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Descriptive statistics for parametric models are currently highly sen-
sative to departures, gross errors, and/or random errors. Here, lever-
aging the structures of parametric distributions and their central
moment kernel distributions, a class of estimators, consistent si-
multanously for both a semiparametric distribution and a distinct
parametric distribution, is proposed. These efficient estimators are
robust to both gross errors and departures from parametric assump-
tions, making them ideal for estimating the mean and central moments
of common unimodal distributions. This article also illuminates the
understanding of the common nature of probability distributions and
the measures of them.
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The potential biases of robust location estimators in esti-1

mating the population mean have been noticed for more2

than two centuries (1), with numerous significant attempts3

made to address them. In calculating a robust estimator, the4

procedure of identifying and downweighting extreme values5

inherently necessitates the formulation of distributional as-6

sumptions. Previously, it was demonstrated that, due to the7

presence of infinite-dimensional nuisance shape parameters,8

the semiparametric approach struggles to consistently address9

distributions with shapes more intricate than symmetry. New-10

comb (1886) provided the first modern approach to robust11

parametric estimation by developing a class of estimators that12

gives "less weight to the more discordant observations" (2).13

In 1964, Huber (3) used the minimax procedure to obtain14

M -estimator for the contaminated normal distribution, which15

has played a pre-eminent role in the later development of16

robust statistics. However, as previously demonstrated, under17

growing asymmetric departures from normality, the bias of18

the Huber M -estimator (HM) increases rapidly. This is a19

common issue in parametric robust statistics. For example,20

He and Fung (1999) constructed (4) a robust M -estimator21

(HFM) for the two-parameter Weibull distribution, from which22

the mean and central moments can be calculated. Nonethe-23

less, it is inadequate for other parametric distributions, e.g.,24

the gamma, Perato, lognormal, and the generalized Gaussian25

distributions (SI Dataset S1). Another interesting approach26

is based on L-estimators, such as percentile estimators. For27

examples of percentile estimators for the Weibull distribu-28

tion, the reader is referred to the works of Menon (1963) (5),29

Dubey (1967) (6), Marks (2005) (7), and Boudt, Caliskan,30

and Croux (2011) (8). At the outset of the study of percentile31

estimators, it was known that they arithmetically utilize the32

invariant structures of parametric distributions (5, 6). An esti-33

mator is classified as an I-statistic if it asymptotically satisfies34

I (LE1, . . . , LEl) = (θ1, . . . , θq) for the distribution it is consis-35

tent, where LEs are calculated with the use of LU -statistics36

(defined in Subsection ??), I is defined using arithmetic opera-37

tions and constants but may also incorporate transcendental38

functions and quantile functions, and θs are the population39

parameters it estimates. In this article, two subclasses of I-40

statistics are introduced, recombined I-statistics and quantile 41

I-statistics. Based on LU -statistics, I-statistics are naturally 42

robust. Compared to probability density functions (pdfs) and 43

cumulative distribution functions (cdfs), the quantile functions 44

of many parametric distributions are more elegant. Since the 45

expectation of an L-estimator can be expressed as an integral 46

of the quantile function, I-statistics are often analytically ob- 47

tainable. However, it is observed that even when the sample 48

follows a gamma distribution, which belongs to the same larger 49

family as the Weibull model, the generalized gamma distribu- 50

tion, a misassumption can still lead to substantial biases in 51

Marks percentile estimator (MP) for the Weibull distribution 52

(7) (SI Dataset S1). 53

On the other hand, while robust estimation of scale has also 54

been intensively studied with established methods (9, 10), the 55

development of robust measures of asymmetry and kurtosis 56

lags behind, despite the availability of several approaches (11– 57

15). The purpose of this paper is to demonstrate that, in 58

light of previous works, the estimation of central moments can 59

be transformed into a location estimation problem by using 60

U -statistics, the central moment kernel distributions possess 61

desirable properties, and by utilizing the invariant structures 62

of unimodal distributions, a suite of robust estimators can 63

be constructed whose biases are typically smaller than the 64

variances (as seen in Table 1 for n = 5184). 65

A. Invariant Moments. Most popular robust location esti- 66

mators, such as the symmetric trimmed mean, symmetric 67

Winsorized mean, Hodges-Lehmann estimator, Huber M - 68

estimator, and median of means, are symmetric. As shown 69

in REDS I, a symmetric weighted Hodges-Lehmann mean 70

(SWHLMk,ϵ) can achieve consistency for the population mean 71

in any symmetric distribution with a finite mean. However, 72

it falls considerably short of consistently handling other para- 73

metric distributions that are not symmetric. Shifting from 74

semiparametrics to parametrics, consider a robust estimator 75

with a non-sample-dependent breakdown point (defined in 76
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Subsection ??) which is consistent simultaneously for both77

a semiparametric distribution and a parametric distribution78

that does not belong to that semiparametric distribution, it79

is named with the prefix ‘invariant’ followed by the name80

of the population parameter it is consistent with. Here, the81

recombined I-statistic is defined as82

RId,hk,k1,k2,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,LU1,LU2 :=83

lim
c→∞

((
LU1hk,k1,k1,ϵ1,γ1,n + c

)d+1(
LU2hk,k2,k2,ϵ2,γ2,n + c

)d − c

)
,84

where d is the key factor for bias correction, LUhk,k,k,ϵ,γ,n is85

the LU -statistic, k is the degree of the U -statistic, k is the86

degree of the LL-statistic, ϵ is the upper asymptotic breakdown87

point of the LU -statistic. It is assumed in this series that in88

the subscript of an estimator, if k, k and γ are omitted, k = 1,89

k = 1, γ = 1 are assumed, if just one k is indicated, k1 = k2,90

if just one γ is indicated, γ1 = γ2, if n is omitted, only the91

asymptotic behavior is considered, in the absence of subscripts,92

no assumptions are made. The subsequent theorem shows the93

significance of a recombined I-statistic.94

Theorem A.1. Define the recombined mean95

as rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,WL1,WL2 :=96

RId,hk=x,k1=1,k2=1,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,LU1=WL1,LU2=WL2 .97

Assuming finite means, rm
d=

µ−WL1k1,ϵ1,γ1
WL1k1,ϵ1,γ1 −WL2k2,ϵ2,γ2

,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2
98

is a consistent mean estimator for a location-scale distri-99

bution, where µ, WL1k1,ϵ1,γ1 , and WL2k2,ϵ2,γ2 are different100

location parameters from that location-scale distribution. If101

γ1 = γ2 = 1, WL = SWHLM, rm is also consistent for any102

symmetric distributions.103

Proof. Finding d that make104

rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2 a consistent105

mean estimator is equivalent to finding the so-106

lution of rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2 =107

µ. First consider the location-scale distribu-108

tion. Since rmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WL1,WL2 =109

limc→∞

(
(WL1k1,ϵ1,γ1 +c)d+1

(WL2k2,ϵ2,γ2 +c)d − c

)
= (d + 1) WL1k1,ϵ1,γ −110

dWL2k2,ϵ2,γ = µ. So, d = µ−WL1k1,ϵ1,γ1
WL1k1,ϵ1,γ1 −WL2k2,ϵ2,γ2

. In111

REDS I, it was established that any WL(k, ϵ, γ) can be112

expressed as λWL0(k, ϵ, γ)+µ for a location-scale distribution113

parameterized by a location parameter µ and a scale114

parameter λ, where WL0(k, ϵ, γ) is a function of Q0(p),115

the quantile function of a standard distribution without116

any shifts or scaling, according to the definition of the117

weighted L-statistic. The simultaneous cancellation of118

µ and λ in (λµ0+µ)−(λWL10(k1,ϵ1,γ1)+µ)
(λWL10(k1,ϵ1,γ1)+µ)−(λWL20(k2,ϵ2,γ2)+µ) assures119

that the d in rm is always a constant for a location-scale120

distribution. The proof of the second assertion follows121

directly from the coincidence property. According to122

Theorem 19 in REDS I, for any symmetric distribution123

with a finite mean, SWHLM1k1 = SWHLM2k2 = µ. Then124

rmd,k1,k2,ϵ1,ϵ2,SWHLM1,SWHLM2 = limc→∞

(
(µ+c)d+1

(µ+c)d − c
)

=125

µ. This completes the demonstration.126

For example, the Pareto distribution has a quantile function127

QPar (p) = xm(1− p)− 1
α , where xm is the minimum possible128

value that a random variable following the Pareto distribution129

can take, serving a scale parameter, α is a shape parameter. 130

The mean of the Pareto distribution is given by αxm
α−1 . As 131

WL(k, ϵ, γ) can be expressed as a function of Q(p), one can 132

set the two WLk,ϵ,γs in the d value of rm as two arbitrary 133

quantiles QPar(p1) and QPar(p2). For the Pareto distribution, 134

dPer,rm = µPer−QPar(p1)
QPar(p1)−QPar(p2) =

αxm
α−1 −xm(1−p1)− 1

α

xm(1−p1)− 1
α −xm(1−p2)− 1

α
. 135

xm can be canceled out. Intriguingly, the quantile func- 136

tion of exponential distribution is Qexp(p) = ln
(

1
1−p

)
λ, 137

λ ≥ 0. µexp = λ. Then, dexp,rm = µexp−Qexp(p1)
Qexp(p1)−Qexp(p2) = 138

λ−ln
(

1
1−p1

)
λ

ln
(

1
1−p1

)
λ−ln

(
1

1−p2

)
λ

= − ln(1−p1)+1
ln(1−p1)−ln(1−p2) . Since 139

limα→∞
α
α−1 −(1−p1)−1/α

(1−p1)−1/α−(1−p2)−1/α = − ln(1−p1)+1
ln(1−p1)−ln(1−p2) , 140

dPer,rm approaches dexp,rm, as α → ∞, regard- 141

less of the type of weighted L-statistic used. That 142

means, for the Weibull, gamma, Pareto, log- 143

normal and generalized Gaussian distribution, 144

rm
d=

µ−SWHLM1k1,ϵ1
SWHLM1k1,ϵ1 −SWHLM2k2,ϵ2

,k1,k2,ϵ=min (ϵ1,ϵ2),SWHLM1,SWHLM2
145

is consistent for at least one particular case, where 146

µ, SWHLM1k1,ϵ1 , and SWHLM2k2,ϵ2 are differ- 147

ent location parameters from an exponential dis- 148

tribution. Let SWHLM1k1,ϵ1,γ = BMν=3,ϵ= 1
24

, 149

SWHLM2k2,ϵ2,γ = m, then µ = λ, m = Q
(

1
2

)
= ln 2λ, 150

BMν=3,ϵ= 1
24

= λ
(

1 + ln
(

26068394603446272 6
√

7
247

3√11
3915/6101898752449325

√
5

))
, 151

the detailed formula is given in the SI Text. So, d = 152

µ−BM
ν=3,ϵ= 1

24
BM

ν=3,ϵ= 1
24

−m =
λ−λ
(

1+ln
(

26068394603446272 6
√

7
247

3√11

3915/6101898752449325
√

5

))
λ

(
1+ln
(

26068394603446272 6
√

7
247

3√11

3915/6101898752449325
√

5

))
−ln 2λ

= 153

−
ln
(

26068394603446272 6
√

7
247

3√11

3915/6101898752449325
√

5

)
1−ln(2)+ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

) ≈ 0.103. The biases 154

of rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m for distributions with skewness 155

between those of the exponential and symmetric distributions 156

are tiny (SI Dataset S1). rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m exhibits 157

excellent performance for all these common unimodal 158

distributions (SI Dataset S1). 159

The recombined mean is a recombined I-statistic. 160

Consider an I-statistic whose LEs are percentiles of a 161

distribution obtained by plugging LU -statistics into a 162

cumulative distribution function, I is defined with arithmetic 163

operations, constants, and quantile functions, such an 164

estimator is classified as a quantile I-statistic. One version of 165

the quantile I-statistic can be defined as QId,hk,k,k,ϵ,γ,,n,LU := 166{
Q̂n,hk

((
F̂n,hk (LU)− γ

1+γ

)
d + F̂n,hk (LU)

)
F̂n,hk (LU) ≥ γ

1+γ

Q̂n,hk

(
F̂n,hk (LU)−

(
γ

1+γ − F̂n,hk (LU)
)

d
)

F̂n,hk (LU) < γ
1+γ ,

167

where LU is LUk,k,ϵ,γ,n, F̂n,hk (x) is the empirical cumulative 168

distribution function of the hk kernel distribution, Q̂n,hk is 169

the quantile function of the hk kernel distribution. 170

Similarly, the quantile mean can be defined as 171

qmd,k,ϵ,γ,n,WL := QId,hk=x,k=1,k,ϵ,γ,n,LU=WL. Moreover, in 172

extreme right-skewed heavy-tailed distributions, if the calcu- 173

lated percentile exceeds 1 − ϵ, it will be adjusted to 1 − ϵ. 174

In a left-skewed distribution, if the obtained percentile is 175

smaller than γϵ, it will also be adjusted to γϵ. Without 176

loss of generality, in the following discussion, only the case 177

where F̂n (WLk,ϵ,γ,n) ≥ γ
1+γ is considered. The most popu- 178
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lar method for computing the sample quantile function was179

proposed by Hyndman and Fan in 1996 (16). Another widely180

used method for calculating the sample quantile function in-181

volves employing linear interpolation of modes corresponding182

to the order statistics of the uniform distribution on the in-183

terval [0, 1], i.e., Q̂n (p) = X⌊h⌋ + (h− ⌊h⌋)
(
X⌈h⌉ −X⌊h⌋

)
,184

h = (n− 1) p + 1. To minimize the finite sample bias,185

here, the inverse function of Q̂n is deduced as F̂n (x) :=186

1
n

(
x−Xcf

Xcf+1−Xcf
+ cf

)
, based on Hyndman and Fan’s defini-187

tion, or F̂n (x) := 1
n−1

(
cf − 1 + x−Xcf

Xcf+1−Xcf

)
, based on the188

latter definition, where cf =
∑n

i=1 1Xi≤x, 1A is the indicator189

of event A.190

The quantile mean uses the location-scale invariant in a191

different way, as shown in the subsequent proof.192

Theorem A.2. qm
d=

F (µ)−F (WLk,ϵ,γ )

F (WLk,ϵ,γ )− γ
1+γ

,k,ϵ,γ,WL
is a consistent193

mean estimator for a location-scale distribution provided that194

the means are finite and F (µ), F (WLk,ϵ,γ) and γ
1+γ are all195

within the range of [γϵ, 1 − ϵ], where µ and WLk,ϵ,γ are lo-196

cation parameters from that location-scale distribution. If197

WL = SWHLM, qm is also consistent for any symmetric dis-198

tributions.199

Proof. When F (WLk,ϵ,γ) ≥ γ
1+γ , the solution of200 (

F (WLk,ϵ,γ)− γ
1+γ

)
d + F (WLk,ϵ,γ) = F (µ) is d =201

F (µ)−F (WLk,ϵ,γ)
F (WLk,ϵ,γ)− γ

1+γ
. The d value for the case where202

F (WLk,ϵ,γ,n) < γ
1+γ is the same. The definitions of the203

location and scale parameters are such that they must sat-204

isfy F (x; λ, µ) = F (x−µ
λ

; 1, 0), then F (WL(k, ϵ, γ); λ, µ) =205

F (λWL0(k,ϵ,γ)+µ−µ
λ

; 1, 0) = F (WL0(k, ϵ, γ); 1, 0). It follows206

that the percentile of any weighted L-statistic is free of207

λ and µ for a location-scale distribution. Therefore d in208

qm is also invariably a constant. For the symmetric case,209

F (SWHLMk,ϵ) = F (µ) = F (Q( 1
2 )) = 1

2 is valid for any sym-210

metric distribution with a finite second moment, as the same211

values correspond to same percentiles. Then, qmd,k,ϵ,SWHLM =212

F −1 ((F (SWHLMk,ϵ)− 1
2

)
d + F (µ)

)
= F −1 (0 + F (µ)) =213

µ. To avoid inconsistency due to post-adjustment, F (µ),214

F (WLk,ϵ,γ) and γ
1+γ must reside within the range of [γϵ, 1− ϵ].215

All results are now proven.216

The cdf of the Pareto distribution is FPar(x) =217

1 −
(
xm
x

)α. So, set the d value in qm with218

two arbitrary percentiles p1 and p2, dPar,qm =219

1−
(

xm
αxm
α−1

)α
−

(
1−

(
xm

xm(1−p1)− 1
α

)α)
(

1−

(
xm

xm(1−p1)− 1
α

)α)
−

(
1−

(
xm

xm(1−p2)− 1
α

)α) =220

1−(α−1
α )α−p1
p1−p2

. The d value in qm for the exponential221

distribution is always identical to dPar,qm as α → ∞,222

since limα→∞
(
α−1
α

)α = 1
e

and the cdf of the expo-223

nential distribution is Fexp (x) = 1 − e−λ−1x, then224

dexp,qm =
(1−e−1)−

(
1−e

− ln
(

1
1−p1

) )
(

1−e
− ln
(

1
1−p1

) )
−

(
1−e

− ln
(

1
1−p2

) ) = 1− 1
e

−p1
p1−p2

.225

So, for the Weibull, gamma, Pareto, lognormal and generalized226

Gaussian distribution, qm
d=

Fexp(µ)−Fexp(SWHLMk,ϵ)

Fexp(SWHLMk,ϵ)− 1
2

,k,ϵ,SWHLM
227

is also consistent for at least one particular case, 228

provided that µ and SWHLMk,ϵ are different loca- 229

tion parameters from an exponential distribution and 230

F (µ), F (SWHLMk,ϵ) and 1
2 are all within the range 231

of [ϵ, 1 − ϵ]. Also let SWHLMk,ϵ,γ = BMν=3,ϵ= 1
24

232

and µ = λ, then d =
Fexp(µ)−Fexp(BM

ν=3,ϵ= 1
24

)

Fexp(BM
ν=3,ϵ= 1

24
)− 1

2
= 233

−e−1+e
−

(
1+ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

))
1
2 −e

−

(
1+ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

)) = 234

101898752449325
√

5 6
√

247
7 3915/6

26068394603446272 3√11e
− 1
e

1
2 −

101898752449325
√

5 6
√

247
7 3915/6

26068394603446272 3√11e

≈ 0.088. Fexp(µ), 235

Fexp(BMν=3,ϵ= 1
24

) and 1
2 are all within the range of 236

[ 1
24 , 23

24 ]. qmd≈0.088,ν=3,ϵ= 1
24 ,BM works better in the fat-tail 237

scenarios (SI Dataset S1). Theorem A.1 and A.2 show 238

that rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m and qmd≈0.088,ν=3,ϵ= 1

24 ,BM 239

are both consistent mean estimators for any symmetric 240

distribution and the exponential distribution with finite 241

second moments. It’s obvious that the asymptotic breakdown 242

points of rmd≈0.103,ν=3,ϵ= 1
24 ,BM,m and qmd≈0.088,ν=3,ϵ= 1

24 ,BM 243

are both 1
24 . Therefore they are all invariant means. 244

To study the impact of the choice of WLs in rm and qm, it 245

is constructive to recall that a weighted L-statistic is a combi- 246

nation of order statistics. While using a less-biased weighted 247

L-statistic can generally enhance performance (SI Dataset 248

S1), there is a greater risk of violation in the semiparametric 249

framework. However, the mean-WAϵ,γ-γ-median inequality is 250

robust to slight fluctuations of the QA function of the under- 251

lying distribution. Suppose for a right-skewed distribution, 252

the QA function is generally decreasing with respect to ϵ in 253

[0, u], but increasing in [u, 1
1+γ ], since all quantile averages 254

with breakdown points from ϵ to 1
1+γ will be included in the 255

computation of WAϵ,γ , as long as 1
1+γ − u≪ 1

1+γ − γϵ, and 256

other portions of the QA function satisfy the inequality con- 257

straints that define the νth γ-orderliness on which the WAϵ,γ is 258

based, if 0 ≤ γ ≤ 1, the mean-WAϵ,γ-γ-median inequality still 259

holds. This is due to the violation of νth γ-orderliness being 260

bounded, when 0 ≤ γ ≤ 1, as shown in REDS I and therefore 261

cannot be extreme for unimodal distributions with finite sec- 262

ond moments. For instance, the SQA function of the Weibull 263

distribution is non-monotonic with respect to ϵ when the shape 264

parameter α > 1
1−ln(2) ≈ 3.259 as shown in the SI Text of 265

REDS I, the violation of the second and third orderliness starts 266

near this parameter as well, yet the mean-BMν=3,ϵ= 1
24

-median 267

inequality retains valid when α ≤ 3.387. Another key factor in 268

determining the risk of violation of orderliness is the skewness 269

of the distribution. In REDS I, it was demonstrated that 270

in a family of distributions differing by a skewness-increasing 271

transformation in van Zwet’s sense, the violation of orderliness, 272

if it happens, only occurs as the distribution nears symmetry 273

(12). When γ = 1, the over-corrections in rm and qm are 274

dependent on the SWAϵ-median difference, which can be a 275

reasonable measure of skewness after standardization (11, 13), 276

implying that the over-correction is often tiny with moderate 277

d. This qualitative analysis suggests the general reliability of 278

rm and qm based on the mean-WAϵ,γ-γ-median inequality, es- 279

Li PNAS | November 29, 2023 | vol. XXX | no. XX | 3
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pecially for unimodal distributions with finite second moments280

when 0 ≤ γ ≤ 1. Extending this rationale to other weighted281

L-statistics is possible, since the γ-U -orderliness can also be282

bounded with certain assumptions, as discussed previously.283

Consider two continuous distributions belonging to the284

same location–scale family, according to Theorem ??, their285

corresponding kth central moment kernel distributions286

only differ in scaling. Define the recombined kth central287

moment as rkmd,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,n,WHLkm1,WHLkm2 :=288

RId,hk=ψk,k1=k,k2=k,k1,k2,ϵ1,ϵ2,γ1,γ2,n,LU1=WHLkm1,LU2=WHLkm2 .289

Then, assuming finite kth central moment and290

applying the same logic as in Theorem A.1,291

rkm
d=

µk−WHLkm1k1,ϵ1,γ1
WHLkm1k1,ϵ1,γ1 −WHLkm2k2,ϵ2,γ2

,k1,k2,ϵ=min (ϵ1,ϵ2),γ1,γ2,WHLkm1,WHLkm2
292

is a consistent kth central moment estimator for a293

location-scale distribution, where µk, WHLkm1k1,ϵ1,γ1 , and294

WHLkm2k2,ϵ2,γ2 are different kth central moment parameters295

from that location-scale distribution. Similarly, the quantile296

will not change after scaling. The quantile kth central moment297

is thus defined as298

qkmd,k,ϵ,γ,n,WHLkm := QId,hk=ψk,k=k,k,ϵ,γ,n,LU=WHLkm.299

qkm
d=

Fψk
(µk)−Fψk

(WHLkmk,ϵ,γ )

Fψk
(WHLkmk,ϵ,γ )− γ

1+γ
,k,ϵ,γ,WHLkm

is also a consis-300

tent kth central moment estimator for a location-scale dis-301

tribution provided that the kth central moment is finite and302

Fψk (µk), Fψk (WHLkmk,ϵ,γ) and γ
1+γ are all within the range303

of [γϵ, 1 − ϵ], where µk and WHLkmk,ϵ,γ are different kth304

central moment parameters from that location-scale distribu-305

tion. According to Theorem ??, if the original distribution is306

unimodal, the central moment kernel distribution is always307

a heavy-tailed distribution, as the degree term amplifies its308

skewness and tailedness. From the better performance of the309

quantile mean in heavy-tailed distributions, the quantile kth310

central moments are generally better than the recombined kth311

central moments regarding asymptotic bias.312

Finally, the recombined standardized kth moment is defined313

to be314

rskmϵ=min (ϵ1,ϵ2),k1,k2,k3,k4,γ1,γ2,γ3,γ4,n,WHLkm1,WHLkm2,WHLvar1,WHLvar2 :=315

rkmd,k1,k2,ϵ1,γ1,γ2,n,WHLkm1,WHLkm2

(rvard,k3,k4,ϵ2,γ3,γ4,n,WHLvar1,WHLvar2 )k/2 .316

The quantile standardized kth moment is defined similarly,317

qskmϵ=min (ϵ1,ϵ2),k1,k2,γ1,γ2,n,WHLkm,WHLvar :=
qkmd,k1,ϵ1,γ1,n,WHLkm

(qvard,k2,ϵ2,γ2,n,WHLvar)k/2 .318

B. A shape-scale distribution as the consistent distribution.319

In the last section, the parametric robust estimation is limited320

to a location-scale distribution, with the location parameter321

often being omitted for simplicity. For improved fit to ob-322

served skewness or kurtosis, shape-scale distributions with323

shape parameter (α) and scale parameter (λ) are commonly324

utilized. Weibull, gamma, Pareto, lognormal, and generalized325

Gaussian distributions (when µ is a constant) are all shape-326

scale unimodal distributions. Furthermore, if either the shape327

parameter α or the skewness or kurtosis is constant, the shape-328

scale distribution is reduced to a location-scale distribution.329

Let D(|skewness|, kurtosis, k, etype, dtype, n) = dikm denote330

the function to specify d values, where the first input is the331

absolute value of the skewness, the second input is the kurtosis,332

the third is the order of the central moment (if k = 1, the 333

mean), the fourth is the type of estimator, the fifth is the type 334

of consistent distribution, and the sixth input is the sample 335

size. For simplicity, the last three inputs will be omitted in the 336

following discussion. Hold in awareness that since skewness 337

and kurtosis are interrelated, specifying d values for a shape- 338

scale distribution only requires either skewness or kurtosis, 339

while the other may be also omitted. Since many common 340

shape-scale distributions are always right-skewed (if not, only 341

the right-skewed or left-skewed part is used for calibration, 342

while the other part is omitted), the absolute value of the skew- 343

ness should be the same as the skewness of these distributions. 344

This setting also handles the left-skew scenario well. 345

For recombined moments up to the fourth ordinal, the 346

object of using a shape-scale distribution as the consistent 347

distribution is to find solutions for the system of equa- 348

tions



rm (WHLM, γm, D(|rskew|, rkurt, 1)) = µ

rvar (WHLvar, γmvar, D(|rskew|, rkurt, 2)) = µ2

rtm (WHLtm, γmtm, D(|rskew|, rkurt, 3)) = µ3

rfm (WHLfm, γmfm, D(|rskew|, rkurt, 4) = µ4

rskew = µ3

µ
3
2
2

rkurt = µ4
µ2

2

, 349

where µ2, µ3 and µ4 are the population second, 350

third and fourth central moments. |rskew| and 351

rkurt should be the invariant points of the func- 352

tions ς(|rskew|) =
∣∣∣∣ rtm(WHLtm,γmtm,D(|rskew|,3))

rvar(WHLvar,γmvar,D(|rskew|,2))
3
2

∣∣∣∣ and 353

κ(rkurt) = rfm(WHLfm,γmfm,D(rkurt,4))
rvar(WHLvar,γmvar,D(rkurt,2))2 . Clearly, this is 354

an overdetermined nonlinear system of equations, given that 355

the skewness and kurtosis are interrelated for a shape-scale 356

distribution. Since an overdetermined system constructed with 357

random coefficients is almost always inconsistent, it is natural 358

to optimize them separately using the fixed-point iteration 359

(see Algorithm 1, only rkurt is provided, others are the same). 360

Algorithm 1 rkurt for a shape-scale distribution
Input: D; WHLvar; WHLfm; γmvar; γmfm; maxit; δ
Output: rkurti−1

i = 0
2: rkurti ← κ(kurtosismax) ▷ Using the maximum kurtosis

available in D as an initial guess.
repeat

4: i = i + 1
rkurti−1 ← rkurti

6: rkurti ← κ(rkurti−1)
until i > maxit or |rkurti − rkurti−1| < δ ▷ maxit is
the maximum number of iterations, δ is a small positive
number.

The following theorem shows the validity of Algorithm 1. 361

Theorem B.1. Assuming γ = 1 and mkms, where 2 ≤ k ≤ 4, 362

are all equal to zero, |rskew| and rkurt, defined as the largest 363

attracting fixed points of the functions ς(|rskew|) and κ(rkurt), 364

are consistent estimators of µ̃3 and µ̃4 for a shape-scale dis- 365

tribution whose kth central moment kernel distributions are 366

U-congruent, as long as they are within the domain of D, 367

where µ̃3 and µ̃4 are the population skewness and kurtosis, 368

respectively. 369
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Proof. Without loss of generality, only rkurt is considered,370

while the logic for |rskew| is the same. Additionally, the371

second central moments of the underlying sample distribu-372

tion and consistent distribution are assumed to be 1, with373

other cases simply multiplying a constant factor according374

to Theorem ??. From the definition of D, κ(rkurtD)
rkurtD

=375

fmD−SWHLfmD
SWHLfmD−mfmD

(SWHLfm−mfm)+SWHLfm

rkurtD

(
varD−SWHLvarD

SWHLvarD−mvarD
(SWHLvar−mvar)+SWHLvar

)2 , where376

the subscript D indicates that the estimates are from the377

central moment kernel distributions generated from the consis-378

tent distribution, while other estimates are from the underlying379

distribution of the sample.380

Then, assuming the mkms are all equal to zero and381

varD = 1, κ(rkurtD)
rkurtD

=
fmD−SWHLfmD

SWHLfmD
(SWHLfm)+SWHLfm

rkurtD

(
SWHLvar

SWHLvarD

)2 =382 (
fmD−SWHLfmD

SWHLfmD
+1
)

(SWHLfm)

fmD

(
SWHLvar

SWHLvarD

)2 = SWHLfmSWHLvar2
D

SWHLfmDSWHLvar2 =383

SWHLfm
SWHLvar2
SWHLfmD

SWHLvarD2
= SWHLkurt

SWHLkurtD
. Since SWHLfmD are from the384

same fourth central moment kernel distribution as fmD =385

rkurtDvarD
2, according to the definition of U -congruence,386

an increase in fmD will also result in an increase in387

SWHLfmD. Combining with Theorem ??, SWHLkurt is388

a measure of kurtosis that is invariant to location and scale,389

so limrkurtD→∞
κ(rkurtD)
rkurtD

< 1. As a result, if there is at390

least one fixed point, let the largest one be fixmax, then391

it is attracting since | ∂(κ(rkurtD))
∂(rkurtD) | < 1 for all rkurtD ∈392

[fixmax, kurtosismax], where kurtosismax is the maximum393

kurtosis available in D.394

395

As a result of Theorem B.1, assuming continuity, mkms396

are all equal to zero, and U -congruence of the central moment397

kernel distributions, Algorithm 1 converges surely provided398

that a fixed point exists within the domain of D. At this399

stage, D can only be approximated through a Monte Carlo400

study. The continuity of D can be ensured by using linear401

interpolation. One common encountered problem is that the402

domain of D depends on both the consistent distribution and403

the Monte Carlo study, so the iteration may halt at the bound-404

ary if the fixed point is not within the domain. However,405

by setting a proper maximum number of iterations, the algo-406

rithm can return the optimal boundary value. For quantile407

moments, the logic is similar, if the percentiles do not exceed408

the breakdown point. If this is the case, consistent estimation409

is impossible, and the algorithm will stop due to the maximum410

number of iterations. The fixed point iteration is, in principle,411

similar to the iterative reweighing in Huber M -estimator, but412

an advantage of this algorithm is that it is solely related to413

the inputs in Algorithm 1 and is independent of the sample414

size. Since they are consistent for a shape-scale distribution,415

|rskew| can specify drm and dtm, rkurt can specify drvar and416

drfm. Algorithm 1 enables the robust estimations of all four417

moments to reach a near-consistent level for common unimodal418

distributions (Table 1, SI Dataset S1), just using the Weibull419

distribution as the consistent distribution.420

C. Critical points, lines, and Multiple consistent distributions.421

In 1895, Pearson considered how to construct probability distri-422

butions in which the skewness and kurtosis could be adjusted423

equally freely. The Pearson distribution is a family of unimodal 424

continuous probability distribution functions that satisfy the 425

following differential equation dP (x)
dx

= − (a0+a1x+a2x
2)P (x)

b0+b1x+b2x2+b3x3 , 426

where P (x) is the pdf of the Pearson distribution, and a0, 427

a1, a2, b0, b1, b2, and b3 are constants that determine the 428

specific type of Pearson distribution. This differential equa- 429

tion ensures that the distribution is unimodal and that the 430

density function is continuous. The Pearson family subsumes 431

many common unimodal distributions, e.g., beta distribution, 432

Cauchy distribution, Chi-squared distribution, continuous uni- 433

form distribution, gamma distribution, inverse-chi-squared 434

distribution, inverse-gamma distribution, normal distribution, 435

and tudent’s t-distribution. Plotting the kurtosis-skewness 436

lines of the five shape-scale unimodal distributions used in 437

this series into the Pearson diagram. One can immediately 438

identify two critical points, one is 9-2, which is the exponential 439

distribution or the limiting form of the Pareto distribution, 440

another is the normal distribution. This further explains why 441

using the exponential distribution as the consistent distribu- 442

tion has excellent performance even better than using the 443

Weibull distribution as the consistent distribution, since it 444

lays in this critical point. Then, we further consider the criti- 445

cal lines in the Pearson diagram (Figure 1). Consider if the 446

underlying distribution is not the Weibull distribution, but 447

the gamma distribution, then, using the Weibull distribution 448

as an initial guess, calculating the Euclidean distance of the 449

obtained kurtosis-skewness to the kurtosis-skewness lines of 450

other consistent distributions, choosing the one that has the 451

smallest distance, then recalculate the kurtosis-skewness ac- 452

cording to the new consistent distribution, iterately, we can 453

use multiple distributions as consistent distributions. 454

D. Root mean square error . Lai, Robbins, and Yu (1983) 455

proposed an estimator that adaptively chooses the mean or 456

median in a symmetric distribution and showed that the choice 457

is typically as good as the better of the sample mean and me- 458

dian regarding variance (17). Another approach which can be 459

dated back to Laplace (1812) (18) is using wx̄ + (1−w)mn as 460

a location estimator and w is deduced to achieve optimal vari- 461

ance. Inspired by Lai et al’s approach (17), in this study, for 462

rkurt, there are 364 combinations based on 14 SWHLfms and 463

26 SWHLvars (SI Text). Each combination has a root mean 464

square error (RMSE) for a single-parameter distribution, which 465

can be inferred using a Monte Carlo study. For qkurt, there 466

are another 364 combinations, but if the percentiles of quantile 467

moments exceed the breakdown point, that combination is 468

excluded. Then, the combination with the smallest RMSE, cal- 469

ibrated by a two-parameter distribution, is chosen. Similar to 470

Subsection B, let I(kurtosis, dtype, n) = ikurtWHLfm,WHLvar 471

represent these relationships. In this article, the breakdown 472

points of the SWHLMs in SWHLkm were adjusted to ensure 473

the overall breakdown points were 1
24 , as detailed in Theorem 474

??). There are two approaches to determine ikurt. The first 475

one is computing all 364+364 rkurt and qkurt, and then, since 476

limikurt→∞
I(ikurt)
ikurt

< 1, the same fix point iteration algorithm 477

as Algorithm 1 can be used to choose the RMSE-optimum 478

combination. The only difference is that unlike D, I is defined 479

to be discontinuous but linear interpolation can also ensure 480

continuity. The second approach is shown in SI Algorithm 481

2. The RMSEs of these ikurt from the two approaches can 482

be further determined by a Monte Carlo study. Algorithm 1 483
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Table 1. Evaluation of invariant moments for five common unimodal distributions in comparison with current popular methods

Errors x̄ TM H-L SM HM WM SQM BM MoM MoRM mHLM rmexp,BM qmexp,BM

WASAB 0.000 0.107 0.088 0.078 0.078 0.066 0.048 0.048 0.034 0.035 0.034 0.002 0.003
WRMSE 0.014 0.111 0.092 0.083 0.083 0.070 0.053 0.053 0.041 0.041 0.038 0.017 0.018
WASBn=5184 0.000 0.108 0.089 0.078 0.079 0.066 0.048 0.048 0.034 0.036 0.033 0.002 0.003
WSE ∨ WSSE 0.014 0.014 0.014 0.015 0.014 0.014 0.014 0.015 0.017 0.014 0.014 0.017 0.017

Errors HFMµ MPµ rm qm im var varbs Tsd2 HFMµ2 MPµ2 rvar qvar ivar

WASAB 0.037 0.043 0.001 0.002 0.001 0.000 0.000 0.200 0.027 0.042 0.005 0.018 0.003
WRMSE 0.049 0.055 0.015 0.015 0.014 0.017 0.017 0.198 0.042 0.062 0.019 0.026 0.019
WASBn=5184 0.038 0.043 0.001 0.002 0.001 0.000 0.001 0.198 0.027 0.043 0.005 0.018 0.003
WSE ∨ WSSE 0.018 0.021 0.015 0.015 0.014 0.017 0.017 0.015 0.024 0.032 0.018 0.017 0.018

Errors tm tmbs HFMµ3 MPµ3 rtm qtm itm fm fmbs HFMµ4 MPµ4 rfm qfm ifm

WASAB 0.000 0.000 0.052 0.059 0.006 0.083 0.034 0.000 0.000 0.037 0.046 0.024 0.038 0.011
WRMSE 0.019 0.018 0.063 0.074 0.018 0.083 0.044 0.026 0.023 0.049 0.062 0.037 0.043 0.029
WASBn=5184 0.001 0.003 0.052 0.059 0.007 0.082 0.038 0.001 0.009 0.037 0.047 0.024 0.036 0.013
WSE ∨ WSSE 0.019 0.018 0.021 0.091 0.015 0.012 0.017 0.024 0.021 0.020 0.027 0.021 0.020 0.022

The first table presents the use of the exponential distribution as the consistent distribution for five common unimodal distributions: Weibull,
gamma, Pareto, lognormal, and generalized Gaussian distributions. Popular robust mean estimators discussed in REDS 1 were used as comparisons.
The breakdown points of mean estimators in the first table, besides H-L estimator and Huber M-estimator, are all 1

8 . The second and third
tables present the use of the Weibull distribution as the consistent distribution not plus/plus using the lognormal distribution for the odd ordinal
moments optimization and the generalized Gaussian distribution for the even ordinal moments optimization. SQM is the robust mean estimator
used in recombined/quantile moments. Unbiased sample central moments (var, tm, fm), U-central moments with quasi-bootstrap (varbs, tmbs,
fmbs), and other estimators were used as comparisons. The generalized Gaussian distribution was excluded for He and Fung M-Estimator and
Marks percentile estimator, since the logarithmic function does not produce results for negative inputs. The breakdown points of estimators in the
second and third table, besides M-estimators and percentile estimator, are all 1

24 . The tables include the average standardized asymptotic bias
(ASAB, as n → ∞), root mean square error (RMSE, at n = 5184), average standardized bias (ASB, at n = 5184) and variance (SE ∨ SSE, at
n = 5184) of these estimators, all reported in the units of the standard deviations of the distribution or corresponding kernel distributions. W
means that the results were weighted by the number of Google Scholar search results on May 30, 2022 (including synonyms). The calibrations of d
values and the computations of ASAB, ASB, and SSE were described in Subsection D, ?? and SI Methods. Detailed results and related codes are
available in SI Dataset S1 and GitHub.

can also be used to determine the optimum choice among the484

two approaches. The 364+364 rkurt and qkurt can form a485

vector, V kurt, where the QV kurt( 1
5 ) to QV kurt( 4

5 ) can be used486

to determine the d values of rkms and qkms. The RMSEs of487

those rkms and qkms can also be estimated by a Monte Carlo488

study and the estimator with the smallest RMSE of each ordi-489

nal is named as ikm. When k is even, the ikurt determined490

by Ism (detailed in the SI Text) is used to determine ikm.491

This approach yields results that are often nearly optimal (SI492

Dateset S1). The estimations of skewness and ikm, when k is493

odd, follow the same logic.494

In general, the variances of invariant central moments are495

much smaller than those of corresponding unbiased sample496

central moments (deduced by Cramér (19, 20)), except that497

of the corresponding second central moment (Table 1).498

Discussion499

Statistics, encompassing the collection, analysis, interpreta-500

tion, and presentation of data, has evolved over time, with501

various approaches emerging to meet challenges in practice.502

Among these approaches, the use of probability models and503

measures of random variables for data analysis is often con-504

sidered the core of statistics. While the early development of505

statistics was focused on parametric methods, there were two506

main approaches to point estimation. The Gauss–Markov the-507

orem (1, 21) states the principle of minimum variance unbiased508

estimation which was further enriched by Neyman (1934) (22),509

Rao (1945) (23), Blackwell (1947) (24), and Lehmann and510

Scheffé (1950, 1955) (25, 26). Maximum likelihood was first511

introduced by Fisher in 1922 (27) in a multinomial model and512

later generalized by Cramér (1946), Hájek (1970), and Le Cam 513

(1972) (19, 28, 29). In 1939, Wald (30) combined these two 514

principles and suggested the use of minimax estimates, which 515

involve choosing an estimator that minimizes the maximum 516

possible loss. Following Huber’s seminal work (3), M -statistics 517

have dominated the field of parametric robust statistics for 518

over half a century. Nonparametric methods, e.g., the Kol- 519

mogorov–Smirnov test, Mann-Whitney-Wilcoxon Test, and 520

Hoeffding’s independence test, emerged as popular alternatives 521

to parametric methods in 1950s, as they do not make specific 522

assumptions about the underlying distribution of the data. In 523

1963, Hodges and Lehmann proposed a class of robust location 524

estimators based on the confidence bounds of rank tests (31). 525

In REDS I, when compared to other semiparametric mean 526

estimators with the same breakdown point, the H-L estimator 527

was shown to be the bias-optimal choice, which aligns Devroye, 528

and Lerasle, Lugosi, and Oliveira’s conclusion that the median 529

of means is near-optimal in terms of concentration bounds 530

(32) as discussed. The formal study of semiparametric models 531

was initiated by Stein (33) in 1956. Bickel, in 1982, simplified 532

the general heuristic necessary condition proposed by Stein 533

(33) and derived sufficient conditions for this type of problem, 534

adaptive estimation (34). These conditions were subsequently 535

applied to the construction of adaptive estimates (34). It has 536

become increasingly apparent that, in robust statistics, many 537

estimators previously called "nonparametric" are essentially 538

semiparametric as they are partly, though not fully, charac- 539

terized by some interpretable Euclidean parameters. This 540

approach is particularly useful in situations where the data 541
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do not conform to a simple parametric distribution but still542

have some structure that can be exploited. In 1984, Bickel543

addressed the challenge of robustly estimating the parameters544

of a linear model while acknowledging the possibility that the545

model may be invalid but still within the confines of a larger546

model (35). He showed by carefully designing the estimators,547

the biases can be very small. The paradigm shift here opens up548

the possibility that by defining a large semiparametric model549

and constructing estimators simultaneously for two or more550

very different semiparametric/parametric models within the551

large semiparametric model, then even for a parametric model552

belongs to the large semiparametric model but not to the553

semiparametric/parametric models used for calibration, the554

performance of these estimators might still be near-optimal555

due to the common nature shared by the models used by556

the estimators. Maybe it can be named as comparametrics.557

Closely related topics are "mixture model" and "constraint558

defined model," which were generalized in Bickel, Klaassen,559

Ritov, and Wellner’s classic semiparametric textbook (1993)560

(36) and the method of sieves, introduced by Grenander in561

1981 (37). As the building blocks of statistics, invariant mo-562

ments can reduce the overall errors of statistical results across563

studies and thus can enhance the replicability of the whole564

community (38, 39).565

Methods566

Methods of generating the Table 1 are summarized below, with567

details in the SI Text. The d values for the invariant moments of568

the Weibull distribution were approximated using a Monte Carlo569

study, with the formulae presented in Theorem A.1 and A.2. The570

computation of I functions is summarized in Subsection D and571

further explained in the SI Text. The computation of ASABs572

and ASBs is described in Subsection ??. The SEs and SSEs were573

computed by approximating the sampling distribution using 1000574

pseudorandom samples for n = 5184 and 50 pseudorandom samples575

for n = 2654208. The impact of the bootstrap size, ranging from576

n = 2.7 × 102 to n = 2.765 × 104, on the variance of invariant577

moments and U-central moments was studied using the SEs and578

SSEs methods described above. A brute force approach was used579

to estimate the maximum biases of the robust estimators discussed580

for the five unimodal distributions. The validity of this approach is581

discussed in the SI Text.582

Data and Software Availability. Data for Table 1 are given in583

SI Dataset S1-S4. All codes have been deposited in GitHub.584
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