediction on QoS metrics. Such services become available to consum-
ing entities e.g., applications, through the Network Exposure Function
(NEF). When integrated with PQoS, the NEF gains the capability to not
only expose network services but also to do so in a way that considers
and accommodates the specific QoS requirements of these applications.

For instance, the NEF can dynamically expose network resources
and functionalities tailored to the predicted needs of a particular ap-
plication. This means that an application with stringent QoS demands,
such as cooperative maneuver coordination that uses MCM messages,
can receive priority access to low-latency, high-bandwidth connections,
ensuring seamless and reliable performance. Moreover, the NEF can
facilitate the dynamic allocation of resources based on real-time condi-
tions and PQoS predictions, further optimizing network performance.
Finally, the application on the OBU side can choose based on the
PQoS inference whether to initiate cooperative maneuvers that require
stringent QoS along a planned trajectory in a road segment or not.

We depict the concept that underpins our approach in Fig. 1. The
regression model is disseminated to vehicles, specifically to OBUs, for
local training on their respective datasets. Subsequently, the models
from each OBU are forwarded to the edge server for aggregation.
The edge server leverages this aggregated model, which encapsulates
spatio-temporal QoS. Most importantly, vehicles receive prediction
models from the edge tailored to forthcoming road sections, providing
anticipated network performance. Furthermore, vehicles retrain these
models with new training data and relay them back to the edge for
subsequent aggregation.

3. Technical problem description and approach

We consider the problem of predicting the QoS provided to a con-
nection by a network service. In principle, this requires a (data-driven)
model of the network performance that is based on the analysis of the
historical performance of the network to anticipate its future behavior.
Here, we opt for a quantile-based approach instead of predicting mean
values as we explain below. This choice enables a richer probabilistic
model of network status and allows more nuanced insight into the
uncertainty associated with network performance, especially, in Co-
operative Connected, and Automated Mobility (CCAM) applications.
The QoS metrics that we consider here are packet delay, respectively,
round-trip time (RTT), and throughput. Specifically, we aim to deter-
mine the network conditional upper bounds for RTT and conditional
lower bounds for throughput at a specific location.

For the quantile delay predictions, we consider the system depicted
in Fig. 2, where observers obtain timestamps at ingress and egress of
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Fig. 2. System model for delay prediction: packet timestamps are observed at the input
and output of the system to predict the delay quantile for future arriving packets.

an end-to-end network path or a network segment and hence observe
delays for individually transmitted packets. In the CCAM context, the
sender and receiver of the numbered data packets are services that are
already running on the vehicle on-board unit (OBU) and the edge or in
case of RTT estimation they both reside on the vehicle. The observers
may then be monitoring services running on the OBU and/or the edge
that collect traffic statistics such as timestamps and packet sizes. This
setup allows, hence, for active and passive network probing [13,14],
where for CCAM services we opt here for the passive variant. In contrast
to the active variant that uses synthetic traffic, the passive version
obtains predictions based on observations of the CCAM service traffic.
The realization of such a system can be implemented, for example,
using smart network interface cards that provide time-synchronization
and high-speed packet capturing, through in-network telemetry capable
switches along the network path or, as we demonstrate in Section 4.2,
by round trip time (RTT) measurements over CCAM OBUs. Now, the
delay of packet 𝑛 is described as

𝑊 (𝑛) = 𝑇𝐷(𝑛) − 𝑇𝐴(𝑛) (1)

where 𝑇𝐷(𝑛), 𝑇𝐴(𝑛) are the departure (output) time and the arrival
input) time of this packet from and into the network path, respectively.
he task of the observers and the prediction is to take these delay
amples and provide a conditional upper bound on the delay quantile
𝜀(𝑛 + 𝑘) for the 𝑛 + 𝑘th packet of the form

[𝑊 (𝑛 + 𝑘) > 𝑊 𝜀(𝑛 + 𝑘)|𝑊 (𝑛),… ,𝑊 (1)] ≤ 1 − 𝜀 (2)

or 𝑘 ≥ 1. Note that the estimate sought here is pointwise in the sense
hat it holds for a predefined future packet with index 𝑘.

In the following, we take an empirical approach towards the quan-
ile estimation problem above. In contrast to purely analytical ap-
roaches as discussed e.g. in [9,15], we design a supervised machine
earning approach for the prediction of the quantiles 𝑊 𝜀(𝑛). Here,
e train a neural network (NN)1 to predict the quantile from past
bservations.

To estimate the packet delay quantiles, we train a quantile regres-
ion neuronal network using the pinball loss function

𝐷𝑒𝑙𝑎𝑦(𝑦, �̂�) =

{

(1 − 𝜀)(�̂� − 𝑦) if 𝑦 < �̂�
𝜀(𝑦 − �̂�) if 𝑦 ≥ �̂�

(3)

he form of the loss function clearly resembles the accuracy of the
uantile estimates. We minimize the expectation of this loss function
ith respect to the unknown delay distribution that provides the 𝜀-
uantile [1,2,16]. By the use of this loss function, the neural network
earns to predict the 𝜀-quantile of the delay.

We perform a hyperparameter optimization using the parameters
isted in Table 2 for a deep feed forward neural network (DNN) archi-
ecture and parameters given in Table 3 for a long short term memory
LSTM) neural network. The selection of the hyperparameters is based
n the Hyperband search [17]. Since the search algorithm selects

1 The code is available at https://gitlab.com/ralfluebben/tailing.
3

Table 1
Input features.

Parameter Values

Delays of pkt# [[300 ∶ 400), [399 ∶ 400)]
Interarrival time of pkt# [{∅}, [400 ∶ 600)]

Table 2
Hyperparameters used for training the DNN.

Parameter Value/Setting

Number of layers [1, 2, 3]
Neurons per layer 1 [10, 20, 30, 40, 100, 200]
Neurons per layer 2 [0, 10, 20, 30, 40, 100]
Neurons per layer 3 [0, 10, 20, 30, 40]
Learning rate [adaptive, 0.01, 0.001, 0.0001]
l2 regularization [0.01, 0.001]
Drop out [0.0, 0.5]
Optimizer adam
Epochs 600 with early stopping
Batch size 2048

Table 3
Hyperparameters used for training the LSTM NN.

Parameter Value/Setting

Number of cells [10, 20, 30, 40, 100, 200]
Learning rate [adaptive, 0.01, 0.001, 0.0001]
Drop out [0.0, 0.5]
Optimizer adam
Epochs 200 with early stopping
Batch size 2048

hyperparameters based on the progress of the optimization criteria on a
small number of epochs, we perform the optimization for each learning
rate individually. The rationale here is that a small learning rate may
have a slower progress than a high learning rate but may still perform
better for a high number of epochs.

To benchmark the predictions of the trained NN, we use, in addition
to the pinball loss function that leads to the prediction of the statistical
upper bound, two further metrics. Firstly, the mean absolute error
(MAE), in the following denoted as distance, which returns the absolute
distance (difference) between the predicted bound and the measured
delay values as we seek a tight bound in the sense of a small MAE.
Secondly, we compare the predicted quantile to empirical quantiles,
i.e., the empirical quantile is extracted packet-wise for each packet from
all available sample paths of delay or throughput traces. Similarly, we
train a neural network model with a variation in pinball loss function
(in Section 5.2) for quantile throughput estimation.

Neural networks can be trained in two broad approaches: First,
centralized training of neural networks depends on centralized data
gathering and processing, which strains the network resources and po-
tentially raises privacy issues. Moreover, centralized machine learning
systems might need help to adapt effectively to dynamically changing
networks. In contrast, secondly, distributed machine learning (DML)
emerged as a powerful solution to these limitations. By leveraging
the cooperative and decentralized nature of data collection in CCAM,
DML reduces the burden on network resources and alleviates privacy
concerns. This approach also enhances scalability, allowing the analysis
of large and diverse datasets.

As depicted in Fig. 3 we use Federated Machine Learning (FML),
a form of DML, to train the QoS prediction model on each vehicle
using its locally collected data. This eliminates the need for vehicles
to transmit their data to a central training location, mitigating privacy
concerns. The locally trained models are subsequently transmitted to
an aggregator function running on the network edge to create a unified
global model, which is then disseminated to all vehicles for a new round
of training. Note that as depicted in Fig. 3 the local models are trained
on local network QoS data, such as delays or throughout measurements.

In contrast to the centralized training dataset diversity and balancing

https://gitlab.com/ralfluebben/tailing


Computer Networks 242 (2024) 110239N. Baganal-Krishna et al.
Fig. 3. Federated Learning for predictive QoS in CCAM scenarios. Vehicles, denoted
as worker nodes, share locally trained prediction models based on passive, trajectory-
specific QoS (RTT, throughput) measurements with a central aggregation service at the
5G network edge. Locally trained spatio-temporal predictive QoS models are aggregated
at the network edge and distributed on vehicles for a new round of training. Trained
models are supplied by the network edge as a spatial inference service to fresh
CCAM-enabled vehicles when entering road sections.

are crucial as worker nodes, i.e., individual vehicle OBUs, only ob-
serve local data (as illustrated through the spatio-temporal RTT and
throughput maps). If this observed data is not statistically mixing the
aggregate model and the quantile prediction may be rendered useless.
To this end, we evaluate in Section 5 the impact of different forms
of data segmentation and balancing that are directly related to the
spatio-temporal trajectories of the vehicles.

Next, we describe how we train the developed model using both
methods (centralized and federated) to compare and emphasize FML
for predictive QoS. Specifically, we test centralized training solely to
estimate the delay quantiles. Additionally, we differentiate between
two input feature sets: the first feature set only includes delay mea-
surements while the second one also includes anticipated future packet
arrival times, i.e., the model anticipates the application packet injec-
tion patterns. We conjecture that having knowledge or estimates of
the network’s future packet arrivals enhances the prediction of delay
quantiles.

4. Centralized delay predictions: Analytical results and empirical
traces

Next, we evaluate the delay quantile prediction approach that is
described above on different systems, starting with synthetic queueing
systems to empirical network data traces.

4.1. Synthetic queueing systems

First, we show the predictions of packet delays for synthetic queue-
ing systems with service and interarrival times drawn from analytical
distributions before going over to trace-based evaluations. These an-
alytical examples of well understood queueing systems serve well to
validate the prediction method and results. We show in the appendix
the closed form expression and the prediction results for an M/M/1
system, i.e., one network link, with one server and both exponentially
distributed packet inter-arrival times and service times. As depicted
in the example in Fig. 4 the empirical prediction result, i.e., packet-
wise quantiles 𝑊 𝜖 , quickly converges and recovers the mean predicted
quantile for the test data set in addition to recovering the analytical
quantile as calculated in the appendix.
4

Fig. 4. M/M/1 system: Example of the empirical delay quantile vs. mean predicted
quantile for delay input sample of packet #399.

Fig. 5. W/W/1 system: Example of the empirical delay quantile vs. mean predicted
quantile. Input features are the delay samples for packets # [399 ∶ 400). Model
parameters: Scale 𝜎 and shape 𝑘 as 𝜎 = 1.5, 𝑘 = 0.6647 (interarrival times) and
𝜎 = 0.0375, 𝑘 = 0.6647 (service times). The utilization is 𝜚 = 0.75 and the violation
probability for the quantile estimates is set to 𝜀 = 0.05.

Next, we consider a single system with packet inter-arrival times
and service times from a Weibull distribution (denoted as 𝑊 ), i.e., we
perform experiment for a M/W/1 system and a W/W/1 system. The
Weibull distribution leads to a slower than exponential tail of the
service or interarrival times leading to an intuitive increase of the delay
quantiles. The optimal parameters for the neural networks after training
are given in Tables 6 and 7 in the appendix for the M/W/1 and W/W/1
system, respectively. We only show results for the DNN architecture
since the LSTM architecture performs similarly. We observe that for
all variants of the input features, the trained neural networks provide
an empirically valid prediction. We also observe that the inclusion of
information of the packet arrival pattern leads to tighter delay bounds.

Fig. 5 shows a strong congruence of the mean of the predicted delay
quantiles and the empirical quantiles for a W/W/1 queueing system.
In comparison to the light tailed exponential service and interarrival
times in the example in Fig. 4, we observe that the predicted quantiles
here converge slower to their empirical steady state counterparts. Note
that, the distance values given in Table 5 to Table 7 allow only for
a comparison between results related to one specific system, i.e., to
compare the tightness of the predicted bound of that specific system.
Since different queueing systems such as M/M/1 and W/W/1 exhibit a
different burstiness and thereby different upper bounds for the same
value of 𝜀 the distance metric is not comparable between different
systems.

Next, we extend the prediction to systems where the packet arrivals
are not independently and identically distributed (iid) but come from
an ON-OFF Markov source where in the ON state (state 1) the source
produces packets at a constant rate 𝑃 and in the OFF state (state 2) the
packet arrivals stop. The extension weakens the synthetic assumption
on the traffic and allows to incorporate a larger class of application
traffic patterns. The packet arrivals are characterized through three
parameters, i.e., the probability to change states 𝑃𝑖𝑗 (here denoting
moving from state 𝑖 to state 𝑗), the peak rate 𝑃 , and the mean time
𝑇 to change states twice [15]. The last metric is considered as proxy
for the burstiness of the flow.

We train the neural network and optimize the hyperparameters from
Tables 2 and 3. We configure the packet arrival stream such that the
packet rate in the ON state is 20 packets per second and the probability
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Fig. 6. Delay quantile predictions for a exemplary trace of Markov ON-OFF packet
arrivals with burstiness 𝑇 : The quantile estimator learns the burstiness property. The
ising curve for a larger burstiness lasts longer.

o be in the ON state 𝑝𝑂𝑁 = 𝑝21
𝑝12+𝑝21

= 0.75. The mean time to change
states twice is set to 5 s. The service time increments are exponentially
distributed with mean of 0.05 s.

We use the delay of packets in the range [𝑛 − 𝑟, 𝑛), where 𝑟 ≥ 1
specifies the length of the input feature sequence, to predict future
delay quantiles for the packets in the range [𝑛, 𝑛 + 𝑓 ) for 𝑓 > 0. Note
hat the quantile prediction provided in Section 3 is point-wise, i.e., we
btain one prediction for a certain packet index. We select 𝑛 = 400 to
ssume steady state delays, 𝑓 = 200 for a sufficiently large prediction
nterval. As input feature sequence, we select 𝑟 = 100 and 𝑟 = 1, i.e. the
elay sample ranges are from packets [300 ∶ 400) and [399 ∶ 400) for
omparison. For both input features we obtain valid quantiles of 0.051
nd corresponding test performance of 0.05 and 0.055, respectively.
e omit the hyperparameters here, and again the DNN and LSTM

etwork perform similarly good. Fig. 6 shows examples of sampled
elay traces in comparison to the predicted bound. Note that in contrast
o presenting the empirical delay quantile of the traces in comparison
o the predicted quantile bound in Figs. 4 and 5, here we present the
acket delays in comparison to the quantile bound. Observe that the
ampled delays in these sub-figures differ in their burst durations. The
eural network predicts delay quantile series that incorporate these
urst period length, i.e., the rising curve for a larger burstiness lasts
onger in Fig. 6b.

.2. Trace-based evaluation

The experiments in the previous section use synthetic stationary
ata traces. In contrast, empirical data traces do not show classical sta-
istical properties regarding distribution and load. Hence, we consider
ext a data set containing empirical traces from MLAB [10]. We defer
he real-world evaluation in a CCAM setup using live 5G measurements
o the next section. Next, in the consider MLAB real-world traces and
nstead of one-way delays we use round trip time measurements as
raining input since clock synchronization cannot be guaranteed in
hese empirical data sets.

We extract 2⋅105 RTT samples from MLAB pcap-files from Nov. 2020
from one MLab measurement server in Hamburg, Germany. To obtain
non-client specific predictions we train a delay quantile prediction
neural network based on measurements from all clients connected to
5

Fig. 7. Delay quantile predictions using the LSTM model for round-trip time delays
obtained from MLAB traces.

this server. We train a DNN and LSTM network as explained before to
predict the RTT. Table 4 presents the results after hyperparameter opti-
mization. Both architectures (DNN and LSTM) provide predictions that
fulfill the quantile definition. We note that using longer input packet
trains tightens the prediction. Fig. 7 shows delay quantile predictions
for sample traces using the LSTM model for round-trip time delays
obtained from the MLAB traces.

5. Distributed predictive QoS in a city-wide 5G network

In this section, we evaluate trained predictive QoS models that were
learned in a federated fashion using network measurements from a city-
wide 5G standalone test network. We utilize a federated experimental
setup to train the model and then present the results of our training.

5.1. Training the prediction model in a federated setup

To train the ML model in a federated machine learning (FML) setup
for PQoS, we employ FLOWER [18], an FL framework for large-scale FL
training across heterogeneous devices. FLOWER comprises two crucial
components: the Flower Server (or Aggregator) and Flower Clients (or
working nodes). The OBUs host the flower clients, which iteratively
train the model using locally collected data for multiple local epochs
and forward the locally trained model to the Flower server. Meanwhile,
the Flower server is deployed on the edge, consolidating the locally
trained models from all OBUs, employing the selected aggregation
strategy. Subsequently, the edge transmits the aggregated global model
to all flower clients, completing one global round.

Here, we only train the LSTM model with the parameters mentioned
in Section 3 for PQoS, as the performance of DNN and LSTM showcase
similar results. For simplicity, we only use FedAvg [19] aggregation
strategy at the flower server. However, the flexibility offered by Flower
allows us to choose other aggregation strategies as well. Given the
complexity of conducting a hyperparameter search in a federated set-
ting, we opted to perform hyperparameter tuning for our model in a
centralized setting and use those parameters while training the model
in the federated setup.
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Table 4
MLAB data.

Input features Hyperparameters Distance Quantile

Delay Interarrivals Arch Units 1 Units 2 Units 3 Dropout Lear. rate l2 reg Validation Test Validation Test

[399 ∶ 400) ∅ Dense 200 0 0 0.0 Adaptive 0.001 0.227 0.23 0.05 0.049
[300 ∶ 400) ∅ Dense 200 0 0 0.0 Adaptive 0.001 0.219 0.22 0.052 0.053
[0 ∶ 400) ∅ Dense 30 40 0 0.0 Adaptive 0.001 0.218 0.218 0.054 0.055

[399 ∶ 400) ∅ LSTM 200 0 0 0.0 Adaptive 0.001 0.225 0.228 0.052 0.05
[300 ∶ 400) ∅ LSTM 70 0 0 0.0 Adaptive 0.001 0.219 0.219 0.05 0.049
[0 ∶ 400) ∅ LSTM 70 0 0 0.0 Adaptive 0.001 0.219 0.219 0.051 0.052
5.2. Experimentation setup

For our extensive experimentation, we deploy the Flower Server
on an Intel Xeon E5-2620v2 server with 64 GB RAM and Flower
Clients on two GPU servers, each hosting five clients. To precisely
replicate the FML training on the testbed as the number of actual OBUs
deployed on the vehicles is low, we collect real-world application-level
network metrics from OBUs driving predefined trajectories in the city-
wide 5G standalone testbed. Subsequently, we distribute these metrics
among all clients, allowing each client to treat the data as if it had
collected its own training data. We distribute the data to emulate
specific spatio-temporal measurement runs.

To collect training data, we conducted a data measurement cam-
paign over a private 5G standalone network that spans a medium size
city in south Germany. This testbed is a standalone setup which does
not carry production traffic that may interfere with the measurement
results. Hence, the measurement topology spans from a measurement
OBU in a driving vehicle that is connected to the 5G RAN and core.
We built a network monitoring tool capable of passively intercepting
application traffic to quantify throughput and RTT. For the application
running on the OBUs we use a video streaming application and an
FFmpeg-server deployed at the 5G edge. The rationale behind the
video streaming application is that it arises naturally with 5G based
automotive applications such as vehicle teleoperation while providing
a continuous stream of network observations. The recorded network
metrics, along with the corresponding GPS coordinates of the vehicle,
are stored. We conducted multiple data collection sessions spanning
various times of the day, resulting in the acquisition of approximately
25𝐾 data points.

We partitioned the collected data points into three segments: 80%
for training, 10% for testing, and the remaining 10% for validation.
The training set is further divided among the worker nodes using two
distinct splits, namely time segmentation and spatial segmentation. In
time segmentation, we divide the training data into 10 time segments,
assigning each working node a training set collected during the one
time segment. In spatial segmentation, we split the 5G coverage in the
city into seven smaller subzones, with each working node exclusively
receiving the training set from one subzone.

For RTT quantile predictions, we use the RTT of the packet, times-
tamp, and the GPS coordinates (latitude and longitude) as input fea-
tures and pinball loss in (3). Similarly, for the throughput quantile
predictions, we substitute throughput for RTT in the above-mentioned
list of input features and slightly modify the throughput quantile pin-
ball loss (4) to estimate the conditional lower bond for the throughput
quantile as

𝐿𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑦, �̂�) =

{

(1 − 𝜀)(𝑦 − �̂�) if 𝑦 < �̂�
𝜀(�̂� − 𝑦) if 𝑦 ≤ �̂�

(4)

In all experiments, we fixed the number of local epochs and global
ounds to 10 and set training parameters to 𝑛 = 0, 𝑟 = 100, and 𝑓 = 5.
ence, the model uses the previous 100 s of network status measure-
ents, from [𝑡0, 𝑡99] to predict the quantile for the 104th second (𝑡104).
his gives the CCAM application adequate time to make a decision after

t receives the predicted quantiles.
6

Fig. 8. Throughput and RTT quantile predictions (lower and upper, respectively) of the
LSTM model that are trained over spatially segmented training data. Predictive QoS (PQ)
for increasing number of workers in the federated learning setting where workers obtain
measurements corresponding to vehicle trajectories at different geographical areas.

5.3. Results

We start the experimentation by training the LSTM model with
sequentially increasing number of worker nodes, using spatially seg-
mented data splits. Note that increasing the number of nodes also
increases the number of geographical regions from which data is ob-
tained for training as we consider one worker OBU per subzone. Fig. 8
illustrates an example trajectory of the RTT and throughput quantile
predictions generated by the trained model on the test data. Recall
that the quantile predictions produce upper bounds for the RTT and
lower bounds for the throughput at the given location in the road segment
expected after 5 s. As we increase the number of worker nodes, the
model accuracy improves. This improvement arises from the ability to
train the model on data spanning all spatial regions within the data
collection area. Conversely, with fewer workers, the model is trained
on data from a small number of spatial regions which is not statistically
mixing. When subjected to the test data, the model performs poorly and
the underfitting of the trained model becomes apparent.

Next, we proceed with a similar experiment, training the model
as described above, but with time-segmented data splits. The quantile
predictions of the model in Fig. 2 for an example trajectory demonstrate
that with only 2 worker nodes, it achieves the same level of precision
as the model trained with 10 workers even though the model trained

with 2 workers lacks data points spanning all collected time spans
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Fig. 9. Throughput and RTT quantile predictions over time segmented training data.
redictive QoS (PQ) for increasing number of workers in the federated learning setting
here workers obtain measurements corresponding to vehicle trajectories at different

imes..

Fig. 10. Pinball loss for RTT training vs. the number of workers in the federated
earning setup.

see Fig. 9). This observation in comparisons to the first set of results
ighlights that network metrics exhibit more pronounced variations
ased on spatial factors rather than temporal ones.

To go beyond sample trajectories of the experiment results above
e also show the pinball training loss against the number of work-

ng clients for the above-mentioned experiments in Fig. 10. We only
how the loss for the RTT training as the result for the throughput
raining is similar. Observe that the loss improves significantly when
ederated learning is conducted over many spatial regions (note that
ne worker corresponds to one OBU in one region). In contrast when
orkers (OBUs) are only separated over time, the improvement in loss

s apparent but not as strong as when including more spatially diverse
easurements.

Overall, the results suggest that federated learning is a viable
ethod to produce accurate QoS quantile forecasts in CCAM scenarios.
he results suggest that statistical multiplexing of the worker vehicles is
uch important over the spatial component than the time component.

. Related work

Forecasting the traffic behavior in communication networks using
7

achine learning is successfully applied in various works for which
we refer to the surveys [20,21]. Here, we specifically bring into focus
approaches that target forecasting the QoS parameters on end-hosts
related to our end-to-end prediction of delay quantiles and examples in
which the prediction of delays is applied in non end-to-end use cases.

Often, forecasting is applied for throughput or available bandwidth
prediction, which is related to adaptive bitrate (ABR) algorithms in
streaming applications. These algorithms continuously select variations
of video chunks of different quality and thereby size where low quality
chunks of smaller size require less throughput. Typically, the optimiza-
tion goal is to transmit the highest quality chunk subject to it arriving
before the content is played out to avoid video stalling. In [22], an ABR
algorithm for video streaming is proposed using reinforcement learning
which was based among other parameters on download times and
measured network throughput. Also in [23] a reinforcement learning
approach is applied to ABR to optimize the quality of experience.
In [24], a neural network is used to predict the transmission time,
which is used to select a suitable chunk in an ABR algorithm. These
works go essentially back to [3] in which different throughput predic-
tors are proposed that are not based on machine learning. These works
differ from the paper at hand as they are optimized towards available
bandwidth estimation for a specific application, namely, video stream-
ing. An online throughput prediction for ABR selection in cellular
networks is illustrated in [25] that further includes a prediction of
the user’s environment such as public transport, indoor, and open air
environments, since characteristics of cellular networks differ strongly
in these environments. The application and advantage of machine
learning to the field of available bandwidth estimation is shown in
[26–28]. Further applications may be to estimate the link service as
it can be inferred from delay measurements, see e.g. [8,9]. Here, we
obtain spatio-temporal bounds on the delay and throughput quantiles
in a 5G network mainly for automotive applications.

A bandwidth prediction approach that outputs quantiles of the
expected bandwidth at geolocations in automotive scenarios using
physical layer, data link layer, speed, traffic, and weather information
is described in [29]. Similarly, passive probing parameters from lower
network layers are used in [30] to predict the mean end-to-end latency
in automotive scenarios. The work in [29] is closest to ours, where
in contrast to our work the following differences exist: (i) the raw
data measurements in [29] include physical layer characteristics that
require additional measurement hardware, where the work at hand
circumvents that. (ii) Training in [29] is centralized where this work
concentrates on a federated learning approach where workers, i.e., dif-
ferent vehicles observe individual trajectories and individually update
their own models. (iii) the authors of [29] only show predictions for
the throughput while this work mainly focuses on delay predictions.
Finally, (iv) the measurements in [29] are taken in an LTE network with
no control of the cross traffic and the cell load where the measurements
reported in this paper are in a city-wide 5G standalone testbed which
does not carry production traffic. We note that our method is, hence,
available as network function in the 5G architecture as illustrated
in Section 2. Also closely related to our work is [31] in which QoS
distributions for, e.g., the delay are predicted from traffic samples by a
conditional variational autoencoder neural network. Here too the fol-
lowing differences exist: (i) The authors use a variant of the Wasserstein
distance to compute the loss. Due to its high dimensional integral form
the Wasserstein metric is known to be difficult to compute in practice
and the stability of the approximation in [31] is not shown in addition
to its exact computation being NP-hard. (ii) The authors of [31] do not
consider a spatio-temporal QoS estimation but rather QoS prediction
for traffic matrices obtained in data center and overlay networks. The
traffic types are different from a 5G network and the control of load
is missing as the neural network are trained on production traces. In
contrast, in the paper at hand we use a computationally much lighter
and exactly computable and stable loss function that is geared towards

spatio-temporal QoS predictions for packet delay and throughput.
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Table 5
M/M/1: Optimal hyperparameters and related empirical quantiles and distances.

Input features Hyperparameters Distance Quantile

Delay Interarrivals Units 1 Units 2 Units 3 Dropout Lear. rate l2 reg Validation Test Validation Test

[399 ∶ 400) ∅ 100 0 0 0.0 Adaptive 0.001 0.601 0.601 0.049 0.051
[300 ∶ 400) ∅ 200 0 0 0.0 Adaptive 0.001 0.602 0.602 0.049 0.051
[399 ∶ 400) [400 ∶ 600) 1200 0 0 0.0 Adaptive 0.001 0.505 0.506 0.051 0.053
[300 ∶ 400) [400 ∶ 600) 200 0 0 0.0 Adaptive 0.001 0.508 0.509 0.052 0.053
Table 6
M/W/1: Optimal hyperparameters and related empirical quantiles and distances.

Input features Hyperparameters Distance Quantile

Delay Interarrivals Units 1 Units 2 Units 3 Dropout Lear. rate l2 reg Validation Test Validation Test

[399 ∶ 400) ∅ 1200 0 0 0.0 Adaptive 0.001 1.009 1.012 0.05 0.049
[300 ∶ 400) ∅ 200 0 0 0.0 Adaptive 0.001 1.008 1.01 0.05 0.049
[399 ∶ 400) 400 ∶ 600 40 0 0 0.0 Adaptive 0.001 0.934 0.936 0.05 0.049
[300 ∶ 400) 400 ∶ 600 1200 0 0 0.0 Adaptive 0.001 0.939 0.942 0.05 0.05
Table 7
W/W/1: Optimal hyperparameters and related empirical quantiles and distances.

Input features Hyperparameters Distance Quantile

Delay Interarrivals Units 1 Units 2 Units 3 Dropout Lear. rate l2 reg Validation Test Validation Test

[399 ∶ 400) ∅ 1200 0 0 0.0 Adaptive 0.001 1.327 1.328 0.051 0.049
[300 ∶ 400) ∅ 1200 0 0 0.0 Adaptive 0.001 1.324 1.326 0.051 0.05
[399 ∶ 400) 400 ∶ 600 1200 0 0 0.0 Adaptive 0.001 1.137 1.139 0.051 0.05
[300 ∶ 400) 400 ∶ 600 1200 0 0 0.0 Adaptive 0.001 1.119 1.123 0.053 0.053
o
C -
o
C
K
W
a
o

D

On a different note, a throughput forecast is implicitly integrated
nto transport layer protocols, typically, for congestion control. In [5],
he sender predicts a sending rate, so that packets arrive with a delay
elow a certain value with high probability. Also the congestion control
esigned in [32] uses machine learning to optimize the sending rate
nder delay constraints. In [33] congestion control algorithms are
esigned automatically by training. For simplicity our work here does
ot integrate on kernel level but is rather a separate application layer
unction that runs on the OBU and as well as on the network edge
nd can be queried either in an inter-process communication manner
r e.g. through the 5G NEF function.

For data flow rate prediction and optimization, machine learning
s applied to SDNs, the survey [34] classifies and summarizes various
pproaches. For example as early as the work in [35], a routing
ptimization is conducted based on the delay information obtained
rom measurements by the destination node. A method of predicting
raffic load in the link based on the past traffic samples is shown
n [36,37] where the latter work utilizes this estimate to optimize

streaming application. Further, a statistical learning approach for
hroughput prediction in wireless network environments is described
n [38]. The authors in [39] envision the prediction of delays for the
ptimization of SDNs topology and show that delay can be predicted
ith a small error, especially the mean end-to-end delay is predicted for
arious scenarios including variations in topology, network size, traffic
istribution, traffic intensity, and routing configurations. Also in [40–
2] neural networks, specifically, graph neural networks, are trained
o predict performance indicators such as throughput, delay, and jitter
or network topologies with input parameters such as traffic, topology,
nd routing configuration.

The reviewed related work shows the advantages of the application
f machine learning techniques to the estimation of end-to-end QoS
arameters. Often, the approaches comprise throughput estimation in
onjunction with ABR algorithms or with congestion control protocols
or end-to-end approaches. Delay and throughput prediction is among
ther performance metrics used for optimization in SDNs. Complemen-
ary, we present the prediction of delay and throughput quantiles for
8

nd-to-end traffic flows using quantile regression.
7. Conclusions

Predictive Quality of Service (QoS) plays a pivotal role in enabling
seamless cooperative, distributed automotive applications. This study
demonstrates that the availability of predicted QoS metrics at vehicles
offers valuable insights into the anticipated network behavior along
roads, empowering vehicles to adapt automotive application behavior
in terms of future information transmissions and cooperative maneu-
vers accordingly. Employing quantile regression neural networks in a
federated learning fashion, this work reliably estimates spatio-temporal
delay and throughput quantiles. Initially, we show results for central-
ized training, showcasing empirical validation and demonstrating the
model capacity to recover classical results from queueing theory con-
cerning delay quantiles. Further, beyond empirical validation, the study
extends its assessment to encompass more intricate scenarios involving
varying load dynamics, mixed arrival patterns, and diverse service
processes. Subsequently, the investigation leverages federated machine
learning, an apt methodology for CCAM applications. It employs neural
network models trained on a city-wide 5G standalone testbed network
data to showcase application-level delay and throughput quantile re-
gression. Future work includes expanding the quantile predictions from
point-wise estimates to sample path predictions.
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Appendix A. Comparison with analytical results

In the following, we empirically show that the estimates of the
quantile estimation approach coincide with analytical results obtained
for a tractable analytical example.

A.1. M/M/1 System

We start with an example of a well understood queueing system,
the M/M/1 system, with one server having exponentially distributed
service times with parameter 𝜇, as well as, exponentially distributed
inter-packet arrival times with parameter 𝜆. It is known that an M/M/1
queueing system has a steady-state response time distribution of

𝑃 [𝑊 > 𝑎𝑊 ] = 𝑒−𝑎 (5)

with expected response time 𝑊 = 1
1−𝜌

1
𝜇 and the shorthand notation

𝜌 ∶= 𝜆∕𝜇 for 𝑎 ≥ 0. Now, fixing the violation probability 𝑒−𝑎 = 1 − 𝜖,
ur approach estimates the corresponding delay quantile 𝑎𝑊 , which

we denoted above as 𝑊 𝜖 . For 1 − 𝜖 = 0.95, the related response time
quantile is 0.599.

To validate the empirical quantile estimation approach we use
training data generated from simulations and compare the quantile
estimate 𝑊 𝜖(𝑛) of packet 𝑛 to the analytical delay quantile 𝑎𝑊 . We
btain simulation data using the discrete event simulator Omnet++,
here we simulate an M/M/1 queueing system and record arrival and
eparture times 𝑇𝐴(𝑛), 𝑇𝐷(𝑛), respectively, to compute packet delays.

We simulate 3 ⋅ 105 packet traces for different utilizations. We
plit the data into a training, validation, and test set. The training
et comprises 80%, the validation set 10%, and the test set 10% of
he traces. For the prediction of the delay quantile, we extract values
rom the steady state delay. Hence, the comparison with the analytical
teady state quantile 𝑎𝑊 from (5) is meaningful for packets far enough
n future such that they can be considered in steady state. We select
= 400 to assume steady state delays, 𝑓 = 200 for a sufficiently large

prediction interval, and 𝑟 = 1 and 𝑟 = 100, respectively.
For our estimation approach, we use the input features shown in

able 1, i.e., solely the packet delays and in comparison the com-
ination of the packet delays and known future packet arrival time
oints. Table 5 shows the optimal hyperparameters, related quantiles,
nd distance metrics of the validation and test sets.

Fig. 4 shown in Section 4.1 compares the empirical packet-wise
uantiles 𝑊 𝜖 to the mean predicted quantile for the test data set. Recall
hat the analytical value for this example accounts to 𝑎𝑊 = 0.599.

The prediction series converges to the analytical and empirical quantile
quickly.

Overall, we find that the trained neural networks are able to pre-
dict packet delays for that the quantile condition (2) holds. We also
note that the prediction improves if knowledge or estimates of future
arrivals, i.e., the next packet interarrival times, are included for the
prediction (Table 5). The delay quantile is still correctly predicted
according to the given 𝜀, but the distance decreases, i.e., the predic-
tion returns a tighter bound. The improvement using this additional
information is relevant for applications which influence future packet
arrivals, e.g., through selecting videos qualities to be transmitted,
selecting sensor status sending times, or encoder settings in video
streaming scenarios.

A.2. Selected hyperparameters

Tables 5, 6, and 7 display the selected parameters after hyperpa-
rameter tuning and the distance as well as the empirical quantile for
9

the queueing systems M/M/1, M/W/1, and W/W/1. For each system
four experiments were conducted with a short and long delay sequence
as well as inter-arrivals of upcoming packets. For all systems a valid
quantile is predicted. The experiments were conducted with a DNN and
LSTM architecture, which perform similarly, where we only show the
results of the DNN architecture.
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